JPH02160616A - Production of formed article of type-a zeolite - Google Patents
Production of formed article of type-a zeoliteInfo
- Publication number
- JPH02160616A JPH02160616A JP31497588A JP31497588A JPH02160616A JP H02160616 A JPH02160616 A JP H02160616A JP 31497588 A JP31497588 A JP 31497588A JP 31497588 A JP31497588 A JP 31497588A JP H02160616 A JPH02160616 A JP H02160616A
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- type
- binder
- ion exchange
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- JYIMWRSJCRRYNK-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4] JYIMWRSJCRRYNK-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000010457 zeolite Substances 0.000 claims abstract description 56
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 54
- 238000005342 ion exchange Methods 0.000 claims abstract description 40
- 239000000843 powder Substances 0.000 claims abstract description 27
- 239000013078 crystal Substances 0.000 claims abstract description 25
- 239000011230 binding agent Substances 0.000 claims abstract description 23
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 20
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 20
- 239000011734 sodium Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 19
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 238000000465 moulding Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 5
- 238000001179 sorption measurement Methods 0.000 abstract description 5
- 238000001354 calcination Methods 0.000 abstract description 4
- 239000000440 bentonite Substances 0.000 abstract description 3
- 229910000278 bentonite Inorganic materials 0.000 abstract description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 abstract description 3
- 229920000609 methyl cellulose Polymers 0.000 abstract description 2
- 239000001923 methylcellulose Substances 0.000 abstract description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 9
- 239000001110 calcium chloride Substances 0.000 description 9
- 229910001628 calcium chloride Inorganic materials 0.000 description 9
- 229910001424 calcium ion Inorganic materials 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000012266 salt solution Substances 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 238000005406 washing Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229910001415 sodium ion Inorganic materials 0.000 description 5
- 239000004927 clay Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 238000003321 atomic absorption spectrophotometry Methods 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- -1 diatomaceous Chemical compound 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010427 ball clay Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、吸着分離剤、イオン交換剤、触媒などとして
用いられているゼオライト成型体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a zeolite molded body used as an adsorption/separation agent, an ion exchange agent, a catalyst, etc.
さらに詳しくは、著しく高い吸容容量を有し、また高イ
オン交換率を比較的容易に達成でき、さらに高い強度を
有するA型ゼオライト成型体の製造方法であり、かつイ
オン交換コストを大幅に低減する方法を提1」(するも
のである。More specifically, it is a method for producing a molded A-type zeolite that has a significantly high absorption capacity, can relatively easily achieve a high ion exchange rate, and has high strength, while significantly reducing ion exchange costs. I propose a method to do this.
[従来の技術]
A型ゼオライトは、金属イオンの種類によってゼオライ
トの細孔径が決定され、例えば、ナトリウムイオンの場
合は細孔径約4オングストローム、カリウムイオンでは
約3オングストローム。[Prior Art] The pore size of type A zeolite is determined by the type of metal ion; for example, the pore size is about 4 angstroms for sodium ions, and about 3 angstroms for potassium ions.
カルシウムイオンでは約5オングストロームなどとなる
。周期表第1または■族のイオンによって適当なイオン
交換率でイオン交換して、所望の細孔径のA!12ゼオ
ライトを得ることができる。細孔径が制御されたゼオラ
イトは、吸若分離剤、触媒などの用途で広い分野に使用
されている。例えば、カルシウムイオン交換し、細孔径
が5オングストロームに制御されたA型ゼオライトは、
PSA吸着分離法により空気中の酸素と窒素ガスの分離
に広く使用されている。ゼオライトをこれらの目的、特
に工業的用途に使用する場合、カラムに充填するために
ある強度を持った成型体として用いられることが殆どで
ある。For calcium ions, it is about 5 angstroms. Ion exchange with ions from group 1 or group II of the periodic table is performed at an appropriate ion exchange rate to obtain the desired pore diameter A! 12 zeolites can be obtained. Zeolites with controlled pore diameters are used in a wide range of applications such as absorption and separation agents and catalysts. For example, type A zeolite with calcium ion exchange and pore size controlled to 5 angstroms,
The PSA adsorption separation method is widely used to separate oxygen and nitrogen gases in the air. When zeolite is used for these purposes, particularly for industrial applications, it is most often used as a molded body with a certain strength for packing into columns.
