JPH02147163A - Production of heat exchanger made of aluminum - Google Patents
Production of heat exchanger made of aluminumInfo
- Publication number
- JPH02147163A JPH02147163A JP29961288A JP29961288A JPH02147163A JP H02147163 A JPH02147163 A JP H02147163A JP 29961288 A JP29961288 A JP 29961288A JP 29961288 A JP29961288 A JP 29961288A JP H02147163 A JPH02147163 A JP H02147163A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- brazing
- header plate
- clad
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000463 material Substances 0.000 claims abstract description 66
- 238000005219 brazing Methods 0.000 claims abstract description 63
- 239000011162 core material Substances 0.000 claims abstract description 46
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 33
- 239000000956 alloy Substances 0.000 claims abstract description 33
- 238000005253 cladding Methods 0.000 claims abstract description 13
- 239000000945 filler Substances 0.000 claims abstract description 10
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 claims abstract description 9
- 229910021364 Al-Si alloy Inorganic materials 0.000 claims abstract description 6
- 229910018137 Al-Zn Inorganic materials 0.000 claims abstract 4
- 229910018573 Al—Zn Inorganic materials 0.000 claims abstract 4
- 239000007788 liquid Substances 0.000 claims description 27
- 238000001816 cooling Methods 0.000 claims description 20
- 230000004907 flux Effects 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 230000009972 noncorrosive effect Effects 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 229910018523 Al—S Inorganic materials 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 31
- 230000007797 corrosion Effects 0.000 abstract description 29
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 description 17
- 238000012360 testing method Methods 0.000 description 12
- 230000007423 decrease Effects 0.000 description 9
- 229910019752 Mg2Si Inorganic materials 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910009369 Zn Mg Inorganic materials 0.000 description 3
- 229910007573 Zn-Mg Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000012733 comparative method Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004018 waxing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高強度で防食性に優れたヘッダープレート材を
使用した軽量のアルミニウム製熱交換器例えばラジェー
ターやヒーターコアの製造方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing lightweight aluminum heat exchangers, such as radiators and heater cores, using a header plate material with high strength and excellent corrosion resistance. .
〔従来の技術〕
従来自動車等の水冷エンジンの冷却水放熱に用いるAI
製ラジェーターは、例えば第1図に示すように多数の通
液管(1)とフィン(2)とを積層したコア部(3)の
通液管(1)両端部にはそれぞれヘッダープレート(4
)を設けて上タンク(5)と下タンク(6)を結合して
いるものである。[Conventional technology] AI used for cooling water heat dissipation in water-cooled engines of automobiles, etc.
For example, as shown in Fig. 1, a radiator made of liquid is equipped with header plates (4
) is provided to connect the upper tank (5) and lower tank (6).
このときヘッダープレート(4)と各タンク(5) (
6)との結合部は、例えばタンク(5) (6)が合成
樹脂製の場合は第2図に示すようにタンク(5)の下面
とヘッダープレート(4)の周縁部上面との間にバッキ
ング(7)を挟持し、ヘッダプレート(4)の周縁部の
さらに外周部をタンク(5)上端部外周に形成したフラ
ンン部(8)にかしめて、タンク(5)をヘッダープレ
ート(4)に水密に結合している。At this time, the header plate (4) and each tank (5) (
For example, if the tank (5) (6) is made of synthetic resin, the joint with the tank (5) (6) is between the lower surface of the tank (5) and the upper surface of the peripheral edge of the header plate (4), as shown in Figure 2. Holding the backing (7), the outer periphery of the header plate (4) is caulked to the flan part (8) formed on the outer periphery of the upper end of the tank (5), and the tank (5) is attached to the header plate (4). is watertightly connected to the
またコア部(3)を構成する多数の通液管(1)の両端
部はそれぞれヘッダープレート(4)に形成した穿設孔
(9)に隙間なく嵌入し、各穿設孔(9)周縁部に形成
した立壁の内周面と通液管(1)の外周面とをろう付け
して結合すると共に嵌入部の水密を保持している。In addition, both ends of the large number of liquid passage pipes (1) constituting the core part (3) fit into the perforated holes (9) formed in the header plate (4) without any gaps, and the periphery of each perforated hole (9) The inner circumferential surface of the vertical wall formed in the section and the outer circumferential surface of the liquid passage pipe (1) are joined together by brazing, and the fitting section is kept watertight.
このようにヘッダープレート(4)は、上下タンク(5
) (6)の−面を塞ぐとともにタンク(5) (6)
とコア部(3)とを連結するものであって、その材料は
通常第3図に示すようにアルミニウム合金製の芯材(1
0)の片面にこのヘッダープレート(4)と通液管(1
)の端部とをろう付けするためのろう材(11)の層を
クラッドしたブレージングシートが使用されており、そ
の板厚は1.4〜1.6(財)程度である。なお上記通
液管(1)およびフィン(2)の板厚はそれぞれ0.3
〜0.4mmおよび0.1mm前後である。In this way, the header plate (4) is connected to the upper and lower tanks (5).
) Close the - side of (6) and tank (5) (6)
and the core part (3), and its material is usually an aluminum alloy core material (1) as shown in Figure 3.
This header plate (4) and liquid passage tube (1) are attached to one side of the
) A brazing sheet clad with a layer of brazing material (11) is used for brazing the ends of the brazing material (11), and its thickness is approximately 1.4 to 1.6. In addition, the plate thickness of the liquid passage pipe (1) and the fin (2) is each 0.3
~0.4 mm and around 0.1 mm.
そしてこのブレージングシートの芯材(10)はJI3
3003合金(AA’ −Cu (1,0S〜0.20
71%−Mn1.Q 〜1.5 w1%合金合金のAl
合金を使用するが、このような通常組成のAl合金製の
芯材(10)がラジェーターのタンクの内面に露出して
直接冷却水と接触していると芯材(101に腐食により
ピンホールを生ずる孔食が起こりやすい。And the core material (10) of this brazing sheet is JI3
3003 alloy (AA'-Cu (1,0S~0.20
71%-Mn1. Q ~ 1.5 w1% Al of alloy alloy
However, if the core material (10) made of an Al alloy with a normal composition is exposed to the inner surface of the radiator tank and comes into direct contact with cooling water, pinholes may form in the core material (101) due to corrosion. Pitting corrosion is likely to occur.
