[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02156450A - Magneto-optical recorder - Google Patents

Magneto-optical recorder

Info

Publication number
JPH02156450A
JPH02156450A JP30880888A JP30880888A JPH02156450A JP H02156450 A JPH02156450 A JP H02156450A JP 30880888 A JP30880888 A JP 30880888A JP 30880888 A JP30880888 A JP 30880888A JP H02156450 A JPH02156450 A JP H02156450A
Authority
JP
Japan
Prior art keywords
magnetic field
light beam
disk
magneto
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30880888A
Other languages
Japanese (ja)
Other versions
JPH0786984B2 (en
Inventor
Yoichi Osato
陽一 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP18602987U external-priority patent/JPH0190119U/ja
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63308808A priority Critical patent/JPH0786984B2/en
Publication of JPH02156450A publication Critical patent/JPH02156450A/en
Publication of JPH0786984B2 publication Critical patent/JPH0786984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To enable the stabilized recording by impressing a magnetic field having such an intensity distribution that a distant part is higher than a part irradiated with a light beam on a medium, where the former is away from the latter and its vicinity along the traveling direction of the light beam. CONSTITUTION:A permanent magnet 13 is provided behind a center protrusion part 12a in the disk moving direction D. Then, this permanent magnet 13 is formed in such a wedge shape that the farther backward the thicker in thickness. These protrusion part 12a and magnet 13 are wound with a coil 14. At the time of recording information, the coil 14 is electrified, and the magnetic field is impressed on the disk 1 by a magnetic field generating device 11. In this case, the magnetic field to be generated has the strongest intensity around the magnet 13. Consequently, magnetic field intensity on the disk 1 is distributed in such a fashion that its position P1 apart from the position P0 irradiated with the beam is higher than the latter along the scanning direction of the light beam. By the magnetic field in this position P1, a 2nd magnetic layer of the disk is initialized. Then, the dual write of information is feasible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光磁気記録装置に関し、特に複数の磁性層を
備えた媒体を用いて、情報の重ね書きが可能な光磁気記
録装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magneto-optical recording device, and more particularly to a magneto-optical recording device that allows information to be overwritten using a medium having a plurality of magnetic layers.

[従来の技術] 近年、高密度・大容量のメモリとしてレーザ光を用いた
光メモリ素子の研究および開発が急ピッチで行なわれて
いる。中でも、光磁気記録媒体は書き換えが可能な光メ
モリ素子として大いに期待されている。このような光磁
気記録媒体は、従来の磁気ヘツ°ドを使った磁気記録媒
体と比べて、高密度記録、非接触での記録・再生などが
可能であるという長所がある反面、記録前に一度記録部
分を消去しなければならない(一方向に着磁しなければ
ならない)という問題点があった。
[Prior Art] In recent years, research and development of optical memory elements using laser light as high-density, large-capacity memories have been carried out at a rapid pace. Among these, magneto-optical recording media are highly anticipated as rewritable optical memory devices. Compared to magnetic recording media using conventional magnetic heads, such magneto-optical recording media have the advantage of being capable of high-density recording and non-contact recording and playback. There was a problem in that the recorded portion had to be erased once (it had to be magnetized in one direction).

一方、上記の問題点を解決し、重ね書きを可能とした光
磁気記録媒体及びこの媒体に記録を行なう装置が、特開
昭62−175948号公報等で提案されている。この
ような光磁気記録装置の一例を第1I図に示す。
On the other hand, a magneto-optical recording medium that solves the above-mentioned problems and allows overwriting and an apparatus for recording on this medium have been proposed in Japanese Patent Laid-Open Publication No. 175948/1983. An example of such a magneto-optical recording device is shown in FIG. 1I.

第11図は、重ね書き可能な光磁気記録装置の構成を示
す概略図である。図中、14は、重ね書き可能な光磁気
ディスクを示す、このディスク14は、基板上に第1の
磁性層と、この第1の磁性層よりも高いキュリー温度及
び低い保磁力を有する第2の磁性層とを積層することに
よって構成される。
FIG. 11 is a schematic diagram showing the configuration of an overwritable magneto-optical recording device. In the figure, 14 indicates an overwritable magneto-optical disk. This disk 14 has a first magnetic layer on a substrate and a second magnetic layer having a higher Curie temperature and a lower coercive force than the first magnetic layer. It is constructed by laminating magnetic layers.

ディスク14は、スピンドルモータ15によって回転さ
れる。そして、まず、初期化磁界発生手段17によって
、第2の磁性層の磁化方向が揃えられる。その後、バイ
アス磁界発生手段18によって磁界が印加された状態で
、ディスク14に光源16より記録情報に応じて零でな
い2つの値の間で強度変調された光ビームを照射するこ
とによって、記録がなされる。
The disk 14 is rotated by a spindle motor 15. First, the magnetization direction of the second magnetic layer is aligned by the initialization magnetic field generating means 17. Thereafter, recording is performed by irradiating the disk 14 with a light beam whose intensity is modulated between two non-zero values according to the recording information from the light source 16 while a magnetic field is applied by the bias magnetic field generating means 18. Ru.