従来、ゼオライト成((2体は、ゼオライト結晶粉末で
所望のイオンとまずイオン交換し、あらかじめ細孔径を
制御したゼオライト結晶粉末を作り、それに粘土などの
結合剤を添加して、混合・混練後通常の成型機を用いて
成型して製造されている。Conventionally, zeolite formation ((2) is made by first ion-exchanging the desired ions with zeolite crystal powder to create zeolite crystal powder with the pore size controlled in advance, adding a binder such as clay to it, and then mixing and kneading it. It is manufactured by molding using a regular molding machine.
結合剤の量は、A((2ゼオライト結晶粉末100重量
部あたり20徂量部以上、好ましくは25重量部以上添
加される。このように成型されたゼオライト成型体を引
き続いて高温で焼成する。この焼成は、ゼオライト結晶
が壊れず、かつ成型体に充分な強度を与える温度、具体
的には450〜800 ”Cで行われる。The amount of the binder is A(2) 20 parts by weight or more, preferably 25 parts by weight or more per 100 parts by weight of the zeolite crystal powder. The zeolite molded body thus formed is subsequently fired at a high temperature. This calcination is carried out at a temperature that does not break the zeolite crystals and provides sufficient strength to the molded body, specifically at a temperature of 450 to 800''C.
いっぽう、特開+1/f 55−104913号公報で
は、A型ゼオライト結晶粉末を成型し、えられた成型体
をイオン交換処理することにより、吸行能および強度の
いずれもが高いA型ゼオライ!・成型体を製造する方法
が提案されている。しかし、該公報には、ゼオライト1
00重量部あたり結合剤を25重量部使用する方法しか
示されていない。On the other hand, in Japanese Patent Application Laid-open No. +1/f 55-104913, A-type zeolite crystal powder is molded and the resulting molded body is subjected to ion exchange treatment to produce A-type zeolite which has both high suction ability and strength! - A method of manufacturing a molded body has been proposed. However, the publication states that zeolite 1
Only a method using 25 parts by weight of binder per 00 parts by weight is shown.
すなイ〕ち、結合剤の使用量に関しては、上記の成!(
′!の前にイオン交換する方法と変りがないのである。As for the amount of binder used, the above is true! (
′! This is no different from the method of exchanging ions beforehand.
[発明が解決しようとする課題]
本発明の目的は、より吸若容皿等の大きなA型ゼオライ
ト成型体を、強度を低下させることなく、製造すること
ができる方法を提0(するものである。[Problems to be Solved by the Invention] An object of the present invention is to provide a method that can produce larger A-type zeolite molded bodies such as suction plates without reducing strength. be.
従来より、吸4’j ’8 Inのより大きなゼオライ
ト成型体を製造するために、結合剤の含有量を減少させ
る努力が続けられてきた。しかし、結合剤を減少させる
ことは、強度の低下を招いたり、また成型性の低下のた
め、コー業的には非常に困難であった。したがって、A
fflゼオライト成型体は、ゼオライト結晶粉末100
重量部に対して、結合剤を約2(1m部ないし30重量
部含んでいる。In the past, efforts have been made to reduce the binder content in order to produce larger zeolite compacts of 4'j '8 In. However, reducing the binder content has been extremely difficult in the coating industry because it leads to a decrease in strength and moldability. Therefore, A
ffl zeolite molded body is zeolite crystal powder 100
The binder is contained in an amount of about 2 (1 m part to 30 parts by weight) based on the weight part.
[課題を解決するだめの手段および作用]本発明者らは
、ナトリウムA型ゼオライト結晶粉末を成型してから、
イオン交換する方法をとれば、上記粉末100重量部あ
たり15重量部以ドという、従来知られている使用量よ
りしはるかに少ない量で、十分実用に(3%しうる強度
を備え・た成J(9体を製造しうろことを見出して、本
発明に到達した。とはいえ、あまりその使用量が少なす
ぎると、やはりえられる成型体の強度が不十分となるの
で、上記粉末100重量部あたり5重量部以上曲用する
必要がある。[Means and effects for solving the problem] The present inventors molded sodium A type zeolite crystal powder, and then
If the ion exchange method is used, the amount used is less than 15 parts by weight per 100 parts by weight of the above powder, which is much smaller than the conventionally known amount, and it can be used for practical purposes (with a strength that can be reduced by 3%). The present invention was achieved by producing 9 pieces of powder and discovering scales. However, if the amount used is too small, the strength of the molded product obtained will be insufficient. It is necessary to use 5 parts by weight or more per part.