実験によれば、Its 3003材からなるヘッダープ
レートを使用したラジェーターに、塩素イオン(CA−
)をIooppm、炭酸イオン(HCO2)を200p
pm、硫酸イオン(SO42−)を300ppm、銅イ
オン(Cu2+)をippm含む88℃の試験水を毎分
60J2の割合で循環させる試験を6カ月続けると、ヘ
ッダープレート(4)を貫通する孔食が発生して水漏れ
が生じた。According to experiments, chlorine ions (CA-
) to Iooppm, carbonate ion (HCO2) to 200p
When a test was continued for 6 months in which test water at 88°C containing 300 ppm of sulfate ions (SO42-) and ippm of copper ions (Cu2+) was circulated at a rate of 60 J2 per minute, pitting corrosion occurred through the header plate (4). This caused a water leak.
これを防止するため従来は第4図に示すようにヘッダー
プレート(4)のろう材(11)をクラッドした面と反
対面に、Al−Zn−Mg合金(Al−MgOJ 〜1
.l w1%−Zn0.8〜1.3wt%−合金)によ
る被覆層(12)を形成し、この被覆層を犠牲腐食させ
ることにより、芯材(10)の腐食を防止することが行
われている。To prevent this, conventionally, as shown in Fig. 4, an Al-Zn-Mg alloy (Al-MgOJ ~1
.. Corrosion of the core material (10) is prevented by forming a coating layer (12) of lw1%-Zn0.8-1.3wt%-alloy) and subjecting this coating layer to sacrificial corrosion. There is.
このようなラジェーターを非腐食性フラックスを使用し
て製造するには、多数の通液管とフィンとを積層し、通
液管の両端部をヘッダープレートの穿設孔に嵌入してこ
れらへ1部材を治具組みした後、脱脂して5%濃度のフ
ラックスを塗布し、その後陣ガス雰囲気中で600〜6
20℃にろう付加熱してこれらを接合している。このと
き雰囲気の露点は一35℃以下、酸素濃度は1000p
9ffi以下であることが望ましい。さらにろう付は終
了後冷却工程を経て、上記の如くそれぞれのヘッダープ
レートに樹脂製のタンクを取り付ける。To manufacture such a radiator using non-corrosive flux, a large number of liquid passage tubes and fins are stacked, and both ends of the liquid passage tubes are inserted into the holes in the header plate. After assembling the parts with a jig, degrease and apply 5% flux, and then apply 600 to 600
These are joined by brazing heat to 20°C. At this time, the dew point of the atmosphere is below -35℃, and the oxygen concentration is 1000p.
It is desirable that it is 9ffi or less. Furthermore, after brazing is completed, a cooling process is performed, and a resin tank is attached to each header plate as described above.
またヒーターコアもラジェーター同様の材料が使用され
る。そしてこの場合は樹脂タンクのかわりにヘッダー材
と同様のブレージングシートが使用され、一体ろう付で
製造されることもある。The heater core also uses the same material as the radiator. In this case, a brazing sheet similar to the header material is used instead of the resin tank, and may be manufactured by integral brazing.
近年、AI製ラジェーターの軽量化の試みが盛んに行わ
れ、ヘッダープレート材も薄肉化が検討されているが、
上記現行材料を薄肉化しただけでは構造強度、疲労寿命
、耐食性等に問題があった。In recent years, many attempts have been made to reduce the weight of AI-made radiators, and thinner header plate materials are also being considered.
If the existing materials were simply made thinner, there would be problems with structural strength, fatigue life, corrosion resistance, etc.
即ち、単に薄肉化したのでは、ヘッダープレート外周部
が変形してバッキング部の水密構造がダメージを受けた
り、または内圧の変化によリヘッダープレートの周縁部
が疲労破壊する等のため、薄肉化は極めて困難であった
。またヘッダープレートの外部、即ち大気側面の耐食性
についても、板厚を減少すると現在の月33003芯材
とろう材の層状構造では寿命に問題があった。In other words, simply making the wall thinner will deform the outer periphery of the header plate and damage the watertight structure of the backing part, or cause fatigue failure of the periphery of the reheader plate due to changes in internal pressure. was extremely difficult. In addition, regarding the corrosion resistance of the outside of the header plate, that is, the atmospheric side, the current layered structure of the core material and brazing material of 33003 has a problem in its life when the plate thickness is reduced.
本発明はこれに鑑み種々検討の結果、強度と耐食性に優
れたヘッダープレート材からなる軽量のアルミニウム製
の熱交換器、例えばラジェーターやヒーターコアの製造
方法を提供するものである。In view of this, as a result of various studies, the present invention provides a method for manufacturing lightweight aluminum heat exchangers, such as radiators and heater cores, made of a header plate material with excellent strength and corrosion resistance.
即ち本発明の一つは通液管とフィンを積層し、通液管両
端部をそれぞれヘッダープレートの穿設孔に嵌入し、塩
化物系のフラックスを使用し、大気中、乾燥空気中、あ
るいはフッ化物系非腐食性フラックスを使用して不活性
ガス雰囲気中でろう付接合し、それぞれのヘッダープレ
ートに通液管と連通ずるタンクを形成するアルミニウム
製熱交換器の製造において、ヘッダープレート材に、S
i 0.4〜1.2 v1%,Fe0.I5〜1.0
w1%、 Cu0.4〜1.Ovt%、Mn0.5
〜13 v1%およびM g 0.05〜0.8 w+
%を含み、残部AIからなる合金を芯材とし、その片面
に9wt%以上の81を含むAl−Si系合金ろう材を
3〜7%の摩さてクラッドし、他面に0.5〜3wt%
のZnを含んだA++ −Zll系あるいは、0.5〜
3wt%のZnおよび[1,3〜1. I w1%のM
gを含むAl−Zn−Mg系合金内張材を3〜10%の
厚さでクラッドしたブレージングシートを使用し、Al
−Zn系あるいはAl1−Zn−Mg系合金内張材をク
ラッドした面をタンクの内面にしてろう付加熱後、50
0℃から200℃までを50℃/+nin以上の速度で
冷却することを特徴とするものである。That is, one of the present inventions is to stack liquid passage pipes and fins, fit both ends of the liquid passage pipes into perforated holes in a header plate, use a chloride-based flux, and deposit them in air, dry air, or In the manufacture of aluminum heat exchangers, each header plate is brazed in an inert gas atmosphere using non-corrosive fluoride flux to form a tank that communicates with the liquid pipe. , S
i 0.4-1.2 v1%, Fe0. I5~1.0
w1%, Cu0.4-1. Ovt%, Mn0.5
~13 v1% and M g 0.05-0.8 w+
% and the balance is AI as a core material, one side of the core material is clad with 3-7% Al-Si alloy brazing filler metal containing 9wt% or more of 81, and the other side is clad with 0.5-3wt%. %
A++-Zll system containing Zn or 0.5~
3 wt% Zn and [1,3-1. I w1% M
Using a brazing sheet clad with an Al-Zn-Mg alloy lining material containing g to a thickness of 3 to 10%,
-The surface clad with Zn-based or Al1-Zn-Mg-based alloy lining material is used as the inner surface of the tank, and after brazing and heating,
It is characterized by cooling from 0°C to 200°C at a rate of 50°C/+nin or more.
また本発明の他の一つは通液管とフィンを積層し、通液
管両端部をそれぞれヘッダープレートの穿設孔に嵌入し
、塩化物系フラックスを使用し大気中、乾燥空気中、あ
るいはフッ化物系非腐食性フラックスを使用して不活性
ガス雰囲気中でろう付接合し、それぞれのヘッダープレ
ートに通液管と連通ずるタンクを形成するアルミニウム
製熱交換器の製造において、ヘッダープレート材に、S
i0.4〜1.2 wt%,Fe0.15〜1.0w
1%、 Cu0.4〜1.0wt%、 Mn 0.5
〜1.3wt%およびM g (1,(15〜Q、11
w1%を含み、さらにCr 0.Of〜0.3 vt%
+’ Z r [1,0f〜0.3 v1%。Another aspect of the present invention is to stack liquid passage pipes and fins, fit both ends of the liquid passage pipes into the perforated holes of the header plate, and use chloride-based flux in the atmosphere, dry air, or In the manufacture of aluminum heat exchangers, each header plate is brazed in an inert gas atmosphere using non-corrosive fluoride flux to form a tank that communicates with the liquid pipe. , S
i0.4~1.2wt%, Fe0.15~1.0w
1%, Cu0.4-1.0wt%, Mn 0.5
~1.3 wt% and M g (1, (15 ~ Q, 11
Contains w1% and further contains Cr 0. Of~0.3 vt%
+' Z r [1,0f~0.3 v1%.
Ti01O1〜Q、3wt%を一種または二種以上含み
、残部AIからなる合金を芯材とし、その片面に9wt
%以上のSiを含むAji−8i系合金ろう材を3〜7
%の厚さでクラッドし、他面に0.5〜3vt%のZn
を含むAI −Zn系あるいは0.5〜3wt%のZn
および0.3〜1.1 w1%のMgを含むAji−Z
n−Mg系合金内張材を3〜lθ%の厚さでクラッドし
たブレージングシートを使用し、kl −Zn系あるい
はAl−Zn−Mg系合金内張材をクラッドした面をタ
ンクの内面にしてろう付加熱後、500℃から200℃
までを50℃/min以上の速度で冷却することを特徴
とするものである。The core material is an alloy containing one or more types of Ti01O1~Q, 3wt%, and the balance is AI, and 9wt% is formed on one side of the alloy.
Aji-8i alloy brazing filler metal containing 3 to 7% Si
% thickness and 0.5~3vt% Zn on the other side.
AI-Zn containing or 0.5 to 3 wt% Zn
and Aji-Z containing 0.3-1.1 w1% Mg
Use a brazing sheet clad with n-Mg alloy lining material at a thickness of 3 to lθ%, and use the surface clad with kl-Zn or Al-Zn-Mg alloy lining material as the inner surface of the tank. After waxing heat, 500℃ to 200℃
It is characterized by cooling at a rate of 50° C./min or more.
次にこのようなヘッダープレート材に使用するブレージ
ングシートを構成する芯材の成分を上記のように限定し
た理由を述べる。Next, the reason why the components of the core material constituting the brazing sheet used in such a header plate material are limited as described above will be described.
Siの添加は、ろう付後の冷却のより微細なMg25j
粒子を析出させ、これにより材料強度を向上させること
ができるからである。そしてSiの含有量を0.4〜1
. 0wt%(以下m1%を単に%と記す)に限定した
のは0.4%未満では上記効果がなく、1.2%を超え
ると芯材の融点が低下し、ろう付時に高温で粒界部が溶
融するバーニング現象を起こして強度低下を引き起こす
からである。The addition of Si increases the finer Mg25j of cooling after brazing.
This is because particles can be precipitated, thereby improving material strength. And the Si content is 0.4 to 1
.. The reason for limiting it to 0wt% (hereinafter m1% is simply referred to as %) is that if it is less than 0.4%, the above effect will not be achieved, and if it exceeds 1.2%, the melting point of the core material will decrease, and grain boundaries will form at high temperatures during brazing. This is because a burning phenomenon occurs in which parts melt, resulting in a decrease in strength.
Feの添加は強度を向上させる効果があり、その含有量
を0.15〜1.0%に限定したのは0.15%未満で
はその効果がなく、1.0%を超えると耐食性を著しく
低下させるからである。The addition of Fe has the effect of improving strength, and the reason for limiting its content to 0.15 to 1.0% is that less than 0.15% has no effect, and more than 1.0% significantly impairs corrosion resistance. This is because it reduces the
Cuの添加は強度を向上させるとともに電極電位を資化
させ、耐食性を向上させる効果を有し、その含有量を0
.4〜1.0%に限定したのは[1,4%未満ではこれ
ら効果が不十分であり、1.0%を超えると自己耐食性
が低下するからである。Addition of Cu has the effect of improving strength, utilizing electrode potential, and improving corrosion resistance, and its content can be reduced to 0.
.. The reason why it is limited to 4 to 1.0% is because these effects are insufficient if it is less than 1.4%, and self-corrosion resistance decreases if it exceeds 1.0%.
Mnの添加は強度を向上させるとともに、耐食性を向上
させる効果をもち、その含有量を0.5〜1,3%に限
定したのは0.5%未満ではこれら効果がなく、1.3
%を超えると塑性加工性が低下するからである。The addition of Mn has the effect of improving strength and corrosion resistance, and the reason why the content is limited to 0.5 to 1.3% is because if it is less than 0.5%, these effects will not be achieved.
This is because plastic workability deteriorates when the content exceeds %.
Mgの添加はSiと共にMg2Siを形成して強度を向
上させる効果があり、その含有量を0.05〜0.8%
に限定したのは0.05%未満ではこれら効果がなく、
0.8%を超えると芯材の融点が低下し、ろう付時にバ
ーニング現象を起こして強度低下を招き、さらにフッ化
物系のフラックスと反応してろう付性を低下させるから
である。The addition of Mg has the effect of forming Mg2Si together with Si and improving the strength, and the content is increased from 0.05 to 0.8%.
The reason for this is that if it is less than 0.05%, it will not have these effects.
This is because if it exceeds 0.8%, the melting point of the core material decreases, a burning phenomenon occurs during brazing, leading to a decrease in strength, and furthermore, it reacts with fluoride-based flux, reducing brazability.
Cr、Zr、Tiの1種または2種以上の添加は強度を
一層向上させることができるからであり、それぞれの含
有量を0.01〜0.3%に限定したのは0.01%未
満ではこれら効果がなく、0.3%を超えると巨大゛な
化合物を形成して加工性を低下させるからである。This is because adding one or more of Cr, Zr, and Ti can further improve the strength, and the reason why the content of each is limited to 0.01 to 0.3% is less than 0.01%. This is because, if it exceeds 0.3%, it will form a huge compound and reduce processability.
そして上記芯材の片面にクラッドするAl−Si系合金
ろう材のSi含有量を9%以上と限定したのは、ろう付
温度の低下が図れるので高温でのヘッダープレート材の
変形を防止できるからである。Si量の上限は特に限定
しないが、ろう材の芯材への拡散およびSiの板状初品
発生による耐食性の低下等を考慮して12%程度までと
することが望ましい。The reason why the Si content of the Al-Si alloy brazing filler metal cladding on one side of the core material is limited to 9% or more is that the brazing temperature can be lowered to prevent deformation of the header plate material at high temperatures. It is. The upper limit of the amount of Si is not particularly limited, but it is preferably up to about 12%, taking into account the diffusion of the brazing filler metal into the core material and the reduction in corrosion resistance due to the formation of Si plate-like initial products.
さらにろう材のクラツド率は、ヘツダープレト・の板厚
が従来の板厚より薄い0.8〜!、3mmの場合は3〜
7%の範囲が良く、3%未満では板厚が薄くなった場合
ろう付性が低下し、7%を超えると芯材や内張材の厚さ
比率が低下して強度および耐食性を向上させることがで
きなくなるからである。Furthermore, the cladding ratio of the brazing material is 0.8 ~ the thickness of the header plate is thinner than the conventional plate thickness! , 3~ for 3mm
A range of 7% is good; if it is less than 3%, brazing properties will decrease if the plate thickness becomes thinner, and if it exceeds 7%, the thickness ratio of the core material and lining material will decrease, improving strength and corrosion resistance. This is because it becomes impossible to do so.
また芯材の他の片面にクラッドする内張材の合金成分を
限定した理由は以下の通りである。The reason for limiting the alloy components of the lining material clad on the other side of the core material is as follows.
Znの添加は電位を卑とするので芯材を防食することが
できるからであり、その含有量を0.5〜3%に限定し
たのは0.5%未満では効果がなく、3%を超えるとこ
の効果が飽和するだけでなく、自己腐食が増大して犠牲
層としての効果を持続することができなくなるからであ
る。The addition of Zn makes the potential less base and can protect the core material from corrosion.The reason why the content is limited to 0.5 to 3% is that less than 0.5% is ineffective, and 3% This is because, if it exceeds this, not only will this effect become saturated, but also self-corrosion will increase, making it impossible to maintain the effect as a sacrificial layer.
Mgの添加はZnの添加と同様に芯材を防食する効果を
もち、その含有量を0.3〜1.1%に限定したのは0
.3%未満ではこれら効果がなく、1.1%を超えると
ヘッダープレート材と通液管とのろう付けが困難になる
からである。The addition of Mg has the same effect of preventing corrosion of the core material as the addition of Zn, and limiting the content to 0.3 to 1.1% is 0.
.. This is because if it is less than 3%, these effects are not achieved, and if it exceeds 1.1%, it becomes difficult to braze the header plate material and the liquid passage pipe.
さらに板厚0.8〜1.3mmのヘッダープレートの場
合は、内張材のクラツド率は3〜10%の範囲が良く、
3%未満では内部の耐食性が低下し、10%を超えると
芯材やろう材の厚さ比率が低下して強度および耐食性を
向上させることができなくなるからである。Furthermore, in the case of header plates with a plate thickness of 0.8 to 1.3 mm, the cladding ratio of the lining material is preferably in the range of 3 to 10%.
If it is less than 3%, the internal corrosion resistance will decrease, and if it exceeds 10%, the thickness ratio of the core material and brazing material will decrease, making it impossible to improve the strength and corrosion resistance.
このように従来にない軽量の熱交換器、例えばラジェー
ターやヒーターコアの製造においては、ヘッダープレー
ト材の薄肉化のためには芯材だけでなくろう材および内
張材についても、成分や厚さは極めて厳しい調整が必要
となる。In this way, in the production of unprecedentedly lightweight heat exchangers such as radiators and heater cores, the composition and thickness of not only the core material but also the brazing material and lining material must be adjusted in order to make the header plate material thinner. requires extremely strict adjustment.
次に上記ブレージングシートを使用したヘッダープレー
ト材を通液管およびフィンと組付けてろう付は加熱し、
その後の冷却を上記のように規定したのは、ヘッダープ
レートの強度を十分高めることが可能だからである。そ
してろう付は後の冷却速度を規定する温度範囲を500
〜200℃に限定したのは、このブレージングシートの
芯材中にMg2Siを微細に析出させ強度向上に有効に
作用させるには、この温度範囲での巨大Mg2Siの析
出を抑制する必要があるためである。さらにこの温度範
囲の冷却速度を50℃/min以上としたのはMg2S
iの微細析出を可能にするからであり、この冷却速度未
満では巨大Mg2Siが析出して強度を向上させること
ができないからである。Next, the header plate material using the above brazing sheet is assembled with the liquid passage pipe and fins, and heated for brazing.
The reason for specifying the subsequent cooling as described above is that it is possible to sufficiently increase the strength of the header plate. And brazing has a temperature range of 500°C that defines the subsequent cooling rate.
The temperature was limited to ~200°C because it is necessary to suppress the precipitation of gigantic Mg2Si in this temperature range in order for Mg2Si to be finely precipitated in the core material of this brazing sheet and to have an effective effect on improving strength. be. Furthermore, Mg2S has a cooling rate of 50°C/min or more in this temperature range.
This is because it enables fine precipitation of i, and if the cooling rate is less than this, giant Mg2Si will precipitate and the strength cannot be improved.
次に本発明の実施例について説明する。 Next, examples of the present invention will be described.
実施例(1)
第1表に示す合金成分を含有するAl合金を常法により
鋳造し、均質化処理後所定の板厚に面前した。また第2
表に示す重量のSiを含有するAli−Si合金および
同じく第2表に示す重量のZnとMgを含有するA/
−ZnおよびAli−Zn−Mg合金を鋳造し、それぞ
れ面前後熱間圧延により所定板厚にした。次に第1表に
示す組成のAl合金板を芯材とし、該芯材の片面にろう
材として上記Al−Si合金板を合わせ、他の片面に内
張材として上記AA’ −Zn、Aji−Zn−Mg合
金板を重ね合わせて3層として熱間圧延と冷間圧延を施
し、板厚を1.Ommまで減厚して360℃で2Hrの
最終焼鈍を行った。Example (1) An Al alloy containing the alloy components shown in Table 1 was cast by a conventional method, and after homogenization treatment, it was made to a predetermined thickness. Also the second
Ali-Si alloys containing Si in the weights shown in the table and A/Si alloys containing Zn and Mg in the weights also shown in Table 2.
-Zn and Ali-Zn-Mg alloys were cast, and each was hot-rolled to a predetermined thickness. Next, an Al alloy plate having the composition shown in Table 1 is used as a core material, the above Al-Si alloy plate is placed on one side of the core material as a brazing material, and the above AA'-Zn, Aji is placed on the other side as a lining material. -Zn-Mg alloy plates are stacked together in three layers and hot-rolled and cold-rolled to give a plate thickness of 1. The thickness was reduced to 0 mm and final annealing was performed at 360° C. for 2 hours.
そして第2表に示すクラツド率で芯材のそれぞれの片面
にろう材と内張材をクラッドしたブレージングシートを
作り、ヘッダープレート材として以下のテストに供した
。Then, brazing sheets were made by cladding a brazing material and a lining material on one side of each core material with the cladding ratio shown in Table 2, and were used as header plate materials in the following tests.
■強度試験
・・・これらブレージングシートをNガス中でフラック
スを塗布しない状態にて、600℃×10m1nのろう
付加熱後、500℃まで冷却してろう材を凝固させ、そ
の後200℃までの冷却速度を第3表に示すように3θ
〜40G’C/winの範囲で変化させて冷却し、しか
る後室温で放置して4日後に引張り強さを測定した。■Strength test: These brazing sheets were heated in N gas without applying flux at 600°C x 10m1n, then cooled to 500°C to solidify the brazing material, and then cooled to 200°C. The speed is 3θ as shown in Table 3.
It was varied in the range of ~40 G'C/win and cooled, then allowed to stand at room temperature, and the tensile strength was measured after 4 days.
これらの測定結果は第3表に併記した。These measurement results are also listed in Table 3.
■ろう付性試験
・・司Is 4045合金(AI−S i 9. O−
Il、 0%金合金ろう材を月33003合金芯材の片
面に5%の厚さでクラッドした板厚0.25mmのブレ
ージングシートを電縫管加工して厚さ2mmで幅16m
mの偏平形状の通液管を作り、上記ヘッダープレート材
に穿設した10個の貫通孔に嵌入してヘッダープレート
材と通液管からなる連結部ミニコアを作製した。次にこ
のミニコアを脱脂後、5%濃度のフッ化物系フラックス
を塗布して200℃で乾燥後、陣ガス中で第3表に示す
ように600℃×3m1nまたは61O″′Cx3m1
n(7)ろう付加熱を同一のミニコアについて10個行
い、合計100箇所の通液管と貫通孔との接合部の液洩
れの状況を調査した。■Brazeability test...Si 4045 alloy (AI-S i 9. O-
Il. A 0.25 mm thick brazing sheet made by cladding 0% gold alloy brazing filler metal with 5% thickness on one side of the Moon 33003 alloy core material was processed into an ERW tube with a thickness of 2 mm and a width of 16 m.
A flat-shaped liquid passage tube having a diameter of m was made and fitted into 10 through holes drilled in the header plate material to produce a connecting mini-core consisting of the header plate material and the liquid passage tube. Next, after degreasing this mini-core, apply a 5% concentration fluoride flux, dry it at 200℃, and then heat it in a heated gas at 600℃ x 3m1n or 61O'''C x 3m1 as shown in Table 3.
n(7) brazing heat was applied to 10 identical mini-cores, and the state of liquid leakage at the joints between the liquid passage pipe and the through hole was investigated at a total of 100 locations.
その結果、洩れのない接合部の数の割合を接合率として
求めてこれらを第3表に併記した。As a result, the ratio of the number of leak-free joints was determined as the joint rate, and these are also listed in Table 3.
なおろう付加熱後500℃以下の冷却は上記強度試験の
際の冷却条件と同一になるようにした。Note that cooling to 500° C. or lower after the addition of brazing heat was carried out under the same cooling conditions as in the above strength test.
■外面耐食性試験
・・・第2表に示すブレージングシートを用い、強度試
験の際の加熱冷却条件と同一の加熱冷却を行った後、ろ
う材をクラッドした面を露出し、内張材をクラッドした
面および側面をシールして塩水噴霧を3カ月行い、露出
面の孔食深さを測定してヘッダープレート外面の耐食性
を評価した。■ External corrosion resistance test: Using the brazing sheet shown in Table 2, after heating and cooling under the same heating and cooling conditions as in the strength test, the surface clad with the brazing filler metal is exposed, and the inner lining material is clad with the brazing sheet. The exposed surface and side surfaces were sealed and salt water sprayed for three months, and the depth of pitting on the exposed surface was measured to evaluate the corrosion resistance of the outer surface of the header plate.
測定結果は第3表に併記した。The measurement results are also listed in Table 3.
■内面耐食性試験
・・・第2表に示すブレージングシートを用い、強度試
験の際の加熱冷却条件と同一の加熱冷却を行った後、内
張材をクラッドした面を露出してろう材をクラッドした
面および側面をシールし、CI−195ppm、 F
e 3 ”30ppm 、 SSO42−60pp
、 Cu 2 +1 ppmを含む88℃の高温水中に
8Ht浸漬後、室温に1611+放置するサイクルを繰
り返す浸漬テストを6カ月間行い、露出面の孔食深さを
測定してヘッダープレート内面の耐食性を評価した。■Inner surface corrosion resistance test: Using the brazing sheet shown in Table 2, after heating and cooling under the same heating and cooling conditions as in the strength test, the surface clad with the lining material is exposed and the brazing sheet is clad with the brazing material. CI-195ppm, F
e3”30ppm, SSO42-60pp
We conducted an immersion test for 6 months, repeating a cycle of 8Ht immersion in 88℃ high-temperature water containing 1 ppm of Cu 2 +1 ppm, and then leaving it at room temperature for 1611+ days, and measured the depth of pitting on the exposed surface to evaluate the corrosion resistance of the inner surface of the header plate. evaluated.
測定結果は第3表に併記した。The measurement results are also listed in Table 3.
*ただしVは従来材でIt33003合金を示す。*However, V is a conventional material and indicates It33003 alloy.
第3表に示すように本発明法Nα1〜Nαl、6のヘッ
ダープレート材はいずれも引張強さは18kg1/NA
以上であって、比較法Nα38の従来の芯材(JIS
3003合金)を用いたヘッダープレート材の約1.5
倍の強度を有することが判る。As shown in Table 3, the header plate materials produced by the methods Nα1 to Nα1 and 6 of the present invention all have a tensile strength of 18 kg1/NA.
The above is the conventional core material (JIS
Approximately 1.5 of the header plate material using 3003 alloy)
It turns out that it has twice the strength.
また本発明法Nα1〜Nα16ではいずれも接合率は9
5%以上と高く、優れたろう付性を示している。さらに
外面および内面の耐食性も良好であって、特に外面の耐
食性はろう材と芯材との間の電位差により犠牲作用が働
いているので、比較法N11311に比べて大幅に耐孔
食性が向上した。Furthermore, in the methods Nα1 to Nα16 of the present invention, the bonding rate was 9.
It is high at 5% or more, indicating excellent brazing properties. Furthermore, the corrosion resistance of the outer and inner surfaces is also good, and in particular, the corrosion resistance of the outer surface is due to the sacrificial effect caused by the potential difference between the brazing material and the core material, so the pitting corrosion resistance is significantly improved compared to the comparative method N11311. .
従ってヘッダープレート材は、従来例えばフィン材のよ
うな犠牲陽極材料で防食されていたわけではないが、本
発明法によれば耐食寿命は十分延びると考えられる。Therefore, although the header plate material has not conventionally been protected against corrosion using a sacrificial anode material such as a fin material, it is believed that the corrosion-resistant life of the header plate material can be sufficiently extended by the method of the present invention.
これに対して比較法No、17〜No、 40では本発
明法に比べていずれかのテスト結果で劣っていることが
判る。On the other hand, it can be seen that comparative methods No. 17 to No. 40 are inferior to the method of the present invention in any of the test results.
実施例(2)
第2表に示す本発明による1、0mm板厚のヘッダープ
レート材Nα1およびNα16と、さらに月33003
合金芯材の片面にJIS 4343合金(Si6□8〜
8.2%−AI)ろう材を8%のクラツド率でクラッド
し、他面にZn1%−M g 0.5%−Al合金内張
材を9%のクラツド率でクラッドした板厚1.6mmの
従来材からなるヘッダープレート材を、第1図および第
2図に示すように通液管を取り付ける穿設孔を設けたヘ
ッダープレートに成形した。そして該ヘッダープレート
に、厚さ0.llmmで幅16mmのAl−Mn−Zn
系合金薄板をピッチ1.5n+m、 フィン高さ9,
0mmにコルゲート加工したフィン、および月3300
3合金芯材の片面に8%のクラツド率でIt34343
合金ろう材をクラッドし、他面に同じ(8%のクラツド
率でJIS 7072合金内張材をクラッドしたブレー
ジングシートを電縫加工して厚さ2.OmmX幅14.
5mmX長さ451mmの偏平状通液管を組付け、フッ
化物系フラッグスを使用する通常の陣ガス中ろう付けに
よりラジェーターコアを製造した。Example (2) Header plate materials Nα1 and Nα16 with a plate thickness of 1.0 mm according to the present invention shown in Table 2, and further 33003
JIS 4343 alloy (Si6□8~
8.2%-AI) Brazing filler metal is clad with a cladding rate of 8%, and the other side is clad with a Zn1%-M g 0.5%-Al alloy lining material with a cladding rate of 9%. A header plate material made of a 6 mm conventional material was formed into a header plate provided with perforated holes for attaching liquid passage pipes as shown in FIGS. 1 and 2. The header plate has a thickness of 0. Al-Mn-Zn with llmm and width 16mm
Pitch 1.5n+m, fin height 9,
Fins corrugated to 0mm and 3300 yen
It34343 with 8% cladding rate on one side of 3 alloy core material
A brazing sheet is clad with alloy brazing material and the other side is clad with JIS 7072 alloy lining material at the same cladding rate (8%), and is electrically welded to a thickness of 2.0 mm x width of 14.0 mm.
A radiator core was manufactured by assembling a flat liquid passage pipe of 5 mm x 451 mm in length and brazing in a normal gas atmosphere using fluoride flags.
なおろう付加熱後の冷却は500〜200℃までを1θ
Q’C/minの冷却速度で行い、冷却後は第1図のよ
うにヘッダープレートの周縁部にバッキングを介して樹
脂タンクを取り付けた。Cooling after additional heat is 1θ from 500 to 200℃.
Cooling was carried out at a cooling rate of Q'C/min, and after cooling, a resin tank was attached to the peripheral edge of the header plate via a backing as shown in FIG.
次に、これら3種のラジェーターの重量、構造強度、疲
労寿命を比較した。その結果、う“ジエーターコアとし
ては、従来より25%重量低減し、樹脂性タンクも含め
たラジェーターアッシーでは、約10%の重量低減が図
れた。なお構造強度、疲労寿命は、チューブと同じであ
り、いずれも現行品に対し、遜色ない事が確認された。Next, the weight, structural strength, and fatigue life of these three types of radiators were compared. As a result, the weight of the radiator core was reduced by 25% compared to the conventional one, and the weight of the radiator assembly including the resin tank was reduced by approximately 10%.The structural strength and fatigue life are the same as those of the tube. It was confirmed that both of these products were comparable to the current products.
このように本発明によれば、ヘッダープレトの強度や耐
食性が数倍されてその重量を軽減することができるので
、ラジェーターやヒーターコア等の熱交換器の構造強度
や寿命を低下させることなく重量の軽量化が図れ、さら
に材料コストの低減を可能にする等工業上顕著な効果を
奏するものである。As described above, according to the present invention, the strength and corrosion resistance of the header plate can be increased several times and its weight can be reduced, so the weight can be reduced without reducing the structural strength and life of heat exchangers such as radiators and heater cores. This has significant industrial effects, such as making it possible to reduce weight and further reduce material costs.
第1図はラジェーターを示す正面図、第2図は第1図の
AA’線断面図、第3図はろう材のみをクラッドしたヘ
ッダープレート材を示す断面図、第4図はろう材および
内張層を形成したヘッダープレート材を示す断面図であ
る。
1・・・・・・・・通液管
2・・・・・・・・フィン
3・・・・・・・・コア部
4・・・・・・・・ヘッダープレート
5.6・・・・タンク
7・・・・・・・・バッキング
8・・・・・・・・フランジ部
9・・・・・・・・穿設孔
10・・・・・・・・芯材
11・・・・・・・・ろう材
12・・・・・・・・内張材
第1図
第2図
暢
第3図
第4図Figure 1 is a front view of the radiator, Figure 2 is a sectional view taken along line AA' in Figure 1, Figure 3 is a sectional view of the header plate material clad with only brazing metal, and Figure 4 is a sectional view of the brazing metal and inner parts. It is a sectional view showing a header plate material in which a tension layer was formed. 1......Liquid pipe 2...Fin 3...Core part 4...Header plate 5.6...・Tank 7...Backing 8...Flange part 9...Drilling hole 10...Core material 11... ...Brazing material 12 ... Lining material Figure 1 Figure 2 Figure 3 Figure 4
Claims (2)
ぞれヘッダープレートの穿設孔に嵌入し塩化物系フラッ
クスを使用し大気中、乾燥空気中あるいは、フッ化物系
非腐食性フラックスを使用して不活性ガス雰囲気中でろ
う付接合し、それぞれのヘッダープレートに通液管と連
通するタンクを形成するアルミニウム製熱交換器の製造
において、ヘッダープレート材に、Si0.4〜1.2
wt%.Fe0.15〜1.0wt%.Cu0.4〜1
.0wt%,Mn0.5〜1.3wt%およびMg0.
05〜0.8wt%を含み、残部Alからなる合金を芯
材とし、その片面に9wt%以上のSiを含むAl−S
i系合金ろう材を3〜7%の厚さでクラッドし、他面に
0.5〜3wt%のZnを含むAl−Zn系あるいは0
.5〜3wt%のZnおよび0.3〜1.1wt%のM
gを含むAl−Zn−Mg系合金内張材を3〜10%の
厚さでクラッドしたブレージングシートを使用し、Al
−Zn系あるいはAl−Zn−Mg系合金内張材をクラ
ッドした面をタンクの内面にろう付加熱後、500℃か
ら200℃までを50℃/min以上の速度で冷却する
ことを特徴とするアルミニウム製熱交換器の製造方法。(1) Stack the liquid passage pipes and fins, fit both ends of the liquid passage pipes into the holes in the header plate, and use chloride-based flux in the atmosphere, dry air, or fluoride-based non-corrosive flux. In manufacturing an aluminum heat exchanger in which a tank communicating with a liquid pipe is formed on each header plate by brazing in an inert gas atmosphere using Si0.4 to Si0.1. 2
wt%. Fe0.15-1.0wt%. Cu0.4-1
.. 0 wt%, Mn0.5-1.3 wt% and Mg0.
Al-S containing Si of 05 to 0.8 wt% with the remainder being Al as a core material and containing 9 wt% or more of Si on one side.
The i-based alloy brazing filler metal is clad with a thickness of 3 to 7%, and the other side is clad with an Al-Zn system containing 0.5 to 3 wt% of Zn or 0.
.. 5-3 wt% Zn and 0.3-1.1 wt% M
Using a brazing sheet clad with an Al-Zn-Mg alloy lining material containing g to a thickness of 3 to 10%,
- After the surface clad with Zn-based or Al-Zn-Mg-based alloy lining material is brazed and heated to the inner surface of the tank, it is characterized by cooling from 500°C to 200°C at a rate of 50°C/min or more. Method of manufacturing an aluminum heat exchanger.
ぞれヘッダープレートの穿設孔に嵌入し、塩化物系フラ
ックスを使用し、大気中、乾燥空気中あるいはフッ化物
系非腐食性フラックスを使用して不活性ガス雰囲気中で
ろう付接合し、それぞれのヘッダープレートに通液管と
連通するタンクを形成するアルミニウム製熱交換器の製
造において、ヘッダープレート材に、Si0.4〜1.
2wt%,Fe0.15〜1.0wt%,Cu0.4〜
1.0wt,Mn0.5〜1.3wt%およびMg0.
05〜0.8wt%を含み、さらにCr0.01〜0.
3wt%.Zr0.01〜0.3wt%,Ti0.01
〜0.3wt%を一種または二種以上含み、残部Alか
らなる合金を芯材とし、その片面に9wt%以上のSi
を含むAl−Si系合金ろう材を3〜7%の厚さでクラ
ッドし、他面に0.5〜3wt%のZnを含むAlZn
系あるいは0.5〜3wt%のZnおよび0.3〜1.
1wt%のMgを含むAl−Zn−Mg系合金内張材を
3〜10%の厚さでクラッドしたブレージングシートを
使用し、Al−Zn系あるいはAl−Zn−Mg系合金
内張材をクラッドした面をタンクの内面にしてろう付加
熱後、500℃から200℃までを50℃/min以上
の速度で冷却することを特徴とするアルミニウム製熱交
換器の製造方法。(2) Stack the liquid passage pipes and fins, fit both ends of the liquid passage pipes into the holes in the header plate, and use chloride-based flux to expose them to air, dry air, or fluoride-based non-corrosive flux. In the manufacture of aluminum heat exchangers in which a tank is formed in each header plate by brazing in an inert gas atmosphere using flux, Si0.4 to 1 is used as the header plate material. ..
2wt%, Fe0.15~1.0wt%, Cu0.4~
1.0wt, Mn0.5-1.3wt% and Mg0.
0.05 to 0.8 wt%, and further contains Cr of 0.01 to 0.0.
3wt%. Zr0.01-0.3wt%, Ti0.01
The core material is an alloy containing one or more types of ~0.3 wt% and the balance is Al, and on one side of the alloy is 9 wt% or more of Si.
clad with an Al-Si alloy brazing filler metal containing 0.5 to 3 wt% of Zn on the other side with a thickness of 3 to 7%.
system or 0.5 to 3 wt% Zn and 0.3 to 1.
Using a brazing sheet clad with an Al-Zn-Mg alloy lining material containing 1 wt% Mg at a thickness of 3 to 10%, cladding with an Al-Zn or Al-Zn-Mg alloy lining material. A method for manufacturing an aluminum heat exchanger, which comprises using the heated surface as the inner surface of a tank, and cooling the aluminum heat exchanger from 500°C to 200°C at a rate of 50°C/min or more after applying brazing heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29961288A JPH02147163A (en) | 1988-11-29 | 1988-11-29 | Production of heat exchanger made of aluminum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29961288A JPH02147163A (en) | 1988-11-29 | 1988-11-29 | Production of heat exchanger made of aluminum |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02147163A true JPH02147163A (en) | 1990-06-06 |
Family
ID=17874878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29961288A Pending JPH02147163A (en) | 1988-11-29 | 1988-11-29 | Production of heat exchanger made of aluminum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02147163A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5148862A (en) * | 1990-11-29 | 1992-09-22 | Sumitomo Light Metal Industries, Ltd. | Heat exchanger fin materials and heat exchangers prepared therefrom |
EP0514946A2 (en) * | 1991-05-24 | 1992-11-25 | KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. | An aluminum alloy composite material for brazing |
JPH04371368A (en) * | 1991-06-19 | 1992-12-24 | Nippon Light Metal Co Ltd | Brazing sheet having excellent corrosion resistance and production thereof |
JPH0569184A (en) * | 1991-08-30 | 1993-03-23 | Nippon Light Metal Co Ltd | Brazing sheet excellent in corrosion resistance |
US5377901A (en) * | 1993-04-27 | 1995-01-03 | General Motors Corporation | Method for improving corrosion resistance of plate-type vacuum brazed evaporators |
WO1999055925A1 (en) * | 1998-04-29 | 1999-11-04 | Corus Aluminium Walzprodukte Gmbh | Aluminium alloy for use in a brazed assembly |
JP2009275246A (en) * | 2008-05-13 | 2009-11-26 | Furukawa-Sky Aluminum Corp | Brazing sheet for heat exchanger made of aluminum alloy, heat exchanger made of aluminum alloy, and method for producing heat exchanger made of aluminum alloy |
JP2013204078A (en) * | 2012-03-28 | 2013-10-07 | Mitsubishi Alum Co Ltd | Aluminum alloy clad material for heat exchanger |
CN104043671A (en) * | 2013-03-16 | 2014-09-17 | 亚太轻合金(南通)科技有限公司 | High-precision ultrafine thin-wall aluminium alloy coil pipe and production technology |
JP2016223768A (en) * | 2016-07-05 | 2016-12-28 | 三菱アルミニウム株式会社 | Heat exchanger |
US20180214964A1 (en) * | 2015-07-29 | 2018-08-02 | Uacj Corporation | Method of manufacturing an aluminum structure |
-
1988
- 1988-11-29 JP JP29961288A patent/JPH02147163A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5148862A (en) * | 1990-11-29 | 1992-09-22 | Sumitomo Light Metal Industries, Ltd. | Heat exchanger fin materials and heat exchangers prepared therefrom |
EP0514946A2 (en) * | 1991-05-24 | 1992-11-25 | KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. | An aluminum alloy composite material for brazing |
JPH04371368A (en) * | 1991-06-19 | 1992-12-24 | Nippon Light Metal Co Ltd | Brazing sheet having excellent corrosion resistance and production thereof |
JPH0569184A (en) * | 1991-08-30 | 1993-03-23 | Nippon Light Metal Co Ltd | Brazing sheet excellent in corrosion resistance |
US5377901A (en) * | 1993-04-27 | 1995-01-03 | General Motors Corporation | Method for improving corrosion resistance of plate-type vacuum brazed evaporators |
WO1999055925A1 (en) * | 1998-04-29 | 1999-11-04 | Corus Aluminium Walzprodukte Gmbh | Aluminium alloy for use in a brazed assembly |
US6413331B1 (en) | 1998-04-29 | 2002-07-02 | Corus Aluminium Walzprodukte Gmbh | Aluminium alloy for use in a brazed assembly |
JP2009275246A (en) * | 2008-05-13 | 2009-11-26 | Furukawa-Sky Aluminum Corp | Brazing sheet for heat exchanger made of aluminum alloy, heat exchanger made of aluminum alloy, and method for producing heat exchanger made of aluminum alloy |
JP2013204078A (en) * | 2012-03-28 | 2013-10-07 | Mitsubishi Alum Co Ltd | Aluminum alloy clad material for heat exchanger |
CN104043671A (en) * | 2013-03-16 | 2014-09-17 | 亚太轻合金(南通)科技有限公司 | High-precision ultrafine thin-wall aluminium alloy coil pipe and production technology |
US20180214964A1 (en) * | 2015-07-29 | 2018-08-02 | Uacj Corporation | Method of manufacturing an aluminum structure |
JP2016223768A (en) * | 2016-07-05 | 2016-12-28 | 三菱アルミニウム株式会社 | Heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017141921A1 (en) | Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet | |
JP3910506B2 (en) | Aluminum alloy clad material and manufacturing method thereof | |
JP3772017B2 (en) | High strength and high corrosion resistance aluminum alloy clad material for heat exchanger | |
JPH02147163A (en) | Production of heat exchanger made of aluminum | |
JP4030006B2 (en) | Aluminum alloy clad material and manufacturing method thereof | |
JP6351206B2 (en) | High corrosion resistance aluminum alloy brazing sheet and flow path forming part for automotive heat exchanger | |
JP2842665B2 (en) | Aluminum heat exchanger | |
JP2000008130A (en) | Member for heat exchanger made of aluminum alloy excellent in corrosion resistance | |
JPH11315335A (en) | Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube | |
JP3189517B2 (en) | Manufacturing method of heat exchanger tube material for non-corrosive flux brazing | |
JPH04263033A (en) | Aluminum clad material for heat exchanger | |
JP4874074B2 (en) | Aluminum alloy clad material for heat exchanger | |
JPS6248743B2 (en) | ||
JP3876180B2 (en) | Aluminum alloy three-layer clad material | |
JPH11293371A (en) | Aluminum alloy clad material for heat exchanger, excellent in strength and corrosion resistance | |
JP3876179B2 (en) | Aluminum alloy three-layer clad material | |
JPH0436434A (en) | High strength and high corrosion resistant al alloy clad material for al heat exchanger | |
JP3243188B2 (en) | Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance | |
JPH09176767A (en) | Al brazing sheet for vacuum brazing | |
JP2000026931A (en) | Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube | |
JPH0250934A (en) | Brazing sheet made of aluminum for heat exchanger member | |
JPH02142672A (en) | Manufacture of aluminum heat exchanger | |
JP3243189B2 (en) | Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance | |
JP2842667B2 (en) | High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger | |
JP2933382B2 (en) | High strength and high corrosion resistance aluminum alloy clad material for heat exchanger |