JPH02169192A - Method for cutting sintered body of cubic boron nitride - Google Patents
Method for cutting sintered body of cubic boron nitrideInfo
- Publication number
- JPH02169192A JPH02169192A JP63320697A JP32069788A JPH02169192A JP H02169192 A JPH02169192 A JP H02169192A JP 63320697 A JP63320697 A JP 63320697A JP 32069788 A JP32069788 A JP 32069788A JP H02169192 A JPH02169192 A JP H02169192A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- sintered body
- cutting
- laser irradiation
- cbn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title claims description 16
- 230000002745 absorbent Effects 0.000 claims abstract description 8
- 239000002250 absorbent Substances 0.000 claims abstract description 8
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 238000010521 absorption reaction Methods 0.000 abstract description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910052580 B4C Inorganic materials 0.000 abstract description 2
- 229910052786 argon Inorganic materials 0.000 abstract description 2
- 239000012298 atmosphere Substances 0.000 abstract description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910020056 Mg3N2 Inorganic materials 0.000 description 1
- MMOXZBCLCQITDF-UHFFFAOYSA-N N,N-diethyl-m-toluamide Chemical compound CCN(CC)C(=O)C1=CC=CC(C)=C1 MMOXZBCLCQITDF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体レーザ、re、マイクロ波素子等の放
熱用ヒートシンク釦用いられる立方晶窒化ホウ素焼結体
の切断方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for cutting a cubic boron nitride sintered body used in heat sink buttons for heat dissipation of semiconductor lasers, RE, microwave elements, etc.
半導体レーザ等の発熱性半導体素子は、発生する熱によ
る素子性能の劣化や暴走を防ぐため、ヒートシンクを介
してパッケージのベースに取り付けられる。ヒートシン
ク材料には、高い熱伝導率と半導体素子との熱膨張係数
の整合性が要求され、半導体素子を直接塔載可能となる
電気的絶縁性も求められる。これらの特性を備えたもの
として立方晶窒化ホウ素(cBN )焼結体吟が挙げら
れる。A heat generating semiconductor element such as a semiconductor laser is attached to the base of a package via a heat sink in order to prevent deterioration of element performance or runaway due to generated heat. Heat sink materials are required to have high thermal conductivity and match the coefficient of thermal expansion with semiconductor elements, and are also required to have electrical insulation properties that enable direct mounting of semiconductor elements. Cubic boron nitride (cBN) sintered material has these characteristics.
cBNをヒートシンク材料として用いる場合、素子の大
きさに合わせて例えばI II X 1 mxの大きさ
KcBNを切断する必要がある。しかし、cBNは、硬
度5400ゆ/酊2(Kaoop )以上あり、その切
断は困難である。cBNの切断方法としては、■ダイヤ
モンドホイールを用いて、ダイシングマシンにより切断
する方法、■レーザにより熱的に切断する方法が周く知
られている。■の方法では、ホイールを用いるため切!
7幅が大きくなり、さらに高硬度のcBNを切るために
ダイヤモンドホイールの寿命が短いという問題点があっ
た。また、■の方法では、cBNは窒化物であるために
空気中でレーザを照射して切断した場合、レーザ照射時
の加熱により切断面で酸化が起こり、切断面が変質して
荒くなりしかも時間がかかるという問題点があった。When cBN is used as a heat sink material, it is necessary to cut KcBN to a size of, for example, I II x 1 mx to match the size of the element. However, cBN has a hardness of 5,400 Yu/酊2 (Kaoop) or more, making it difficult to cut. As methods for cutting cBN, two methods are well known: (1) cutting with a dicing machine using a diamond wheel, and (2) thermally cutting with a laser. ■ Method uses a wheel, so cut it off!
There was a problem in that the width of the diamond wheel became larger and the life of the diamond wheel was shortened because it cut the highly hard cBN. In addition, in method (2), since cBN is a nitride, if it is cut by laser irradiation in air, oxidation occurs on the cut surface due to the heating during laser irradiation, and the cut surface changes in quality and becomes rough. There was a problem that it took a lot of time.
本発明は、cBN焼結体をヒートシンクとして利用する
場合の上述した問題点を改善するものであって、切断面
が変質しない安宿なcBN焼結体の切断方法を提供しよ
うとするものである。The present invention is intended to improve the above-mentioned problems when using a cBN sintered body as a heat sink, and to provide an inexpensive method for cutting a cBN sintered body in which the cut surface does not change in quality.