すなイ〕ち、本発明の要旨は、Auゼオライト成型体を
製造するに際して、ナトリウムA型ゼオライト結晶粉末
に該粉末100重量部あたり5〜15重量部の結合剤を
配合して成型した後、焼成し、交換可能な金属イオンを
含む溶液と接触させてイオン交換を行うことからなる、
AQゼオライト成型体の製造方法にある。以下その詳細
について説明する。In other words, the gist of the present invention is that when producing an Au zeolite molded body, after blending 5 to 15 parts by weight of a binder per 100 parts by weight of sodium A-type zeolite crystal powder and molding the powder, ion exchange by calcination and contact with a solution containing exchangeable metal ions;
A method for producing an AQ zeolite molded body. The details will be explained below.
本発明で予め成型体とするナトリウムA型ゼオライト結
晶粉末は、公知のすトリウムA型ゼオライト結晶粉末の
製造方法によって得られるものでよい。ナトリウムA型
ゼオライト結晶粉末は、5〜15重量部の結合剤(バイ
ンダー)等と混合し、混練され成型される。結合剤とし
ては、例えば、ベントナイト、ケイソウ上、カオリン、
可塑性ボールクレイ、ベントナイト
土等の無機系結合剤;またメチルセルロース、カルボキ
シメチルセルロース、ヒドロキシメチルセルロース等の
結晶性セルロースや糖蜜などのH機性結合剤、を単独で
または複合して用いられる。The sodium A-type zeolite crystal powder to be preformed in the present invention may be obtained by a known method for producing sodium A-type zeolite crystal powder. The sodium A-type zeolite crystal powder is mixed with 5 to 15 parts by weight of a binder, kneaded, and molded. As a binder, for example, bentonite, diatomaceous, kaolin,
Inorganic binders such as plastic ball clay and bentonite earth; crystalline cellulose such as methyl cellulose, carboxymethyl cellulose, and hydroxymethyl cellulose; and H-organic binders such as molasses may be used alone or in combination.
成型体の形状は粒状、ベレット状、球状などいずれでも
よい。The shape of the molded body may be granular, pellet-shaped, spherical, or the like.
次に、成型されたすトリウムA型ゼオライト成型体は、
互いに何首するのを防止する!=1的で100〜200
℃の低温で乾燥するのがよい。Next, the molded strium A type zeolite molded body is
Prevent them from hitting each other! =100-200
It is best to dry at a low temperature of ℃.
乾燥され、形状調整が行イ)れたナトリウムAuゼオラ
イト成型体を加熱焼成処理する。焼成条件は成型体に強
度を付与するために、ゼオライト結品構造に変化を与え
ない範囲で出来る限り高温、例えば400℃以上の温度
で焼成することが望ましい。The dried and shape-adjusted sodium-Au zeolite molded body is heated and fired. Regarding the firing conditions, in order to impart strength to the molded product, it is desirable to perform the firing at a temperature as high as possible, for example, at a temperature of 400° C. or higher, without changing the zeolite crystal structure.