ここで、初期化磁界発生手段17及びバイアス磁界発生
手段18は、異なる位置に設けても構わないが、ディス
クを内包したカートリッジにこれらの手段を挿入する場
合等を考慮すると、第11図のように、光ビームの照射
位置に共通化して設けた方が構成が簡単である。この場
合には、ディスク14に印加される磁界の強度分布は、
第12図に示すように、光ビームの走査方向に沿って、
光ビーム被照射部Pを中心とした丘状になる。
Here, the initialization magnetic field generation means 17 and the bias magnetic field generation means 18 may be provided at different positions, but when considering the case where these means are inserted into a cartridge containing a disk, etc., they may be installed as shown in FIG. In addition, the configuration is simpler if the light beam is provided in common at the irradiation position of the light beam. In this case, the intensity distribution of the magnetic field applied to the disk 14 is
As shown in FIG. 12, along the scanning direction of the light beam,
It forms a hill with the light beam irradiated area P as the center.

[発明が解決しようとする課題] しかしながら、本来ならば、安定した記録な行なう為に
、バイアス磁界は初期化磁界より小さいのが望ましい、
従って、上記のようにこれらの発生手段を共通化した装
置では、バイアス磁界が大きすぎる為に、記録ビットの
周囲の記録温度に達していない部分までが磁化反転を起
こし、ビットの形状を乱して、記録ノイズを増大させる
問題点があった。
[Problem to be solved by the invention] However, in order to perform stable recording, it is desirable that the bias magnetic field is smaller than the initialization magnetic field.
Therefore, in a device in which these generation means are shared as described above, the bias magnetic field is too large, causing magnetization reversal even in the areas around the recording bit that have not yet reached the recording temperature, which disturbs the shape of the bit. However, there was a problem in that recording noise increased.

本発明の目的は、上記従来技術の問題点を解決し、簡単
な構成で、情報の安定した重ね書きが可能な光磁気記録
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide a magneto-optical recording device that has a simple configuration and is capable of stably overwriting information.

[課題を解決するための手段] 本発明の上記目的は、重ね書き可能な光磁気記録媒体に
記録情報に応じて零でない2つの値の間で強度変調され
た光ビームを照射する手段と、該光ビームを媒体に対し
て相対的に走査する手段と、前記媒体の光ビームが照射
される部分及びその近傍に磁界を印加する手段とから成
る光磁気記録装置において、 前記磁界印加手段が、前記媒体に、光ビームの走査方向
に沿ってビーム照射部よりも、そこから離れた部分の方
が高くなるような強度分布の磁界を印加するように構成
することによって達成される。
[Means for Solving the Problems] The above object of the present invention is to provide a means for irradiating an overwritable magneto-optical recording medium with a light beam whose intensity is modulated between two non-zero values according to recorded information; In a magneto-optical recording device comprising means for scanning the light beam relative to a medium, and means for applying a magnetic field to a portion of the medium to which the light beam is irradiated and in the vicinity thereof, the magnetic field applying means: This is achieved by configuring the medium to apply a magnetic field having an intensity distribution such that the strength is higher at a portion away from the beam irradiation portion than at the beam irradiation portion along the scanning direction of the light beam.

[実施例] 以下、図面を用いて本発明の実施例を詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の光磁気記録装置の一実施例を示す概
略図である0本実施例では、記録とともに、記録された
情報の再生も可能な構成を示した。図中、Iは円盤状の
光磁気記録媒体(光磁気ディスク)、2はこのディスク
lを回転させるスピンドルモータ、3はディスクlに光
ビーム19を照射する光ヘッドである。光ヘッド3は半
導体レーザ等から成るレーザ光源4.コリメータレンズ
5.ビームスプリッタ6、対物レンズ7、センサーレン
ズ9.検光子8及び光検出器lOを内蔵し、不図示の機
構によって、矢印Rで示すディスク半径方向に移動する
。また対物レンズ7は、光検出器によって周知の方法で
検出される制御信号に従って光軸方向及び光軸に垂直な
方向に移動し、所謂、オートトラッキング(AT)及び
オートフォーカシング(AF)を行なう、レーザ光源4
は、不図示のレーザ駆動回路によって駆動され、記録情
報に応じて、零でない2つの値の間で強度変調された光
ビーム19を射出する。
FIG. 1 is a schematic diagram showing one embodiment of a magneto-optical recording device of the present invention. In this embodiment, a configuration is shown in which both recording and reproduction of recorded information are possible. In the figure, I is a disk-shaped magneto-optical recording medium (magneto-optical disk), 2 is a spindle motor that rotates the disk l, and 3 is an optical head that irradiates the disk l with a light beam 19. The optical head 3 includes a laser light source 4 consisting of a semiconductor laser or the like. Collimator lens 5. Beam splitter 6, objective lens 7, sensor lens 9. It contains an analyzer 8 and a photodetector IO, and is moved in the radial direction of the disk indicated by an arrow R by a mechanism not shown. The objective lens 7 also moves in the optical axis direction and in the direction perpendicular to the optical axis in accordance with a control signal detected by a photodetector using a well-known method, and performs so-called auto-tracking (AT) and auto-focusing (AF). Laser light source 4
is driven by a laser drive circuit (not shown), and emits a light beam 19 whose intensity is modulated between two non-zero values according to recorded information.

ディスクlを挟んで光ヘッド3と対向する位置には、R
方向にディスクの記録領域と同等の長さを有する磁界発
生手段11が設けられ、ディスク1の光ビーム19が照
射される部分及びその近傍に磁界を印加する。
At a position facing the optical head 3 with the disk l in between, there is an R
A magnetic field generating means 11 having a length equivalent to the recording area of the disk in the direction is provided, and applies a magnetic field to the portion of the disk 1 that is irradiated with the light beam 19 and its vicinity.

第2図は、上記磁界発生手段11の光ビーム走査方向に
沿った断面図である0図中、12は、中央突出部12a
とその両側の側方突出部とを備えたヨークで、中央突出
部12aがディスクlの光ビーム照射位置に対向するよ
うに配されている。そして、ディスク移動方向りに、こ
の中央突出部12aの後方には、永久磁石13が設けら
れている。また、この永久磁石13は、後方に行く程、
厚さが厚いくさび状に形成されている。これら中央突出
部12a及び永久磁石13の回りにはコイル14が巻か
れている。
FIG. 2 is a cross-sectional view of the magnetic field generating means 11 taken along the light beam scanning direction. In FIG.
The central protrusion 12a is arranged so as to face the light beam irradiation position of the disk l. A permanent magnet 13 is provided behind the central protrusion 12a in the disk movement direction. Moreover, the further this permanent magnet 13 goes toward the rear, the more
It is shaped like a thick wedge. A coil 14 is wound around the central protrusion 12a and the permanent magnet 13.

情報の記録時には、コイル14に電流が流され、磁界発
生手段11は、ディスクlに磁界を印加する。この際、
発生する磁界は永久磁石13の周辺で最も強くなる。従
って、ディスク1上における磁界強度分布は、第3図に
示すように、光ビーム走査方向に沿って、ビーム照射位
置P0よりも、そこから離れた位置P+の方が高くなる
6本発明、この位置P、の磁界によって、後述するよう
にディスクの第2磁性屡の初期化を行なうものである。
When recording information, a current is passed through the coil 14, and the magnetic field generating means 11 applies a magnetic field to the disk l. On this occasion,
The generated magnetic field is strongest around the permanent magnet 13. Therefore, as shown in FIG. 3, the magnetic field strength distribution on the disk 1 is higher at a position P+, which is farther away from the beam irradiation position P0, than at the beam irradiation position P0 along the light beam scanning direction. The magnetic field at position P initializes the second magnetic field of the disk, as will be described later.

尚、第3図において、横軸は光ビーム走査方向に沿った
ディスク上の位置、縦軸は磁束密度を表わす。
In FIG. 3, the horizontal axis represents the position on the disk along the light beam scanning direction, and the vertical axis represents the magnetic flux density.

ここで、位置P1における初期化磁界HEの強度は、後
述する第2磁性層の保磁力と該第2の磁性層が第1の磁
性層から受ける交換結合力との和よりも大きくする必要
があることから、1〜2にOeとされるのが望ましい、
一方、位置P0におけるバイアス磁界Haの強度は、0
.1〜0.6 K Osの範囲に設定されるのが好まし
い、これは、磁界強度が、0.1KOe以下では、記録
ビットの形成が不十分となり、0.6に00以上では前
述のように記録ノイズが増加かるからである。
Here, the intensity of the initialization magnetic field HE at position P1 needs to be greater than the sum of the coercive force of the second magnetic layer and the exchange coupling force that the second magnetic layer receives from the first magnetic layer, which will be described later. For this reason, it is desirable to set Oe to 1 to 2.
On the other hand, the strength of the bias magnetic field Ha at position P0 is 0
.. It is preferable to set it in the range of 1 to 0.6 KOs, because if the magnetic field strength is less than 0.1KOe, the formation of recording bits will be insufficient, and if it is more than 0.6KOs, as mentioned above, This is because recording noise increases.

以下に、本発明の装置による情報記録のブセロスを説明
する。
In the following, information recording by the apparatus of the present invention will be explained.

第4図は、本発明に使用される光磁気記録媒体の構成例
を示す略断面図である。光磁気ディスクlは、ガラス或
いはプラスチック等から成る透光性の基板20上に、5
isN4等の誘電体から成る下弓き層21、第1磁性層
22及び第2磁性層23を順次積層して構成されている
。また第2磁性M23上には、更に5iJn等の誘電体
から成る保護層24が形成され、接着層25を介して保
護プレート26に張り合されている。
FIG. 4 is a schematic cross-sectional view showing an example of the configuration of a magneto-optical recording medium used in the present invention. The magneto-optical disk 1 has 5 disks on a transparent substrate 20 made of glass, plastic, etc.
It is constructed by sequentially laminating a lower bow layer 21, a first magnetic layer 22, and a second magnetic layer 23 made of a dielectric material such as isN4. Further, a protective layer 24 made of a dielectric material such as 5iJn is further formed on the second magnetic M23, and is bonded to a protective plate 26 via an adhesive layer 25.

第1磁性層22は低いキュリー温度(TL)と室温にお
ける高い保持力(HH)を有し、第2磁性層23は高い
キュリー温度(TH)と室温における低い保磁力(HL
)を有する。また第2の磁性層23はT、、とTHとの
間に補償温度(TcoMP)を有している。ここで、「
高い」、「低い」とは、両磁性層を比較した場合の相対
的な関係を表わす。
The first magnetic layer 22 has a low Curie temperature (TL) and high coercive force (HH) at room temperature, and the second magnetic layer 23 has a high Curie temperature (TH) and low coercive force (HL) at room temperature.
). Further, the second magnetic layer 23 has a compensation temperature (TcoMP) between T and TH. here,"
"High" and "low" represent a relative relationship when comparing both magnetic layers.

これらの関係を図に示すと第5図のようになる。These relationships are illustrated in FIG. 5.

第5図において、C1及びC2は夫々第1及び第2磁性
層の特性を示す。また、これらの磁性層は交換結合して
いる。
In FIG. 5, C1 and C2 indicate the characteristics of the first and second magnetic layers, respectively. Further, these magnetic layers are exchange coupled.

通常は第1磁性層22のTLは70〜180℃、HHは
、3〜15にOe、第2磁性WI23ノT)Iは100
〜400℃、Hlは0.3〜2KOe程度の範囲内にす
るとよい。
Usually, the TL of the first magnetic layer 22 is 70 to 180°C, the HH is 3 to 15 Oe, and the second magnetic layer 22 is 100
~400°C, and Hl is preferably within a range of about 0.3 to 2 KOe.

各磁性層の材料には、垂直磁気異方性を示し且つ磁気光
学効果を呈するものが利用できるが、GoCo、 Gd
Fe、 TbFe、 DyFe、 GdTbFe、 T
bDyFe。
Materials that exhibit perpendicular magnetic anisotropy and magneto-optical effects can be used as the material for each magnetic layer, but GoCo, Gd
Fe, TbFe, DyFe, GdTbFe, T
bDyFe.

TbFeCo、 GdTbCo、 GdTbFeCo等
の希土類元素と遷移金属元素との非晶質磁性合金が好ま
しい。
Amorphous magnetic alloys of rare earth elements and transition metal elements, such as TbFeCo, GdTbCo, and GdTbFeCo, are preferred.

第6図は、前述の媒体を用いた記録の様子を示したもの
である。図中22が第1磁性層、23が第2磁性層を示
す。44a〜44gの各々は、両磁性層の磁化の状態を
示す、記録過程中、ビーム照射部から離れた位置で、保
磁力HLの第2磁性層を一方向に磁化するのに充分で保
磁力HHの第1m性層の磁化の向きを反転させることの
ない大きさの初期化磁界H7が下方に印加されていて、
さらに、ビーム照射部において第2磁性層への記録を助
けるバイアス磁界H,が下方に印加されている。
FIG. 6 shows the state of recording using the above-mentioned medium. In the figure, 22 indicates a first magnetic layer, and 23 indicates a second magnetic layer. Each of 44a to 44g indicates the state of magnetization of both magnetic layers.During the recording process, the coercive force is sufficient to magnetize the second magnetic layer in one direction at a position away from the beam irradiation part. An initialization magnetic field H7 of a magnitude that does not reverse the direction of magnetization of the first m-type layer of the HH is applied downward;
Furthermore, a bias magnetic field H, which assists recording in the second magnetic layer, is applied downward in the beam irradiation section.

記録過程をその過程に従って説明する前に、その理解の
助けとなるように、まず、44a〜44gにより表わさ
れる状態の概要及び各状態間の移行過程の様子等につい
て説明しておく。
Before explaining the recording process according to the process, an overview of the states represented by 44a to 44g and the state of the transition process between each state will first be explained to aid in understanding.

44aと44gは室温における2値の記録状態を示して
いて、レーザー光による加熱によって、44b 、 4
4c 、 44dと温度が上昇する。44bと44f、
44cと44eはほぼ同じ温度での別の状態を示してい
る0図中、→は温度に対して可逆的な磁化過程を示し、
−や−は非可逆的な磁化過程を示す。また、44bと4
4c、あるいは44eと44fの間には、第2磁性屡の
補償温度が存在する。第6図の例では、第1磁性層が希
土類格子磁化優勢であって、第2磁性暦も希土類格子磁
化優勢の場合を示している。この場合には、両層間の交
換相互作用によって両層の磁化が平行な44gが安定状
態であり、反平行である44aが不安定状態であって、
この不安定状態44aでは界面磁壁が存在する。ただし
、磁界零でも不安定状態を保持することが可能であるよ
うに、第2ifl性層の保磁力を調整する必要がある。
44a and 44g show a binary recording state at room temperature, and by heating with laser light, 44b, 4
The temperature increases at 4c and 44d. 44b and 44f,
44c and 44e show different states at approximately the same temperature. In the figure, → indicates a magnetization process that is reversible with respect to temperature;
- or - indicates an irreversible magnetization process. Also, 44b and 4
A second magnetic compensation temperature exists between 4c or 44e and 44f. The example in FIG. 6 shows a case where the first magnetic layer has dominant rare earth lattice magnetization and the second magnetic layer also has dominant rare earth lattice magnetization. In this case, 44g where the magnetization of both layers is parallel due to exchange interaction between the two layers is a stable state, and 44a where the magnetization is antiparallel is an unstable state,
In this unstable state 44a, an interfacial domain wall exists. However, it is necessary to adjust the coercive force of the second ifl layer so that an unstable state can be maintained even when the magnetic field is zero.

室温状態(44a、 44g)では保磁力の小さい第2
磁性層の磁化は外部磁界HEによって常に図で下向きと
なっている。
At room temperature (44a, 44g), the second
The magnetization of the magnetic layer is always directed downward in the figure due to the external magnetic field HE.

次に記録過程をその過程に従って説明する。Next, the recording process will be explained according to the process.

44aの状態から温度を上げると、第5図に示すように
第1磁性層の保磁力が低下し、第2磁性層の保磁力が大
きくなる。すると、交換相互作用により両層の磁化が平
行になろうとするために、第1磁性層の磁化が反転し4
4bのように下を向く、この状態から温度を下げると、
磁化状態が変化しないまま冷え、44gの状態に移る。
When the temperature is increased from the state 44a, the coercive force of the first magnetic layer decreases and the coercive force of the second magnetic layer increases, as shown in FIG. Then, because the magnetization of both layers tends to become parallel due to exchange interaction, the magnetization of the first magnetic layer is reversed and 4
If you look down like 4b and lower the temperature from this state,
It cools down without changing its magnetization state and shifts to a state of 44 g.

44gの状態から温度を上げ、44bの状態になった後
、温度を下げてもやはり44gの状態に移る。即ち、4
4bの温度に相当するレーザーパワーの印加によって、
44aの状態も44gの状態もすべて44gの状態に移
る。
After increasing the temperature from the 44g state and reaching the 44b state, even if the temperature is lowered, it still returns to the 44g state. That is, 4
By applying a laser power corresponding to the temperature of 4b,
Both the state of 44a and the state of 44g shift to the state of 44g.

次に、44bの状態からさら温度を上げ、第2ffl性
暦の補償温度Tcovpを越して44cの状態になると
、第2磁性層の磁化が可逆的に反転する。さらに温度を
上げると第2磁性層の保磁力が小さくなり、バイアス磁
界H,により44dの如く反転する。この状態から温度
を下げると磁化状態が変化しないまま冷えTCOIIF
を越すと第2Mi性層の磁化が可逆的に反転する。その
前後で、交換相互作用により第1磁性層の磁化が上向き
に生じ、そのまま室温にまで冷え、第2m性層が再び小
さな保磁力となり、外部磁界HEにより反転する。ただ
し、この際には第1Iiii性層の保持力は大きいので
、外部磁界Htによっては反転せず、記録状態を保持し
ている。即ち、44dの温度に相当するレーザーパワー
の印加によって44aの状態も44gの状態もすべて4
4aの状態に移る。
Next, when the temperature is further increased from the state 44b and reaches the state 44c beyond the compensation temperature Tcovp of the second ffl calendar, the magnetization of the second magnetic layer is reversibly reversed. When the temperature is further increased, the coercive force of the second magnetic layer becomes smaller and is reversed as shown in 44d by the bias magnetic field H. When the temperature is lowered from this state, the magnetization state remains unchanged and TCOIIF
When the temperature is exceeded, the magnetization of the second Mi layer is reversibly reversed. Before and after that, the magnetization of the first magnetic layer is generated upward due to exchange interaction, cooled to room temperature, and the second m-type layer again has a small coercive force, which is reversed by the external magnetic field HE. However, at this time, since the coercive force of the first IIII layer is large, the recording state is maintained without being reversed by the external magnetic field Ht. That is, by applying laser power corresponding to the temperature of 44d, both the state of 44a and the state of 44g become 4.
Move to state 4a.