即ち、本発明は、以下を要旨とするcBN焼結体の切断
方法である。That is, the present invention is a method for cutting a cBN sintered body, the gist of which is as follows.
1、 cBN焼結体のレーザ照射面及び/又はレーザ
照射背面にレーず吸収剤を塗布した後レーザを朋射する
ことを特徴とするcBN焼結体の切断方法。1. A method for cutting a cBN sintered body, which comprises applying a laser absorbent to the laser irradiated surface and/or the laser irradiated back surface of the cBN sintered body, and then irradiating the laser beam.
2、 波長500 nm以上のレーザを照射することを
特徴とする請求項1に記載のcBN焼結体の切断方法。2. The method for cutting a cBN sintered body according to claim 1, characterized in that irradiation is performed with a laser having a wavelength of 500 nm or more.
以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.
本発明に係る立方晶窒化ホウ素(cBN )焼結体を得
るには、例えば熱分解窒化ホウ素(P −BN)板を化
学気相蒸着(CVD )法により合成し、それに合成触
媒を熱処理によって拡散含浸させ、それを高温高圧処理
(例えば特開昭63−260865号公報)すればよい
。これを加工してヒートシンク基体を作製する。In order to obtain the cubic boron nitride (cBN) sintered body according to the present invention, for example, a pyrolytic boron nitride (P-BN) plate is synthesized by a chemical vapor deposition (CVD) method, and a synthesis catalyst is diffused therein by heat treatment. It may be impregnated and subjected to high temperature and high pressure treatment (for example, Japanese Patent Application Laid-Open No. 63-260865). This is processed to produce a heat sink base.
CO2レーザ(波長10.6 pm )やYAGレーザ
(波長1.06μm)等の赤外域レーザは、レーザ光を
熱エネルギーとして利用する熱的レーザ加工に用いられ
、ビーム径を数μm〜数百μmにすることができる。一
方、KrC1、KrF 、 XeClレーザ等のエキ
シマレーザは、波長領域200〜4DOamレーザであ
り、非熱的なプロセスで作用し、ビーム径は数I11程
度ある。本発明ではいずれのレーザでも使用できる。Infrared lasers such as CO2 lasers (wavelength: 10.6 pm) and YAG lasers (wavelength: 1.06 μm) are used for thermal laser processing that uses laser light as thermal energy, and the beam diameter is from several μm to several hundred μm. It can be done. On the other hand, excimer lasers such as KrC1, KrF, and XeCl lasers are lasers in the wavelength range of 200 to 4 DOam, operate in a non-thermal process, and have a beam diameter of about several I11. Any laser can be used in the present invention.
レーザな照射すると照射された部分のみが局所的に高温
に加熱され昇華するため、レーザを走査することにより
切断が行われる。cBN焼結体のレーザ吸収は切断時の
効率即ち切断時間を決める。When irradiated with a laser, only the irradiated area is locally heated to a high temperature and sublimates, so cutting is performed by scanning the laser. The laser absorption of the cBN sintered body determines the cutting efficiency, that is, the cutting time.
エキシマレーザの場合は、cBN焼結体への吸収率が高
いので切断時間は短かくなるという利点があるが切如幅
が大きくなる。切υ幅を小さくするにはYAGレーザ等
のように波長が5 D Onm以上のレーザな用いれば
よいがcBN焼結体を透過し吸収率が低下する。そこで
、cBN焼結体のレーザ照射面及び/又はレーザ照射背
面にカーボンやボロンカーバイト等の吸収剤を塗布すれ
ば吸収効率を向上させることができる。レーザ吸収剤と
しては、カーピンを数μm−数十μm真空蒸着したもの
、黒鉛の粉をエタノールや1 、1 、1− トIJク
ロルエタン等の溶媒をバインダーとして分散させてスプ
レーとして吹き付け、数μm〜数十μmの黒鉛乾燥皮膜
を形成したもの等が用いられる。レーザ照射背面にレー
ザ吸収剤を塗布しておくこと&Cよりレーザ照射背面で
の反射或は散乱を低減させ、レーザの干渉等による出力
効率の低減を防ぐことができるので短時間での切断がで
きる。In the case of an excimer laser, the absorption rate into the cBN sintered body is high, so the cutting time is short, which is an advantage, but the cutting width becomes large. In order to reduce the cutting width, a laser having a wavelength of 5 D Onm or more, such as a YAG laser, may be used, but the laser passes through the cBN sintered body and the absorption rate decreases. Therefore, the absorption efficiency can be improved by applying an absorbent such as carbon or boron carbide to the laser irradiated surface and/or the laser irradiated back surface of the cBN sintered body. As a laser absorbent, carpin is vacuum-deposited to a thickness of several micrometers to several tens of micrometers, graphite powder is dispersed in a binder such as ethanol or a solvent such as 1,1,1-IJ chloroethane, and sprayed to a depth of several micrometers to several tens of micrometers. A material on which a dry graphite film of several tens of micrometers is formed is used. Applying a laser absorbent to the back surface of the laser irradiation reduces reflection or scattering on the back surface of the laser irradiation, and prevents a reduction in output efficiency due to laser interference, allowing cutting in a short time. .
その彼、それを窒素、アルゴン等の不活性ガス雰囲気下
でレーザな照射すれば、変質もなく滑らかな切断面を持
つcBN焼結体の分割片を得ることができ空間で凝縮し
た超微粒子によ抄入射レーザは強く散乱され切断効率が
低下するので、それを防止するために減圧下でレーザ照
射を行うことが望ましい。By irradiating it with a laser in an inert gas atmosphere such as nitrogen or argon, it is possible to obtain divided pieces of cBN sintered body with smooth cut surfaces without deterioration, and to form ultrafine particles condensed in space. Since the laser beam incident on the cutting edge is strongly scattered and the cutting efficiency decreases, it is desirable to perform laser irradiation under reduced pressure to prevent this.
レーザとしてパルス発振YAGレーザを用いた場合、通
常、5〜100μm程度の切り幅となる。When a pulsed YAG laser is used as the laser, the cutting width is usually about 5 to 100 μm.
これは、従来のホイールを用いる200μm程度に比べ
て極めて/Isさい。また、cBNは窒化物であるだめ
に空気中でレーザを照射して切断した場合、レーず照射
時の加熱により切断面で酸化が起こり、切断面が変質し
て荒くなるという問題があったが、本発明の切断方法に
よれば、これを著しく軽減することができる。This is extremely small compared to about 200 μm using a conventional wheel. In addition, since cBN is a nitride, when it is cut by laser irradiation in air, oxidation occurs on the cut surface due to the heating during laser irradiation, causing the cut surface to change in quality and become rough. According to the cutting method of the present invention, this can be significantly reduced.
〔実施例〕
以下、実施例及び比較例をあげて本発明を更に詳しく説
明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.
実施例1
三塩化ホウ素とアンモニアを原料ガスとし温度1900
℃、圧力20 D Pa 、蒸着速度1[10111r
L/hrの条件でCVDを行いP−BN板を得、それを
Mg3N2粉末中に埋め、N2気流中1200℃で8時
間保持し、0.5モルチのMg、BN3を拡散含浸させ
た。これをベルト型高圧発生装置内で、1.600℃、
5.8GPaで30分間高温高圧処理を行い焼結体を得
fc、この焼結体についてX線回折法により生成相の同
定をおこなったところcBN焼結体であることが確かめ
られた。さらに1定常法熱伝導率測定装置により測定し
た常温熱伝導率は、1、(][][]W、’mKであっ
た。Example 1 Boron trichloride and ammonia are used as raw material gas and the temperature is 1900.
°C, pressure 20 D Pa, deposition rate 1[10111r
CVD was performed under the conditions of L/hr to obtain a P-BN plate, which was buried in Mg3N2 powder and held at 1200°C for 8 hours in a N2 stream to diffuse and impregnate 0.5 mol of Mg and BN3. This was heated to 1.600℃ in a belt-type high-pressure generator.
A sintered body was obtained by performing high-temperature and high-pressure treatment at 5.8 GPa for 30 minutes fc, and when the formed phase of this sintered body was identified by X-ray diffraction, it was confirmed that it was a cBN sintered body. Furthermore, the room temperature thermal conductivity measured by a steady method thermal conductivity measuring device was 1, (][][]W,'mK.
上記cBN焼結体のレーザ照射面に、1〜3μmの黒鉛
粉をエタノールに分散させた分散液をスプレ一方式で塗
布し、窒素雰囲気下でパルス発振YAGレーザを照射し
ながら走査し、1111角の分割片を36個得た。レー
ず出力は15Wとした。得られた分割片の切断面の表面
荒さの測定結果と切断に要した時間を第1表に示す。A dispersion of 1 to 3 μm graphite powder dispersed in ethanol was sprayed onto the laser irradiated surface of the cBN sintered body, and scanned while irradiating with a pulsed YAG laser in a nitrogen atmosphere. 36 divided pieces were obtained. The laser output was 15W. Table 1 shows the measurement results of the surface roughness of the cut surfaces of the obtained divided pieces and the time required for cutting.
実施例2
CBN焼結体の両面に黒鉛粉を塗布したこと以外は実施
例1と同様にして分割片を製造した。その結果を第1表
に示す。Example 2 Split pieces were manufactured in the same manner as in Example 1 except that graphite powder was applied to both sides of the CBN sintered body. The results are shown in Table 1.
実施例6
cBN焼結体のレーず照射面に力〜ボンを真空蒸着した
こと以外は実施例1と同様にして分割片を製造した。そ
の結果を第1表に示す。Example 6 Split pieces were manufactured in the same manner as in Example 1, except that the laser beam was vacuum-deposited on the laser irradiated surface of the cBN sintered body. The results are shown in Table 1.
実施例4
cBN焼結体の両面にカーボンを真空蒸着したこと以外
は実施例1と同様にして分割片を製造した。Example 4 Split pieces were manufactured in the same manner as in Example 1 except that carbon was vacuum-deposited on both sides of the cBN sintered body.
その結果を第1表に示す。The results are shown in Table 1.
比較例1
実施例1で作製したcBN焼結体にパルス発振YAGレ
ーザを照射しながら走査し、1朋角のヒートシンク基体
を36個得た。レーザ出力は15Wとした。この比較例
での切断面の表面粗さ及び切断に要した時間を第1表に
記す。Comparative Example 1 The cBN sintered body produced in Example 1 was scanned while being irradiated with a pulsed YAG laser to obtain 36 heat sink substrates of 1 square inch. The laser output was 15W. Table 1 shows the surface roughness of the cut surface and the time required for cutting in this comparative example.
比較例2
実施例1で作製したcBN焼結体をダイヤモンドホイー
ルで切断し、1n角のヒートシンク基体を25個得た。Comparative Example 2 The cBN sintered body produced in Example 1 was cut with a diamond wheel to obtain 25 1n square heat sink substrates.
この比較例での切断面の表面粗さ及び切断に要した時間
を第1表に記す。Table 1 shows the surface roughness of the cut surface and the time required for cutting in this comparative example.
第1表
〔発明の効果〕
本発明によれば、切り幅が小さく、切断面の変質がなく
滑らかKかつ短時間にcBN焼結体を切断することがで
きる。Table 1 [Effects of the Invention] According to the present invention, a cBN sintered body can be cut smoothly with a small cutting width, without deterioration of the cut surface, and in a short time.
特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.
Claims (2)
レーザ照射背面にレーザ吸収剤を塗布した後レーザを照
射することを特徴とする立方晶窒化ホウ素焼結体の切断
方法。1. A method for cutting a cubic boron nitride sintered body, comprising applying a laser absorbent to a laser irradiated surface and/or a laser irradiated back surface of the cubic boron nitride sintered body, and then irradiating the cubic boron nitride sintered body with a laser.
とする請求項1に記載の立方晶窒化ホウ素焼結体の切断
方法。2. The method for cutting a cubic boron nitride sintered body according to claim 1, characterized in that irradiation is performed with a laser having a wavelength of 500 nm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63320697A JPH02169192A (en) | 1988-12-21 | 1988-12-21 | Method for cutting sintered body of cubic boron nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63320697A JPH02169192A (en) | 1988-12-21 | 1988-12-21 | Method for cutting sintered body of cubic boron nitride |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02169192A true JPH02169192A (en) | 1990-06-29 |
Family
ID=18124335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63320697A Pending JPH02169192A (en) | 1988-12-21 | 1988-12-21 | Method for cutting sintered body of cubic boron nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02169192A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8039527B2 (en) | 2008-06-06 | 2011-10-18 | E.I. Du Pont De Nemours And Company | Polymers containing hexagonal boron nitride particles coated with turbostratic carbon and process for preparing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52111097A (en) * | 1976-03-13 | 1977-09-17 | Toshiba Corp | Laser processing method |
JPS5893811A (en) * | 1981-11-27 | 1983-06-03 | Toyota Central Res & Dev Lab Inc | Heating method by laser |
JPS62282795A (en) * | 1986-05-30 | 1987-12-08 | Mitsubishi Heavy Ind Ltd | Masking material for material working |
JPS6372491A (en) * | 1986-09-17 | 1988-04-02 | Hitachi Metals Ltd | Processing method for thermal decomposition type boron nitride stock |
JPS63260865A (en) * | 1987-04-16 | 1988-10-27 | 科学技術庁無機材質研究所長 | Cubic crystal boron nitride sintered body and manufacture |
-
1988
- 1988-12-21 JP JP63320697A patent/JPH02169192A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52111097A (en) * | 1976-03-13 | 1977-09-17 | Toshiba Corp | Laser processing method |
JPS5893811A (en) * | 1981-11-27 | 1983-06-03 | Toyota Central Res & Dev Lab Inc | Heating method by laser |
JPS62282795A (en) * | 1986-05-30 | 1987-12-08 | Mitsubishi Heavy Ind Ltd | Masking material for material working |
JPS6372491A (en) * | 1986-09-17 | 1988-04-02 | Hitachi Metals Ltd | Processing method for thermal decomposition type boron nitride stock |
JPS63260865A (en) * | 1987-04-16 | 1988-10-27 | 科学技術庁無機材質研究所長 | Cubic crystal boron nitride sintered body and manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8039527B2 (en) | 2008-06-06 | 2011-10-18 | E.I. Du Pont De Nemours And Company | Polymers containing hexagonal boron nitride particles coated with turbostratic carbon and process for preparing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5483038A (en) | Method of working diamond with ultraviolet light | |
US6331690B1 (en) | Process for producing single-wall carbon nanotubes uniform in diameter and laser ablation apparatus used therein | |
KR0172651B1 (en) | X-ray generation apparatus | |
Shirk et al. | Ultrashort pulsed laser ablation of diamond | |
Windholz et al. | Nanosecond pulsed excimer laser machining of chemical vapour deposited diamond and highly oriented pyrolytic graphite: Part I An experimental investigation | |
KR20030045082A (en) | Deposition of thin films by laser ablation | |
TWI300960B (en) | Method of cutting and machining a silicon wafer | |
US5788766A (en) | Window and preparation thereof | |
US20110210479A1 (en) | Confined pulsed laser deposition method for depositing metastable thin film | |
JP4294140B2 (en) | Diamond thin film modification method, diamond thin film modification and thin film formation method, and diamond thin film processing method | |
CA2100132C (en) | Method of producing synthetic diamond | |
US6168744B1 (en) | Process for sequential multi beam laser processing of materials | |
JPH02169192A (en) | Method for cutting sintered body of cubic boron nitride | |
US5450434A (en) | Method to work cubic boron nitride article | |
JP2913796B2 (en) | Vapor phase synthetic diamond | |
JP2007210821A (en) | Method for synthesizing hard material by using laser, and method for reforming surface by laser | |
JP3099539B2 (en) | Manufacturing method of artificial diamond powder | |
EP0669298A1 (en) | Method of working silicon nitride ceramics | |
Käsmaier et al. | Irradiation of solid C 60 films with pulsed UV-laser-light: Fabrication of a periodic submicron C 60 structure and transformation of C 60 into a different carbon phase | |
Lyalin et al. | Laser deposition of amorphous diamond films from liquid aromatic hydrocarbons | |
Zhang et al. | Rapid nucleation of diamond films by pulsed laser chemical vapor deposition | |
JPH0341435B2 (en) | ||
Qingrun et al. | Micro-hardness and adhesion of boron carbon nitride coatings | |
Chmelickova et al. | Laser cutting of CVD diamond wafers | |
JPH06316406A (en) | Method for processing diamond |