この焼成されたナトリウムAuゼオライト成型体を、金
属イオン、通常、周期表第1または■属に属する金属イ
オンを含む液と接触させてイオン交換を行う。イオン交
換の方法は、回分法(バッチ法)、カラム法等の方法が
あるが、いずれの方法をも採用しうる。本発明では、成
型後にイオン交換を行うので、カラム法によって・rオ
ン交換することが可能であり、イオン交換コストを大幅
に引きさげることができる。また、本発明によれば、ゼ
オライト結晶粉末のイオン交換工程が不要となるので、
ゼオライト結晶粉末の洗浄中の流失などによる歩留まり
の低下を押さえることも可能となり、製造コストの低減
の効果をさらに促進している。This calcined sodium-Au zeolite molded body is brought into contact with a liquid containing metal ions, usually metal ions belonging to Group 1 or Group II of the periodic table, to perform ion exchange. Ion exchange methods include batch methods, column methods, and the like, and any of these methods may be employed. In the present invention, since ion exchange is performed after molding, it is possible to perform .r-on exchange by a column method, and the ion exchange cost can be significantly reduced. Furthermore, according to the present invention, an ion exchange step for zeolite crystal powder is not necessary, so
It is also possible to prevent a decrease in yield due to zeolite crystal powder being washed away during washing, further promoting the effect of reducing manufacturing costs.
以下、経済性に優れたイオン交換法であるカラム法を例
に説明する。The column method, which is an economical ion exchange method, will be explained below as an example.
イオン交換に使用する塩溶液の濃度に制限はない。しか
し、生産性や装置の材質を考慮すると、0.5〜2.O
Nの範囲の濃度が好ましい。また溶液の流通速度は、カ
ラム形状および大きさによって適当な流通速度の範囲が
存在する。塩溶液の流通方向は、特に限定されない。し
かし、例えば、ナトリウムA型ゼオライト成型体をカリ
ウム塩溶液でイオン交換する場合は、カリウム塩溶液を
塔下部より上部へ流通する方法が好ましく、また、カル
シウム塩溶液やリチウム塩溶液でイオン交換する場合は
、カルシウム塩溶液や、リチウム塩溶液を塔上部より下
部へ流通する方法が好ましい。温度については、常温で
行うことも可能であるが、90℃程度まで加温すること
はイオン交換平衡に到達する時間の短縮に効果的であり
、時間的にも流通i(k m低減のためにも効果的であ
る。There is no limit to the concentration of the salt solution used for ion exchange. However, when considering productivity and the material of the equipment, 0.5 to 2. O
Concentrations in the range of N are preferred. Further, there is an appropriate flow rate range for the solution flow rate depending on the column shape and size. The direction of flow of the salt solution is not particularly limited. However, for example, when ion-exchanging a molded sodium A-type zeolite with a potassium salt solution, it is preferable to flow the potassium salt solution from the bottom of the tower to the top, and when ion-exchanging with a calcium salt solution or lithium salt solution, A preferred method is to flow a calcium salt solution or a lithium salt solution from the upper part of the tower to the lower part. Regarding the temperature, it is possible to perform the process at room temperature, but heating it to about 90°C is effective in shortening the time to reach ion exchange equilibrium, and in terms of time, it is also possible to perform the process at room temperature. It is also effective.
イオン交換されたA型ゼオライト成型体は、カラムから
液を抜き出した後に、または洗11にでカラム内の液を
直接置換しながら洗浄され、あるいは洗浄せずに乾燥さ
れる。乾燥は、イオン交換によって、あるいは洗浄によ
って付むした水分が除去されるに充分な条件で行われる
。この操作は比較的温和な条件下で行われるが、A型ゼ
オライト成型体に付召した水分の除去操作とA型ゼオラ
イト結晶が吸むした水分の除去1・ψ作とを分離して行
うこともある。例えば、付むした水分を除去するために
は80〜120℃の範囲で行イ)れ、さらにA型ゼオラ
イト結晶が吸むした水分を除去する・ためには300〜
800℃の温度で加熱される。これらの操作を減圧下に
行えば、その温度は低湿でもよく、またはその時間を短
縮することができる。The ion-exchanged A-type zeolite molded body is washed after extracting the liquid from the column, or while directly replacing the liquid in the column in washing 11, or is dried without washing. Drying is carried out under conditions sufficient to remove attached moisture by ion exchange or washing. This operation is carried out under relatively mild conditions, but the operation for removing the water attached to the A-type zeolite molded body and the removal of the water absorbed by the A-type zeolite crystals are carried out separately. There is also. For example, in order to remove attached moisture, it is carried out at a temperature in the range of 80 to 120℃, and in order to further remove the moisture absorbed by type A zeolite crystals, it is carried out at a temperature in the range of 300 to 120℃.
Heated at a temperature of 800°C. If these operations are performed under reduced pressure, the temperature may be lower and the humidity may be lower, or the time may be reduced.
また、乾燥空気などを流通することでも、減圧下での1
・■作と同等の効果を得ることができる。In addition, by circulating dry air, etc., it is possible to
・You can get the same effect as ■.
[発明の効果]
本発明のゼオライト成型体の製造方法では、比較的成型
性が良く結合剤との馴染みも良いナトリウムA型ゼオラ
イト結晶粉末をあらかじめ成形することによって、強度
を低下させることなく結合剤の含有量が低減され、結果
的に吸着容量を増大さ仕る。細孔径の制御を[1的とし
たイオン交換を、ナトリウムA型ゼオライト結晶粉末を
成型した後に行うことによって、流通法によるイオン交
換が可能となり、製造コストを高めることなくむしろ引
き下げて、吸着容量の大きなA型ゼオライト成型体を製
造することができる。[Effects of the Invention] In the method for producing a zeolite molded body of the present invention, sodium A-type zeolite crystal powder, which has relatively good moldability and good compatibility with the binder, is molded in advance, so that the binder can be used without reducing the strength. content is reduced, resulting in increased adsorption capacity. By performing ion exchange to control the pore size after molding the sodium A-type zeolite crystal powder, ion exchange using the flow method becomes possible, reducing the production cost without increasing the adsorption capacity. Large A-type zeolite molded bodies can be produced.
[実施例]
実施例 1
1j販のすトリウムA型ゼオライト(ゼオラムA4、東
ソー株式会ト1.製)の結晶粉末(約100メツシユ)
100重量部と国産のカオリン系粘土10重皿部とを混
合し、水を加えて混練し、孔径1.5市のダイスを通過
させて、押し出し成型して長さ約5〜15m11の成型
品とした。この成型品を通風乾燥器中110℃で12時
間放置乾燥し、さらに550 ”Cの炉中で2時間焼成
した。焼成した成型体を直径65mm、長さ800 m
nの充填塔に約1.3kg充填し、1Nの塩化カルシウ
ム水溶itkを70℃に加温して、40 ml /分の
流速で充填塔上方より下方に向かって流通し、ナトリウ
ムA型ゼオライ!・成型体中のナトリウムイオンをカル
シウムイオンにイオン交換を行った。イオン交換後、充
填塔内に残存する塩化カルシウム水溶液を液抜きし、1
31の蒸溜水を流通して洗浄した。このA型ゼオライト
成型体を通風乾燥器中110’Cで12時間放置して乾
燥した。得られたA型ゼオライト成型体の・rオン交換
率を原子吸光光度法によって測定した結果、充填塔の上
部、中部、下部でそれぞれ88.8.87.7.88.
0%で゛あった。(試R’) A )
実施例 2
実施例1と同様にして調製した、ナトリウムA型ゼオラ
イト成型体を直径65111長さ800 amの充填塔
に約1.3kg充填し、INの塩化カルシウム水溶液を
70℃に加温して、80 ml 7分の流速で充填塔上
方より下方に向かって流通し、ナトリウムA型ゼオライ
ト成型体中のナトリウムイオンをカルシウムイオンにイ
オン交換を行った。実施例1と同様に洗浄・乾燥後、イ
オン交換率を原子吸光光度法によって測定した結果、充
填塔の上部、中部、下部でそれぞれ87.5.89.5
.88.9%であった。(試料B)
実施例 3
実施例1と同様にして調製した、ナトリウムA型ゼオラ
イト成型体を直径65關、長さ800■−の充填塔に約
1.3kg充填し、INの塩化カルシウム水溶液を70
℃に加温して、160m1/分の流速で充填塔上方より
下方に向かって流通し、ナトリウムA 442ゼオライ
ト成型体中のすトリウムイオンをカルシウムイオンにイ
オン交換を行った。[Example] Example 1 Crystalline powder (approximately 100 mesh) of Thorium A-type zeolite (Zeolum A4, manufactured by Tosoh Corporation) sold by 1j.
100 parts by weight and 10 parts of domestic kaolin clay are mixed, water is added and kneaded, passed through a die with a hole diameter of 1.5 mm, and extruded to form a molded product with a length of approximately 5 to 15 m. And so. This molded product was left to dry in a ventilation dryer at 110°C for 12 hours, and then fired in a furnace at 550"C for 2 hours. The fired molded product had a diameter of 65 mm and a length of 800 m.
Approximately 1.3 kg of 1N calcium chloride aqueous solution was packed into a packed tower of n, heated to 70°C, and passed from the top to the bottom of the packed tower at a flow rate of 40 ml/min. - Ion exchanged sodium ions in the molded body into calcium ions. After ion exchange, the calcium chloride aqueous solution remaining in the packed tower is drained, and 1
31 distilled water was passed through and washed. This A-type zeolite molded body was left to dry at 110'C for 12 hours in a ventilation dryer. The .r-ion exchange rate of the obtained A-type zeolite molded body was measured by atomic absorption spectrophotometry and found to be 88.8.87.7.88 at the top, middle, and bottom of the packed tower, respectively.
It was 0%. (Test R') A) Example 2 Approximately 1.3 kg of the sodium A type zeolite molded body prepared in the same manner as in Example 1 was packed into a packed tower with a diameter of 65111 and a length of 800 am, and an aqueous solution of IN calcium chloride was added. The solution was heated to 70° C. and passed from the top to the bottom of the packed column at a flow rate of 80 ml for 7 minutes to perform ion exchange of sodium ions in the sodium A type zeolite molded body into calcium ions. After washing and drying in the same manner as in Example 1, the ion exchange rate was measured by atomic absorption spectrometry, and the results were 87.5.89.5 at the top, middle, and bottom of the packed tower, respectively.
.. It was 88.9%. (Sample B) Example 3 Approximately 1.3 kg of the sodium A type zeolite molded body prepared in the same manner as in Example 1 was packed into a packed tower with a diameter of 65 mm and a length of 800 mm, and an aqueous solution of IN calcium chloride was added. 70
C. and flowed from the top of the packed tower downward at a flow rate of 160 ml/min to perform ion exchange of thorium ions in the sodium A 442 zeolite molded body into calcium ions.
実施例1と同様に洗浄・乾燥後、イオン交換率を原子吸
光光度法によって測定した結果、充填塔の上部、中部、
下部でそれ!れ89.6.89.4.89.3%であっ
た。(試料C)
実施例 4
実施例1と同様にして調製した、ナトリウムA型ゼオラ
イト成型体を80℃に加温したINの塩化カルシウム水
溶液中に約4時間浸漬し、撹拌し、ナトリウムA 4(
2ゼオライト成型体中のナトリウムイオンをカルシウム
イオンにイオン交換を行った。After washing and drying in the same manner as in Example 1, the ion exchange rate was measured by atomic absorption spectrophotometry.
That's it at the bottom! It was 89.6.89.4.89.3%. (Sample C) Example 4 A molded sodium A zeolite prepared in the same manner as in Example 1 was immersed in an IN aqueous solution of calcium chloride heated to 80°C for about 4 hours, stirred, and dissolved in sodium A 4 (
2. Sodium ions in the zeolite molded body were ion-exchanged with calcium ions.
イオン交換後、固液分離を行い、蒸溜水で洗浄した。同
一のイオン交換の操作を合計3回行った。After ion exchange, solid-liquid separation was performed and washed with distilled water. The same ion exchange operation was performed three times in total.
イオン交換率を原子吸光光度法によって測定した結果、
91.0%であった。(試料D)比較例 1
市販のナトリウムA型ゼオライト(ゼオラムA4、東ソ
ー株式会>1製)の結晶粉末(約100メツシユ)2k
gを80℃に加温したINの塩化カルシウム水溶液、2
81中に約4時間浸漬し、撹°拌し、ナトリウムイオン
をカルシウムイオンにイオン交換を行った。イオン交換
後、固液分離を行い、約101の蒸溜水で洗浄した。同
一の操作を合計3回行った。イオン交換率を原子吸光光
度法によってil?+定した結果、91.0%であった
。このカルシウム型にイオン交換したA型ゼオライト結
晶粉末100重量部と、実施例1で使用した粘土系結合
剤2 Offf量部を混合し、水を加えて混練し、孔径
1.5mmのダイスを通過させて、押し出し成型して長
さ約5〜15龍の成形品とした。この成型品を通風乾燥
品中110℃で12時間放置し、さらに550℃の炉中
で2時間焼成した。(試料E)
比較例 2
比較例1と同様にしてカルシウムイオン交換を行ったA
型ゼオライト結晶粉末100重量部と、粘度系結合剤1
5fff量部とを混合し、水を加えて混練し、孔径1.
5鰭のダイスを通過させて押し出し成型して長さ約5〜
15龍の成形品とした。As a result of measuring the ion exchange rate by atomic absorption spectrometry,
It was 91.0%. (Sample D) Comparative Example 1 Crystalline powder (approximately 100 mesh) of commercially available sodium A-type zeolite (Zeolum A4, manufactured by Tosoh Corporation>1) 2k
g of calcium chloride aqueous solution heated to 80°C, 2
81 for about 4 hours and stirred to perform ion exchange of sodium ions into calcium ions. After ion exchange, solid-liquid separation was performed and washed with about 101 g of distilled water. The same operation was performed three times in total. The ion exchange rate was determined by atomic absorption spectrometry. The result was 91.0%. 100 parts by weight of this A-type zeolite crystal powder ion-exchanged into calcium type and 2 parts Off of the clay-based binder used in Example 1 were mixed, mixed with water, and passed through a die with a pore size of 1.5 mm. Then, it was extruded to form a molded product with a length of about 5 to 15 dragons. This molded product was left in a ventilation dryer at 110° C. for 12 hours, and then fired in a furnace at 550° C. for 2 hours. (Sample E) Comparative Example 2 A that underwent calcium ion exchange in the same manner as Comparative Example 1
100 parts by weight of type zeolite crystal powder and 1 part of viscous binder
5 fff parts, water is added and kneaded, and the pore size is 1.5 fff.
Pass through a 5-fin die and extrude to a length of about 5~
It was made into a molded product of 15 dragons.
この成型品を通風乾燥品中110℃で12時間放置し、
さらに550℃の炉中で2時間焼成した。This molded product was left at 110°C for 12 hours in a ventilated drying product.
Further, it was fired in a furnace at 550°C for 2 hours.
(試料F)
比較例 3
比較例1と同様にしてカルシウムイオン交換を行ったA
型ゼオライト結晶粉末1100ff1部と、粘土系結合
剤10重量部を混合し、水を加えて混練し、孔径1.5
a+mのダイスを通過させて押し出し成型しようとした
ところ、押し出し成型不能であった。(Sample F) Comparative Example 3 A that underwent calcium ion exchange in the same manner as Comparative Example 1
Mix 1 part of type zeolite crystal powder 1100ff and 10 parts by weight of clay-based binder, add water and knead to obtain a pore size of 1.5
When an attempt was made to extrude the material by passing it through an a+m die, extrusion molding was impossible.
以上、A−Fのサンプルについて、圧壊強度。The above is the crushing strength of samples A-F.
窒索吸若容量および塩化カルシウム原単位を比較して、
表に示した。ここに、圧壊強度は、成型体100個の強
度を本屋式硬度計を用いて測定したもののql均値であ
る。窒素の吸む容量は、ffi量法により、−10℃の
温度下、700トールの窒素圧力下における吸容量であ
る。塩化カルシウム原単位は、イオン交換に使用した塩
化カルシウム水溶液の量から塩化カルシウム無水塩の重
量に換算し、
その値をナト
リウムA型ゼオライ
ト成型体゛の
乾燥重量で除した値である。Comparing the nitrogen suction capacity and calcium chloride basic unit,
Shown in the table. Here, the crushing strength is the ql average value of the strength of 100 molded bodies measured using a Honya type hardness tester. The nitrogen absorption capacity is determined by the ffi method at a temperature of -10°C and a nitrogen pressure of 700 Torr. The basic unit of calcium chloride is the value obtained by converting the amount of calcium chloride aqueous solution used for ion exchange into the weight of anhydrous calcium chloride salt, and dividing that value by the dry weight of the sodium A-type zeolite molded body.
表table
Claims (1)
リウムA型ゼオライト結晶粉末に該粉末100重量部あ
たり5〜15重量部の結合剤を配合して成型した後、焼
成し、交換可能な金属イオンを含む溶液と接触させてイ
オン交換を行うことを特徴とする、A型ゼオライト成型
体の製造方法。(1) When producing a type A zeolite molded body, after blending 5 to 15 parts by weight of a binder per 100 parts by weight of the powder with sodium type A zeolite crystal powder and molding, the mixture is calcined and exchangeable metal ions are formed. A method for producing a molded A-type zeolite, the method comprising performing ion exchange by contacting with a solution containing A-type zeolite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63314975A JP2756568B2 (en) | 1988-12-15 | 1988-12-15 | Method for producing A-type zeolite molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63314975A JP2756568B2 (en) | 1988-12-15 | 1988-12-15 | Method for producing A-type zeolite molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02160616A true JPH02160616A (en) | 1990-06-20 |
JP2756568B2 JP2756568B2 (en) | 1998-05-25 |
Family
ID=18059922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63314975A Expired - Fee Related JP2756568B2 (en) | 1988-12-15 | 1988-12-15 | Method for producing A-type zeolite molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2756568B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009101294A (en) * | 2007-10-23 | 2009-05-14 | Kyodo Printing Co Ltd | Method for manufacturing molded body containing adsorbent and molded body containing adsorbent |
JP2020015651A (en) * | 2018-07-26 | 2020-01-30 | 東ソー株式会社 | Method for producing silver ion-exchange zeolite |
-
1988
- 1988-12-15 JP JP63314975A patent/JP2756568B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009101294A (en) * | 2007-10-23 | 2009-05-14 | Kyodo Printing Co Ltd | Method for manufacturing molded body containing adsorbent and molded body containing adsorbent |
JP2020015651A (en) * | 2018-07-26 | 2020-01-30 | 東ソー株式会社 | Method for producing silver ion-exchange zeolite |
Also Published As
Publication number | Publication date |
---|---|
JP2756568B2 (en) | 1998-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69923487T2 (en) | Adsorbent for gas separation | |
DE60120819T2 (en) | Process for the adsorptive separation of carbon dioxide | |
US2992068A (en) | Method for making synthetic zeolitic material | |
JPH0337156A (en) | Formed and calcined zeolite and its production | |
EA001175B1 (en) | Method for obtaining lsx zeolite granular agglomerates with low inert binding material ratio | |
KR101203258B1 (en) | BaX TYPE ZEOLITE GRANULE AND PROCESS FOR PREPARING THE SAME | |
CN101380565B (en) | Active molecular sieve absorbent and preparation method thereof | |
KR870000267B1 (en) | Gas separation kinetics in commercial pallets | |
CN105800638A (en) | Low-potassium type 3A zeolite molecular sieve and preparation method thereof | |
JPH0674136B2 (en) | Zeolite compact and manufacturing method thereof | |
JP3123057B2 (en) | Method for producing X-type zeolite molded body | |
JPH02160616A (en) | Production of formed article of type-a zeolite | |
JP2000210557A (en) | Molded product containing x-type zeolite, manufacture and use application thereof | |
KR20050098308A (en) | Sintered adsorbents, preparation method thereof and use of same for the drying of organic compounds | |
JPH11314913A (en) | High strength low wear zeolite granule and its production | |
JPH0141380B2 (en) | ||
JPH11246216A (en) | Activated low-silica x-zeolite compact | |
JPH03295802A (en) | High-strength a-type zeolite molded body and its production | |
JPH11246282A (en) | X-zeolite bead compact and its production | |
JP2000211915A (en) | Formed compact containing low-silica x type zeolite, its production and use thereof | |
JP3074816B2 (en) | Method for producing 3A type zeolite molded body | |
JPH026846A (en) | Production of molded body of oxygen-nitrogen separating agent made of zeolite composition | |
JPH0248293B2 (en) | ||
JPH0521025B2 (en) | ||
JPH01304042A (en) | Zeolite adsorbent for hydrogen psa and preparation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |