[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02152208A - Soft magnetic alloy film - Google Patents

Soft magnetic alloy film

Info

Publication number
JPH02152208A
JPH02152208A JP30581688A JP30581688A JPH02152208A JP H02152208 A JPH02152208 A JP H02152208A JP 30581688 A JP30581688 A JP 30581688A JP 30581688 A JP30581688 A JP 30581688A JP H02152208 A JPH02152208 A JP H02152208A
Authority
JP
Japan
Prior art keywords
soft magnetic
film
alloy film
magnetostriction
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30581688A
Other languages
Japanese (ja)
Inventor
Naoya Hasegawa
直也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP30581688A priority Critical patent/JPH02152208A/en
Publication of JPH02152208A publication Critical patent/JPH02152208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To enhance a soft magnetic characteristic by a method wherein a composition of Co-M-N (where M represents at least one kind or more out of Ti, Zr, Hf, Nb, Ta, Mo and W) is provided and its composition ratio is specified so that a magnetostriction of conventional Co-based nitride alloy films can be approached to zero. CONSTITUTION:This is soft magnetic alloy film which is expressed by a formula of CoaMbNc (where M represents at least one kind or more out or Ti, Zr, Hf, Nb, Ta, Mo and W, Co represents cobalt and (a), (b) and (c) represent atomic % individually) and which is composed of a composition where said (a), (b) and (c) are 50<=a<=75, 4<=b<=25, 20.1<=c<=35 and a+b+c=100. By a heat treatment, this M is bonded chemically to N contained in the film; a fine crystal of MN (a nitride of M) is provided. Thereby, Co as a mother phase displays a fine crystal structure composed mainly of a face-centered cubic system. Since the crystal becomes fine (a particle diameter of 0.05mum or lower), an influence by a crystal magnetic anisotropy is relaxed and a soft magnetic characteristic can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、複合型磁気へyF’ca称M I Gヘッ
ド)などに使用される軟磁性膜に係わり、特に、熱安定
性に優れ、軟磁気特性に優れたものに関七る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a soft magnetic film used in composite magnetic heads (MIG heads) and the like, and in particular has excellent thermal stability. Concerning materials with excellent soft magnetic properties.

[従来の技術] 従来、上記磁気ヘッド等において使用される軟磁性膜の
中で乙、高い飽和磁化(Os)と高い耐熱性を両立する
ことのできる軟磁性膜として、Go−M−N(ただしM
はTi、Zr、Hf Nb Mo〜Vのうち少なくとら
一種以上を示す、、)なる組成の軟磁性膜が提案されて
いる。(特開昭62−210607号、特開昭63−5
7758号公報など)[発明が解決しようとする課題] しかしながら、従来のCo−M−N系の軟磁性膜は、熱
処理により負の磁歪を示し、−4〜−6×10−6の比
較的大きな磁歪をらち、磁気ヘッドに加工する際の歪に
よる逆磁歪効果で軟磁気特性が劣化し易い問題かあった
[Prior Art] Conventionally, among the soft magnetic films used in the above-mentioned magnetic heads, etc., Go-M-N ( However, M
A soft magnetic film has been proposed having the following composition: represents at least one of Ti, Zr, HfNbMo to V. (JP-A-62-210607, JP-A-63-5
No. 7758, etc.) [Problems to be Solved by the Invention] However, conventional Co-M-N based soft magnetic films exhibit negative magnetostriction due to heat treatment, and have a comparatively low magnetostriction of -4 to -6 x 10-6. Due to the large magnetostriction, the soft magnetic properties tend to deteriorate due to the reverse magnetostrictive effect caused by strain during processing into a magnetic head.

また、このCo−M−N系の軟磁性膜を用いて磁気ヘッ
トを製造する場合、一対の磁気コア半休をガラスポンデ
ィングによって接合する必要があるので、磁気コア半休
はガラスポンディング時に、通常、600℃付近の高温
に加熱されるものである。ところが、磁気コア半休がこ
のようI3i高温に加熱された場合、軟磁性膜の電気抵
抗(比抵抗)が低下し、80〜100μΩ・cm(従来
のco−M系アモルファス膜の約7割程度)となる。電
気抵抗が低くなると、冒周波での渦電流損失が増大し1
、高周波透磁率が伸びなくなるという不都合があった。
In addition, when manufacturing a magnetic head using this Co-M-N-based soft magnetic film, it is necessary to bond a pair of magnetic core half-holes by glass bonding, so the magnetic core half-holes are usually attached during glass bonding. , which is heated to a high temperature of around 600°C. However, when the magnetic core is heated to such an I3i high temperature, the electrical resistance (specific resistance) of the soft magnetic film decreases to 80 to 100 μΩ・cm (approximately 70% of the conventional co-M amorphous film). becomes. When the electrical resistance decreases, eddy current loss at high frequencies increases and 1
, there was a disadvantage that the high-frequency magnetic permeability stopped increasing.

またこの従来のCo−M−薄膜は、単層では良好な軟磁
気特性が得られないため、Go−M−薄膜とCo−M膜
を交互に多数積層させた構fi(熱処理後のものは層間
にNの拡散がおこり、膜厚方向にN濃度が変調された構
造となる)にする必要があり、軟磁性膜の作製工程か複
雑になるという不都合があった。
In addition, since this conventional Co-M thin film cannot obtain good soft magnetic properties with a single layer, it has a structure in which Go-M thin films and Co-M films are laminated alternately (the one after heat treatment is It is necessary to create a structure in which N diffuses between the layers and the N concentration is modulated in the direction of the film thickness, which has the disadvantage of complicating the manufacturing process of the soft magnetic film.

本発明は、従来のCo系窒化合金膜の磁歪を零に近づけ
、また電気抵抗を大きくすることにより軟磁気特性の向
」二及び高周波透磁率の改善を図り、また単層膜であっ
ても良好な軟磁気特性を示す軟磁性合金膜の提供を目的
と(7,ている。
The present invention aims to improve the soft magnetic properties and high frequency permeability by bringing the magnetostriction of the conventional Co-based nitride alloy film close to zero and increasing the electrical resistance. The purpose of this study is to provide a soft magnetic alloy film exhibiting good soft magnetic properties (7).

[課題を解決するための手段] 上記目的を達成するために、請求項1記載の発明は、式
 CoaMbNc(たたし、Mはi”i。
[Means for Solving the Problems] In order to achieve the above object, the invention according to claim 1 has the following features: CoaMbNc (where M is i''i).

Zr、Hf、さJb、Ta、Mo、Wのうち少なくとも
一種以上、Goはコバルト、Nは窒素を示し、またa、
b、cは各々原子%を表ず)で示され、上記a、b、c
が、50≦a≦75 4≦b≦25 20 1≦c≦35 a+b+c= 100 なる組成よりなる軟磁性合金膜である。
At least one of Zr, Hf, Jb, Ta, Mo, and W, Go is cobalt, N is nitrogen, and a,
b, c each represent atomic %), and the above a, b, c
The soft magnetic alloy film has the following composition: 50≦a≦75 4≦b≦25 20 1≦c≦35 a+b+c=100.

また、請求項2記載の発明は、上記Mの窒化物の微細結
晶を含み、全体が優位的に粒径005μm以下の微細結
晶からなる軟磁性合金膜である。
Further, the invention according to claim 2 is a soft magnetic alloy film that includes fine crystals of the nitride of M, and is entirely composed of fine crystals with a grain size of 005 μm or less.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

上記軟磁性合金膜において、Co(コバルト)は主成分
であり、磁性を担う元素であり、少なくともフェライト
以上(Bs≧50000 (Gauss) )のBsを
得るためにはa≧50原子%(以下at%と記す)が必
要である。また軟磁性を得ろためにはa≦75at%で
なければならない。
In the above-mentioned soft magnetic alloy film, Co (cobalt) is the main component and is an element responsible for magnetism. (denoted as %) is required. Further, in order to obtain soft magnetism, a≦75 at% must be satisfied.

−1−記M (T i、 Z r、 Hr、 N b、
Mo、W )は、軟磁性を得ろために必要であり、軟磁
性を得るためにはb≧4aL%とする必、要があり、ま
た添加しすぎると11 sが低下ずろのでb≦25at
%としなければならない。このMは、熱処理により膜中
に含まれるNと化学結合し、MN(Mの窒化物)の微細
結晶を生成する。これに伴い母相のCoも面心立方品を
主体とする微結晶の相識を呈する。MNの微細結晶が均
一に膜中に分散していることにより、c。
-1-M (T i, Z r, Hr, N b,
Mo, W) are necessary to obtain soft magnetism, and in order to obtain soft magnetism, it is necessary to set b≧4aL%, and if too much is added, 11s will decrease, so b≦25at.
Must be expressed as %. This M chemically bonds with N contained in the film through heat treatment to produce fine crystals of MN (M nitride). Along with this, the parent phase of Co also exhibits a microcrystalline structure consisting mainly of face-centered cubic elements. Due to the uniform distribution of MN microcrystals in the film, c.

の微結晶の粒成長の障害となり、550℃の熱処理後も
Coの結晶粒は微細なままである。Coの結晶は結晶磁
気異方性が大きいため、通常の大きさの結晶では軟磁気
特性は得られないか、結晶が微細になることにより、結
晶磁気異方性の影響が緩和され、軟磁気特性が得られる
Co crystal grains remain fine even after heat treatment at 550°C. Because Co crystals have large magnetocrystalline anisotropy, soft magnetic properties cannot be obtained with normal-sized crystals, or as the crystals become finer, the effects of magnetocrystalline anisotropy are alleviated, resulting in soft magnetic properties. characteristics are obtained.

N(窒素)はMとの化学結合によりMNを生成し、これ
により耐熱性を高め、また、Bsを高めるために必要で
ある。(アモルファス状態ではCoとMが相互作用し、
Coの磁気モーメントがかなり抑制されているのに対し
、MがMNの結晶として析出すると、MはCoと相互作
用しなくなり、C+)一原子あたりの磁気モーメントが
」二かり、これによりBsが上がる。) また、Nは電気抵抗を高めるために必要−である。
N (nitrogen) is necessary to generate MN through a chemical bond with M, thereby increasing heat resistance and increasing Bs. (In the amorphous state, Co and M interact,
While the magnetic moment of Co is considerably suppressed, when M precipitates as MN crystals, M no longer interacts with Co, and the magnetic moment per atom of C+) increases by 2, which increases Bs. . ) Furthermore, N is necessary to increase electrical resistance.

MNの微結晶のX線回折ピークが認められるに至るのは
、C≧20.lat%であり、これに伴い、磁歪が零に
近づき、また、単層であっても優れた軟磁気特性を示す
ようになる。また、Nをあまり添加するとBsが低下す
るのでC≦35at%と1−る必要がある。
The X-ray diffraction peak of MN microcrystals is observed when C≧20. lat%, and as a result, the magnetostriction approaches zero, and even a single layer exhibits excellent soft magnetic properties. Furthermore, if too much N is added, Bs will decrease, so it is necessary to satisfy C≦35 at %.

本発明による軟磁性膜は、フェライトなどの基体表面に
、スパッタ法や真空蒸着法等の薄膜作製装置により薄膜
形成して製造される。スパッタ装置としては、RF2極
スパッタ、マグネトロンスパッタ、3極スパツタ、イオ
ンビームスパッタ、対向ターゲット式スパッタ等の既存
の装置を使用することができる。ターゲットとしては、
Co−M合金ターゲットのほか、Coツタ−ゲット上M
のペレットを配置した複合ターゲットを用いることがで
きる。
The soft magnetic film according to the present invention is manufactured by forming a thin film on the surface of a substrate such as ferrite using a thin film manufacturing apparatus such as a sputtering method or a vacuum evaporation method. As the sputtering device, existing devices such as RF two-pole sputtering, magnetron sputtering, three-pole sputtering, ion beam sputtering, and facing target sputtering can be used. As a target,
In addition to Co-M alloy targets, M on Co target
A composite target with pellets arranged can be used.

また、より優れた軟磁性の膜を得るためには、スパッタ
中に基板と平行に磁界をかけろこと、熱処理中に磁界を
かけること等が有効である。
Furthermore, in order to obtain a film with better soft magnetic properties, it is effective to apply a magnetic field parallel to the substrate during sputtering, or to apply a magnetic field during heat treatment.

[実施例コ RPスパッタ装置により、Co 114 T a +o
H[eの合金ターゲットを用い、Ar+Ntの混合ガス
でスパッタを行うことにより、5〜6μm厚の膜を作製
した。
[Example Co 114 T a +o by RP sputtering equipment
A film with a thickness of 5 to 6 μm was produced by sputtering with a mixed gas of Ar+Nt using an alloy target of H[e.

第1図に、スパッタ・ガス中のN、a度と作製された膜
中のN濃度の関係を示す。
FIG. 1 shows the relationship between N in the sputtering gas, a degree, and the N concentration in the fabricated film.

また第2図に、スパッタ・ガス中のN、a度に対する、
膜の磁歪の変化を示す。この第2図から明らかなように
、N、a度の増加(30体積%以上)に伴い、熱処理に
よる磁歪の変化量が小さくなるとともに、成膜後、熱処
理後の値ともに零に近づく。なお、熱処理は550℃×
20分の回転磁界中で行った。
Figure 2 also shows the relationship between N in the sputtering gas and a degree.
It shows the change in magnetostriction of the film. As is clear from FIG. 2, as the N and A degrees increase (30% by volume or more), the amount of change in magnetostriction due to heat treatment becomes smaller, and both the values after film formation and after heat treatment approach zero. In addition, heat treatment was performed at 550°C
The test was carried out in a rotating magnetic field for 20 minutes.

第3図にスパッタ・ガス中のN、a度に対する膜の比抵
抗の変化を示す。第3図から明らかなように、熱処理後
の比抵抗は10体積%N、保間では小さいが、それ以上
のN2濃度では、しだいに増加する傾向を示す。
FIG. 3 shows the change in specific resistance of the film with respect to N in the sputtering gas and a degree. As is clear from FIG. 3, the specific resistance after heat treatment is small at 10 volume % N, but shows a tendency to gradually increase at higher N2 concentrations.

第4図に、スパッタ・ガス中のN2濃度に対する膜の飽
和磁化(B s)の変化を示す。第4図から明らかなよ
うに、10体積%N、のときのBsに対し、30体積%
N7以上では若干減少傾向となるが、50体積%N、で
もl100OG程度の高いB sをイイE持している。
FIG. 4 shows the change in the saturation magnetization (Bs) of the film with respect to the N2 concentration in the sputtering gas. As is clear from Fig. 4, 30 volume% of Bs when 10 volume%N
At N7 or higher, there is a slight tendency to decrease, but even at 50 volume % N, it still has a high Bs of about 1100OG.

次に、本発明による軟磁性合金膜(以下、本発明例とい
う)と、従来組成の軟磁性膜(以下、従来例という)を
各々作製し、(これら各々の膜の組成は表1に示す。)
550℃×20分の回転磁界中熱処理を行い、これらの
膜の透gi率(μ)、保磁力(1−(c)等の軟磁気特
性の比較を行った。その結果を表2に示す。
Next, a soft magnetic alloy film according to the present invention (hereinafter referred to as an example of the present invention) and a soft magnetic film with a conventional composition (hereinafter referred to as a conventional example) were respectively produced (the compositions of these films are shown in Table 1). .)
Heat treatment was performed in a rotating magnetic field at 550°C for 20 minutes, and soft magnetic properties such as permeability (μ) and coercive force (1-(c)) of these films were compared. The results are shown in Table 2. .

表  1 *(窒化層200人/非窒化層300人)を120回く
り返i−積層。
Table 1 * (200 nitrided layers/300 non-nitrided layers) was repeated 120 times for i-lamination.

表  2 表2に示す通り、本発明例では、磁歪、比抵抗が良好な
まま、μが高く、Haが低くなり、良好な軟磁気特性が
得られた。
Table 2 As shown in Table 2, in the examples of the present invention, the magnetostriction and resistivity remained good, μ was high, Ha was low, and good soft magnetic properties were obtained.

一方、従来例のうち、Nを17.2at%含む従来例1
は、磁歪、比抵抗は良好であるが、μが低く、T(cが
大で不良である。また、組成変、ffA] +i■造と
した従来例3では、μ、T−1cは良好なしのの磁歪が
大きく、比抵抗が小さいが、本発明例は単層膜であるの
にかかわらず、全ての特性を満足している。
On the other hand, among the conventional examples, conventional example 1 containing 17.2 at% N
has good magnetostriction and specific resistance, but is poor because μ is low and T (c is large. Also, composition change, ffA) In conventional example 3, which is made of +i■ structure, μ and T-1c are good. Although the magnetostriction is large and the specific resistance is small in the case of "None", the example of the present invention satisfies all the characteristics even though it is a single layer film.

因みに従来例3の組成変調膜を単層の窒化膜にすると(
従来例2に相当)、軟磁気特性は全く不良となる。この
ことから、本発明例は単層膜であっても従来の軟磁性膜
より優れた軟磁気特性か得られることがわかる。
Incidentally, if the composition modulation film of Conventional Example 3 is made into a single layer nitride film (
(corresponding to Conventional Example 2), the soft magnetic properties are completely poor. From this, it can be seen that even if the example of the present invention is a single layer film, soft magnetic properties superior to those of the conventional soft magnetic film can be obtained.

第5図に、X線回折により本発明例の膜の構造を調へた
結果を、示す。本発明例の膜は、成膜後(第5図の図中
符号■)にはブロードしたピークか2つ出るが、これら
のピークは550℃で熱処理することにより、熱処理後
の■に示すように比較的シャープになり、これらのピー
クは、TaN及びrccCo(面心立方晶Co)、また
非常に弱いがhcp−c。
FIG. 5 shows the results of examining the structure of the film of the present invention by X-ray diffraction. The film of the present invention exhibits one or two broad peaks after film formation (indicated by the symbol ■ in Figure 5), but these peaks can be removed by heat treatment at 550°C, as shown in ■ after the heat treatment. These peaks are relatively sharp for TaN and rccCo (face-centered cubic Co), and also very weakly for hcp-c.

(六方稠密晶Co)として指数うけてきる。また■は従
来例2の膜のX線回折の結果を示す図であり、この従来
例2の膜はアモルファスであるが、これと比較しても、
■の本発明例の膜は明らかに結晶質であることがわかる
。すなわち、本発明例の膜はTaN及びCoの微細な結
晶が析出していることを示している。また■の各ピーク
の半値幅から、本発明例の膜中に含まれろ結晶粒径は2
0〜50人と極めて小さなものであることがわかる。こ
れにより、本発明例の膜の軟磁気特性が優れていること
がわかる。
The index is given as (hexagonal dense Co). Also, ■ is a diagram showing the results of X-ray diffraction of the film of Conventional Example 2, and although the film of Conventional Example 2 is amorphous, compared to this,
It can be seen that the film of Example 2 of the present invention is clearly crystalline. That is, the film of the example of the present invention shows that fine crystals of TaN and Co are precipitated. Also, from the half-width of each peak in (■), the diameter of the crystal grains contained in the film of the example of the present invention is 2.
It can be seen that it is extremely small, with 0 to 50 people. This shows that the film of the example of the present invention has excellent soft magnetic properties.

[発明の効果] 以上説明したように、本発明による軟磁性合金膜は、磁
気ヘッド製造におけろ600℃付近のガラス溶着工程に
十分耐え得る高い耐熱性を有することにより、ガラスポ
ンディングの信頼性を高めることができる。また、高い
Bsを有することにより、高Hcの記録媒体に十分対応
できるヘッドを提供することができる。
[Effects of the Invention] As explained above, the soft magnetic alloy film according to the present invention has high heat resistance that can sufficiently withstand the glass welding process at around 600°C in the manufacturing of magnetic heads, thereby improving the reliability of glass bonding. You can increase your sexuality. Furthermore, by having a high Bs, it is possible to provide a head that can sufficiently handle high Hc recording media.

更に本発明では上記の特徴を損なうことなく、N6度を
高くすることにより、磁歪を低減でき、これによりヘッ
ドへの加工に伴う応力、歪による軟磁気特性の劣化を防
ぐことができ、優れた再生特性を有するヘッドを提供す
ることができる。まlコ、高Na度化により、膜の電気
抵抗が高くなり、高周波での渦電流損失に伴う高周波透
磁率の低下を防ぐことができ、これによりヘッドの高周
波特性を高めることができる。
Furthermore, in the present invention, magnetostriction can be reduced by increasing the N6 degree without impairing the above characteristics, thereby preventing deterioration of the soft magnetic properties due to stress and strain associated with processing the head. A head having reproducing characteristics can be provided. By increasing the Na content, the electrical resistance of the film increases, which prevents a decrease in high frequency permeability due to eddy current loss at high frequencies, thereby improving the high frequency characteristics of the head.

また、高Ng&度化により、多層あるいは組成変調構造
という複雑な構造をとる必要がなくなり、製造プロセス
を簡略化することができる。
Furthermore, by increasing the Ng content, it is no longer necessary to have a complex structure such as a multilayer or compositionally modulated structure, and the manufacturing process can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の詳細な説明するための図
であって、第1図はスパッタ・ガス中のN、濃度と軟磁
性合金膜中のN6度の関係を示すグラフ、第2図はスパ
ッタ・ガス中のN、濃度に対する膜の磁歪の変化を示す
グラフ、第3図はスパッタ・ガス中のNta度に対する
膜、の比抵抗の変化を示すグラフ、第4図はスパッタ・
ガス中のN2濃度に対する膜の飽和磁化の変化を示すグ
ラフ、第5図は膜のX線回折の結果を示すグラフである
1 to 5 are diagrams for explaining the present invention in detail, and FIG. 1 is a graph showing the relationship between N concentration in the sputtering gas and N6 degree in the soft magnetic alloy film, and FIG. Figure 2 is a graph showing the change in magnetostriction of the film as a function of the N concentration in the sputtering gas, Figure 3 is a graph showing the change in specific resistance of the film as a function of Nta in the sputtering gas, and Figure 4 is a graph showing the change in the specific resistance of the film as a function of the Nta concentration in the sputtering gas.
FIG. 5 is a graph showing the change in the saturation magnetization of the film with respect to the N2 concentration in the gas, and FIG. 5 is a graph showing the results of X-ray diffraction of the film.

Claims (1)

【特許請求の範囲】 (1)式CoaMbNc (ただし、MはTi,Zr,Hr,Nb,Ta,Mo,
Wのうち少なくとも一種以上、Coはコバルト、Nは窒
素を示し、またa,b,cは各々原子%を表す)で示さ
れ、上記a,b,cが、 50≦a≦75 4≦b≦25 20.1≦c≦35 a+b+c=100 なる組成よりなる軟磁性合金膜。 (2)Mの窒化物の微細結晶を含み、全体が優位的に粒
径0.05μm以下の微細結晶からなる請求項1記載の
軟磁性合金膜。
[Claims] (1) Formula CoaMbNc (where M is Ti, Zr, Hr, Nb, Ta, Mo,
At least one of W, Co represents cobalt, N represents nitrogen, and a, b, and c each represent atomic %), and a, b, and c are 50≦a≦75 4≦b A soft magnetic alloy film having the following composition: ≦25 20.1≦c≦35 a+b+c=100. (2) The soft magnetic alloy film according to claim 1, which contains microcrystals of M nitride and is entirely composed of microcrystals with a grain size of 0.05 μm or less.
JP30581688A 1988-12-02 1988-12-02 Soft magnetic alloy film Pending JPH02152208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30581688A JPH02152208A (en) 1988-12-02 1988-12-02 Soft magnetic alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30581688A JPH02152208A (en) 1988-12-02 1988-12-02 Soft magnetic alloy film

Publications (1)

Publication Number Publication Date
JPH02152208A true JPH02152208A (en) 1990-06-12

Family

ID=17949717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30581688A Pending JPH02152208A (en) 1988-12-02 1988-12-02 Soft magnetic alloy film

Country Status (1)

Country Link
JP (1) JPH02152208A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373403A (en) * 1988-10-14 1991-03-28 Hitachi Ltd Thin-film magnetic head and production of magnetic thin film
US6052262A (en) * 1997-03-14 2000-04-18 Kabushiki Kaisha Toshiba Magneto-resistance effect element and magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373403A (en) * 1988-10-14 1991-03-28 Hitachi Ltd Thin-film magnetic head and production of magnetic thin film
US6052262A (en) * 1997-03-14 2000-04-18 Kabushiki Kaisha Toshiba Magneto-resistance effect element and magnetic head

Similar Documents

Publication Publication Date Title
US5514452A (en) Magnetic multilayer film and magnetoresistance element
US5587026A (en) Ferromagnetic film
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
JPH0320444A (en) Soft magnetic alloy film
JPH02152208A (en) Soft magnetic alloy film
Motomura et al. Soft magnetic properties and heat stability for Fe/NiFe superlattices
JP3127074B2 (en) Magnetic head
JPH05315135A (en) Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPH02152209A (en) Soft magnetic film
JPH03265105A (en) Soft magnetic laminate film
JPH09306736A (en) Perpendicular magnetization film, manufacture thereof, and magneto-optical recording medium
JP2707213B2 (en) Iron-based soft magnetic thin film alloy for magnetic head and method of manufacturing the same
JP3194578B2 (en) Multilayer ferromagnetic material
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JPH0316203A (en) Heat-resistant high saturation magnetic flux density film
JPS5975610A (en) Iron base magnetic alloy thin film and manufacture thereof
JPH04359501A (en) Multilayer ferromagnetic substance
JPH05217746A (en) Ferromagnetic film
JP2752199B2 (en) Magnetic head
JPH0334406A (en) Multilayer type ferromagnetic substance