従って、異なるレーザーパワーの印加によって異なる磁
化状態を取ることができ、即ちこれは重ね書きが実現し
たことになる。
Therefore, different magnetization states can be obtained by applying different laser powers, which means that overwriting has been realized.

第7図の例では第11itl性暦が遷移金属副格子磁化
優勢で、第2磁性層が希土類副格子磁化優勢の場合を示
している。この場合には、両層間の交換相互作用によっ
て、両層の磁化が反平行な45aが安定状態であり、平
行である45gが不安定状態であって、この不安定状態
45gでは界面壁が存在する。第6図の場合と同様、4
5bの温度に相当するレーザーパワーの印加によって、
45aの状態も45gの状態もすべて45aの状態に移
り、45dの温度に相当するレーザーパワーの印加によ
って、45aの状態も45gの状態もすべて45gの状
態に移る。従って、やはり異なるレーザーパワーの印加
によって異なる磁化状態を取ることができる。即ち、こ
れは重ね書きが実現したことになる。
The example in FIG. 7 shows a case where the 11th itl polarity has dominant transition metal sublattice magnetization and the second magnetic layer has dominant rare earth sublattice magnetization. In this case, due to the exchange interaction between both layers, 45a, where the magnetizations of both layers are antiparallel, is a stable state, and 45g, where the magnetizations are parallel, is an unstable state, and in this unstable state 45g, an interface wall exists. do. As in the case of Figure 6, 4
By applying a laser power corresponding to the temperature of 5b,
Both the state 45a and the state 45g shift to the state 45a, and by applying the laser power corresponding to the temperature of 45d, both the state 45a and the state 45g shift to the state 45g. Therefore, different magnetization states can be obtained by applying different laser powers. In other words, this means that overwriting has been realized.

第8図乃至第1O図は、夫々本発明の装置に適用される
磁界発生手段の変形例を示す略断面図である。第8図の
例では、磁石27とディスクlとの距離を、光ビーム1
9の走査方向に沿って、ビーム照射部から離れるに従っ
て、近づけることによって、第3図の如き強度分布の磁
界を得るものである。
8 to 10 are schematic cross-sectional views showing modified examples of the magnetic field generating means applied to the apparatus of the present invention, respectively. In the example of FIG. 8, the distance between the magnet 27 and the disk l is
By moving the beam closer and farther away from the beam irradiation section along the scanning direction 9, a magnetic field having an intensity distribution as shown in FIG. 3 is obtained.

一方、第9図の例では磁石28の形状をくさび形とし、
ビームの被照射部分からビーム走査方向に離れるに従っ
て、くさびが厚くなるようにしている。また、第10図
のように、ビーム走査方向に材質の異なる磁石29及び
30を接着剤で貼り合わせて並べ、ビーム照射部よりも
、そこから離れた位置でより強い磁界がディスクに印加
されるようにしても良い、第1O図の例では、これらの
磁石は光ヘツド側に配され、比較的弱い磁石29には、
光ビーム19が透過する孔が開けられている。また、前
述の説明では初期化磁界Hzとバイアス磁界Haの方向
は同一の場合を示したが、これらの方向が反対の場合(
第2の磁性層がTt、とToの間に補償温度を有さない
場合)には、第1O図のように磁石29及び30の磁極
の向きを反対とすれば良い。
On the other hand, in the example shown in FIG. 9, the shape of the magnet 28 is wedge-shaped,
The wedge becomes thicker as it moves away from the portion to be irradiated by the beam in the beam scanning direction. In addition, as shown in Figure 10, magnets 29 and 30 made of different materials are bonded together with adhesive and lined up in the beam scanning direction, and a stronger magnetic field is applied to the disk at a position away from the beam irradiation part than from the beam irradiation part. In the example of FIG. 1O, these magnets are placed on the optical head side, and the relatively weak magnet 29 has a
A hole is made through which the light beam 19 passes. Also, in the above explanation, the initialization magnetic field Hz and the bias magnetic field Ha are in the same direction, but if these directions are opposite (
If the second magnetic layer does not have a compensation temperature between Tt and To, the magnetic poles of the magnets 29 and 30 may be oriented in opposite directions as shown in FIG. 1O.

本発明は、以上説明した実施例の他にも、種々の応用が
可能である0例えば、実施例では媒体の初期化を光ビー
ム照射位置の後方で行ったが、前方で行なう、即ち、ビ
ーム走査方向にビーム照射部よりもその前方で高くなる
ような強度分布な有する磁界を発生するように構成する
ようにしても良い、また、媒体の形状もディスク状に限
らず、テープ状、カード状の媒体を扱う装置にも適用が
可能である。
In addition to the embodiments described above, the present invention can be applied in various ways. For example, in the embodiments, the initialization of the medium was performed behind the light beam irradiation position, but it can be performed in front of the light beam irradiation position. It may be configured to generate a magnetic field with an intensity distribution that is higher in front of the beam irradiation part than in the scanning direction. Also, the shape of the medium is not limited to a disk shape, but may be a tape shape or a card shape. It can also be applied to devices that handle media.

[発明の効果] 以上説明したように、本発明は、重ね書き可能な光磁気
記録装置において、媒体の光ビームが照射される部分及
びその近傍に光ビームの走行方向に沿ってビーム照射部
よりも、そこから離れた部分の方が高くなるような強度
分布を有する磁界を印化する手段を設けることによって
、安定した記録が可能である。また、光ヘッドに近い位
置で媒体に近づけたり遠ざけたり出来る為、装置構成が
簡単で、特にカートリッジに内包された媒体を扱う装置
に適している。
[Effects of the Invention] As described above, the present invention provides a magneto-optical recording device that allows overwriting, in which a portion of a medium that is irradiated with a light beam and the vicinity thereof is exposed to a light beam from a beam irradiation unit along the traveling direction of the light beam. However, stable recording is possible by providing a means for applying a magnetic field having an intensity distribution such that the intensity is higher in areas farther away. Furthermore, since the optical head can be moved closer to or away from the medium at a position close to the optical head, the device configuration is simple and is particularly suitable for devices that handle media contained in cartridges.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光磁気記録装置の一実施例を示す概略
図、第2図は第1図の装置における磁界発生手段の構成
を示す略断面図、 第3図は第1図の装置における磁界強度分布を示す図、 第4図は本発明に用いる光磁気記録媒体の構成例を示す
略断面図、 第5図は第4図の磁性層の温度による保磁力の変化を示
す図、 第6図及び第7図は夫々本発明の装置を用いた記録プロ
セスを説明する為の図、 第8図乃至第1O図は夫々本発明の装置に適用される磁
界発生手段の変形例を示す略断面図、第1!図は従来の
光磁気記録装置の構成を示す概略図、 第12図は第11図の装置における磁界強度分布を示す
図である。 1・・・光磁気ディスク、 2・・・スピンドルモータ、 3・・・光ヘッド、  11・・・磁界発生手段、12
・・・ヨーク、    13・・・永久磁石、14・・
・コイル、    19・・・光ビーム。 第1図 第3図 !IA2図 第4図 第5図 2&稟 m6図 第11図 第12図 九ビーム克jヒ町向 yA8図 手続補正書 (自発) 平成 9月29日
1 is a schematic diagram showing an embodiment of the magneto-optical recording device of the present invention, FIG. 2 is a schematic cross-sectional view showing the configuration of the magnetic field generating means in the device of FIG. 1, and FIG. 3 is the device of FIG. 1. FIG. 4 is a schematic cross-sectional view showing an example of the configuration of a magneto-optical recording medium used in the present invention; FIG. 5 is a diagram showing changes in coercive force due to temperature of the magnetic layer in FIG. 4; 6 and 7 are diagrams for explaining the recording process using the device of the present invention, respectively, and FIGS. 8 to 10 respectively show modified examples of the magnetic field generating means applied to the device of the present invention. Schematic cross-sectional view, 1st! The figure is a schematic diagram showing the configuration of a conventional magneto-optical recording device, and FIG. 12 is a diagram showing the magnetic field strength distribution in the device of FIG. 11. DESCRIPTION OF SYMBOLS 1... Magneto-optical disk, 2... Spindle motor, 3... Optical head, 11... Magnetic field generating means, 12
...Yoke, 13...Permanent magnet, 14...
・Coil, 19...Light beam. Figure 1 Figure 3! IA2 figure 4 figure 5 figure 2 & m6 figure 11 figure 12 figure 9 beam kjhi town direction yA8 figure procedural amendment (voluntary) September 29, 1997

Claims (1)

【特許請求の範囲】[Claims] (1)重ね書き可能な光磁気記録媒体に記録情報に応じ
て零でない2つの値の間で強度変調された光ビームを照
射する手段と、該光ビームを媒体に対して相対的に走査
する手段と、前記媒体の光ビームが照射される部分及び
その近傍に磁界を印加する手段とから成る光磁気記録装
置において、前記磁界印加手段は、前記媒体に、光ビー
ムの走査方向に沿ってビーム照射部よりも、そこから離
れた部分の方が高くなるような強度分布の磁界を印加す
ることを特徴とする光磁気記録装置。
(1) A means for irradiating an overwritable magneto-optical recording medium with a light beam whose intensity is modulated between two non-zero values according to recorded information, and scanning the light beam relative to the medium. and means for applying a magnetic field to a portion of the medium that is irradiated with the light beam and in the vicinity thereof, wherein the magnetic field applying means applies the beam to the medium along the scanning direction of the light beam. A magneto-optical recording device characterized in that a magnetic field is applied with an intensity distribution such that the intensity distribution is higher in a portion remote from an irradiation portion than in an irradiation portion.
JP63308808A 1987-12-08 1988-12-08 Magneto-optical recording device Expired - Fee Related JPH0786984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63308808A JPH0786984B2 (en) 1987-12-08 1988-12-08 Magneto-optical recording device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-186029 1987-12-08
JP18602987U JPH0190119U (en) 1987-12-08 1987-12-08
JP63308808A JPH0786984B2 (en) 1987-12-08 1988-12-08 Magneto-optical recording device

Publications (2)

Publication Number Publication Date
JPH02156450A true JPH02156450A (en) 1990-06-15
JPH0786984B2 JPH0786984B2 (en) 1995-09-20

Family

ID=26503488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63308808A Expired - Fee Related JPH0786984B2 (en) 1987-12-08 1988-12-08 Magneto-optical recording device

Country Status (1)

Country Link
JP (1) JPH0786984B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676303A1 (en) * 1991-05-07 1992-11-13 Commissariat Energie Atomique INTEGRATED MAGNETO-OPTICAL READING AND WRITING HEAD AND METHOD OF MAKING THE SAME
US5325345A (en) * 1990-08-17 1994-06-28 Seiko Epson Corporation Magneto-optical method and apparatus for recording/reproducing data
US5615180A (en) * 1993-02-22 1997-03-25 Sharp Kabushiki Kaisha Magneto-optical recording medium and magneto-optical recording apparatus capable of performing a light-modulation overwriting operation
US7277364B2 (en) 2001-06-01 2007-10-02 Fujitsu Limited Magneto-optical recording medium device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119507A (en) * 1982-12-27 1984-07-10 Fujitsu Ltd Photo-magnetic recorder
JPS62154347A (en) * 1985-12-27 1987-07-09 Sony Corp Photomagnetic recording system
JPS62175948A (en) * 1985-06-11 1987-08-01 Nippon Kogaku Kk <Nikon> Overwritable photomagnetic recording method and photomagnetic recording device and medium therefor
JPS62264403A (en) * 1986-05-12 1987-11-17 Matsushita Electric Ind Co Ltd Bias magnetic field generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119507A (en) * 1982-12-27 1984-07-10 Fujitsu Ltd Photo-magnetic recorder
JPS62175948A (en) * 1985-06-11 1987-08-01 Nippon Kogaku Kk <Nikon> Overwritable photomagnetic recording method and photomagnetic recording device and medium therefor
JPS62154347A (en) * 1985-12-27 1987-07-09 Sony Corp Photomagnetic recording system
JPS62264403A (en) * 1986-05-12 1987-11-17 Matsushita Electric Ind Co Ltd Bias magnetic field generating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325345A (en) * 1990-08-17 1994-06-28 Seiko Epson Corporation Magneto-optical method and apparatus for recording/reproducing data
FR2676303A1 (en) * 1991-05-07 1992-11-13 Commissariat Energie Atomique INTEGRATED MAGNETO-OPTICAL READING AND WRITING HEAD AND METHOD OF MAKING THE SAME
US5317800A (en) * 1991-05-07 1994-06-07 Commissariat A L'energie Atomique Method of making an integrated magnetooptical read and write head
US5615180A (en) * 1993-02-22 1997-03-25 Sharp Kabushiki Kaisha Magneto-optical recording medium and magneto-optical recording apparatus capable of performing a light-modulation overwriting operation
US7277364B2 (en) 2001-06-01 2007-10-02 Fujitsu Limited Magneto-optical recording medium device

Also Published As

Publication number Publication date
JPH0786984B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US4862437A (en) Magneto-optical recording reproducing, and erasing apparatus having two independent magnetic field applying devices
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
JPH04134741A (en) Overwritable magneto-optical recording medium having 4-layered film structure
KR930008148B1 (en) Optical magnetic recording device
JP3538727B2 (en) Magneto-optical recording medium
JPH02156450A (en) Magneto-optical recorder
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPH08273222A (en) Magneto-optical recording medium and its reproducing method
US5206844A (en) Magnetooptic recording medium cartridge for two-sided overwriting
JP3006124B2 (en) Overwritable magneto-optical recording medium and recording / reproducing apparatus therefor
JPH0395745A (en) Magneto-optical recording method and recording device
WO1990001769A1 (en) Overwrite type magnetooptical recording apparatus
JP2790685B2 (en) Magneto-optical recording method
JP2768514B2 (en) Magneto-optical recording method
JPS63179436A (en) Magneto-optical recording medium
JP3126459B2 (en) Magneto-optical recording method and magneto-optical recording device
JPS61182651A (en) Photomagnetic recording medium
JPH0589536A (en) Magneto-optical recording medium
JP3035629B2 (en) Magneto-optical recording medium and magneto-optical recording method
JPH01292648A (en) Magneto-optical recording medium capable of being overwritten
JPS63239638A (en) Magneto-optical recorder
JPH03152781A (en) Cartridge for magneto-optical disk capable of performing overwrite
JPH01146178A (en) Cartridge
JPH03162748A (en) Magneto-optical recorder
JPS63302415A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees