[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02145809A - Ultrafine gel fiber and production thereof - Google Patents

Ultrafine gel fiber and production thereof

Info

Publication number
JPH02145809A
JPH02145809A JP63289184A JP28918488A JPH02145809A JP H02145809 A JPH02145809 A JP H02145809A JP 63289184 A JP63289184 A JP 63289184A JP 28918488 A JP28918488 A JP 28918488A JP H02145809 A JPH02145809 A JP H02145809A
Authority
JP
Japan
Prior art keywords
water
fibers
polymer
stock solution
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63289184A
Other languages
Japanese (ja)
Inventor
Takashi Kawai
孝 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63289184A priority Critical patent/JPH02145809A/en
Publication of JPH02145809A publication Critical patent/JPH02145809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Materials For Medical Uses (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the subject fiber having quick response when used as a reactive element by producing a water-containing fiber by the conjugate spinning of a water-base stock liquid of a PVA polymer and a stock liquid of another water-soluble polymer and subjecting the resultant water-containing fiber to freezing treatment, thawing treatment and removal of the water-soluble polymer. CONSTITUTION:A water-containing fiber produced by the conjugate spinning of a water-base stock liquid of a PVA polymer (preferably containing >=97% of vinyl alcohol unit and having a polymerization degree of >=3,000) and a stock liquid of another water-soluble polymer is subjected to the freezing treatment, the thawing treatment and the removal of the water-soluble polymer to obtain the objective fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は極細ゲル繊維、ざらに詳しくはポリビニルアル
コール系重合体を主体とした含水極細ゲル繊維およびそ
の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to ultrafine gel fibers, and more specifically to hydrous ultrafine gel fibers mainly composed of polyvinyl alcohol polymers and a method for producing the same.

(従来の技術〉 従来より、ポリビニルアルコール系重合体からなる高含
水ゲルに関する研究は盛んに行われ、ポリビニルアルコ
ール系重合体の水溶液を冷凍処理あるいは凍結・解凍処
理する方法で機械的特性にすぐれた水不溶性の高含水ゲ
ルを得る例が、特公昭48−30462号公報、特公昭
48−30463号公報、特開昭57−130542号
公報、特開昭57−130543号公報、特開昭58−
36630号公報に開示されている。
(Conventional technology) Research on high water content gels made of polyvinyl alcohol polymers has been actively conducted, and it has been found that gels with excellent mechanical properties can be obtained by freezing or freezing/thawing an aqueous solution of polyvinyl alcohol polymers. Examples of obtaining water-insoluble high water content gels include Japanese Patent Publication No. 48-30462, Japanese Patent Publication No. 30463-1983, Japanese Patent Application Laid-Open No. 57-130542, Japanese Patent Application Laid-open No. 130543-1983, and Japanese Patent Application Laid-open No. 1982-130542.
It is disclosed in Japanese Patent No. 36630.

しかし、原液自身に流動性があるためにいずれの場合も
、原液を所定の容器あるいは成型用鋳型に入れて処理す
る方法で所望の形状に成型している。そのため、繊維状
の成形物は得られていない。
However, since the stock solution itself has fluidity, in either case, the stock solution is molded into the desired shape by placing it in a predetermined container or mold and processing it. Therefore, a fibrous molded product has not been obtained.

一方、特開昭62−90308号公報では水が溶媒の紡
糸原液を液体窒素中に紡出して凍結した後、抽出浴(メ
タノール)中に導いて水を除去し、次いで乾燥したフィ
ラメントを延伸して高強度、高モジュラスを有するポリ
ビニルアルコール繊維を得ている例があるが、これは含
水極細ゲル繊維ではない。
On the other hand, in JP-A No. 62-90308, a spinning stock solution containing water as a solvent is spun into liquid nitrogen and frozen, then introduced into an extraction bath (methanol) to remove water, and then the dried filament is drawn. There are examples in which polyvinyl alcohol fibers with high strength and high modulus have been obtained by using polyvinyl alcohol, but these are not hydrous ultrafine gel fibers.

一方、応答性ポリマゲルに関する研究も盛んに行われ、
環境変化により伸長、収縮、膨潤、変形する各種の素材
からなる応答性ポリマゲルが報告されている。
On the other hand, research on responsive polymer gels is also actively conducted.
Responsive polymer gels made of various materials that expand, contract, swell, and deform in response to environmental changes have been reported.

しかし、この応答性ポリマゲルに関する研究は、高含水
度のポリマグルであり、機械的な強度が低いため繊維の
形態で使うことができず、ざらに含水極細ゲル繊維とし
て応答速度の高速化をはかることもできない。また、応
答性ポリマグルを組込んだ装置自体も大きくなるという
問題があった。
However, research on this responsive polymer gel has been conducted since it cannot be used in the form of fibers due to its high water content and low mechanical strength. I can't do it either. Additionally, there was a problem in that the device itself incorporating the responsive polymaglu became large.

ポリマ プレプリンツ、ジャパン Vol、35、No
3.771 (1986)、ポリマ プレプリンツ、ジ
ャパン Vo 1.36.No3.881 (1987
)には、ポリビニルアルコールと高分子電解質をブレン
ドした水溶液を一45℃で凍結、常温で解凍を繰返し行
って得た、比較的機械強度が高い含水ゲルフィルムで応
答性を確認した例があるが含水極細ゲル繊維の例はない
Polymer Preprints, Japan Vol, 35, No.
3.771 (1986), Polymer Preprints, Japan Vo 1.36. No.3.881 (1987
) has an example in which responsiveness was confirmed using a hydrogel film with relatively high mechanical strength obtained by repeatedly freezing an aqueous solution containing a blend of polyvinyl alcohol and a polymer electrolyte at -45°C and thawing it at room temperature. There are no examples of hydrous ultrafine gel fibers.

一方、ポリマ プレプリンツ、ジャパン Vo1.36
.No3.878 (1987)には、ポリビニルアル
コールとポリアクリル酸の水系原液を硫酸ナトリウムの
硫酸溶液中に紡出し、巻きとった繊維を130℃で30
分熱処理して不溶化した1IiIftがあり電場応答性
が観測されているが、これは含水率の低い繊維であり、
含水極細ゲル繊維の例はない。
On the other hand, Polymer Preprints, Japan Vo1.36
.. No. 3.878 (1987), an aqueous stock solution of polyvinyl alcohol and polyacrylic acid was spun into a sulfuric acid solution of sodium sulfate, and the wound fiber was heated at 130°C for 30 minutes.
There is 1IiIft, which has been made insolubilized by heat treatment, and its electric field responsiveness has been observed, but this is a fiber with a low water content;
There are no examples of hydrous ultrafine gel fibers.

(発明が解決しようとする課題) 本発明者はかかる現状に鑑み、鋭意検討を重ねた結果、
ポリビニルアルコール系重合体からなる繊維が含水極細
ゲル繊維として優れた性能を有することを確認し、本発
明に到達した。
(Problems to be Solved by the Invention) In view of the current situation, the inventor has made extensive studies and has found that:
The present invention was achieved by confirming that fibers made of polyvinyl alcohol-based polymers have excellent performance as hydrous ultrafine gel fibers.

本発明の目的は、特に応答速度に著しく優れ、かつ機械
的な強度が高く、耐水性に優れ、しかも任意の形態が可
能で応用範囲の広い極細ゲル繊維およびその製法を提供
することにおる。
An object of the present invention is to provide an ultrafine gel fiber that has particularly excellent response speed, high mechanical strength, excellent water resistance, can be formed into any desired shape, and has a wide range of applications, and a method for producing the same.

(課題を解決するための手段) 本発明は次の構成を有する。(Means for solving problems) The present invention has the following configuration.

(1)ポリビニルアルコール系重合体を主体とした微細
な含水繊維からなる極細ゲル繊維。
(1) Ultrafine gel fibers consisting of fine water-containing fibers mainly made of polyvinyl alcohol polymer.

(2)ポリビニルアルコール系重合体の水系原液と他の
水溶性ポリマ原液を複合紡糸して冑た含水繊維に(A>
凍結処理、(B)解凍処理、(C)水溶性ポリマの除去
処理を施すことを特徴とする極細ゲル11i維の製法。
(2) Composite spinning of an aqueous stock solution of polyvinyl alcohol-based polymer and other water-soluble polymer stock solutions to form a hydrated fiber (A>
A method for producing ultrafine gel 11i fibers, which comprises performing a freezing treatment, (B) a thawing treatment, and (C) a water-soluble polymer removal treatment.

(3)ポリビニルアルコール系重合体の水系原液と他の
水溶性ポリマ原液を複合凍結紡糸して得た含水繊維に(
A)凍結処理、(B)解凍処理、(C)水溶性ポリマの
除去処理を施すことを特徴とする極細ゲル繊維の製法。
(3) Hydrous fiber obtained by composite freeze-spinning of an aqueous stock solution of polyvinyl alcohol-based polymer and another water-soluble polymer stock solution (
A method for producing ultrafine gel fibers, comprising: A) freezing treatment, (B) thawing treatment, and (C) water-soluble polymer removal treatment.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明におけるポリビニルアルコール系重合体は、50
モル%以上のビニルアルコール単位を有する重合体なら
ばすべてよく、ポリビニルアルコールや、例えば、エチ
レン、アクリロニトリル、メタクリロニトリル、アクリ
ルアミド、メタクリルアミド、アクリル酸、メタクリル
酸あるいはアクリル酸ナトリウム、メタアクリル酸ナト
リウムなどのアルカリ金属塩、アンモニウム塩、アクリ
ル酸メチル、メタアクリル酸メチル、酢酸ごニルなどの
エステルなどとの共重合体である変性ポリビニルアルコ
ールなどがあるが、これ等に限定されるものではない。
The polyvinyl alcohol polymer in the present invention has 50
Any polymer having mole % or more of vinyl alcohol units may be used, such as polyvinyl alcohol, ethylene, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, acrylic acid, methacrylic acid or sodium acrylate, sodium methacrylate, etc. Examples include, but are not limited to, modified polyvinyl alcohol, which is a copolymer of alkali metal salts, ammonium salts, and esters such as methyl acrylate, methyl methacrylate, and nyl acetate.

ここで、ビニルアルコール単位含有率は好ましくは70
モル%以上がよく、ざらには80モル%以上、90モル
%以上、97モル%以上がよい。
Here, the vinyl alcohol unit content is preferably 70
It is preferably mol% or more, more preferably 80 mol% or more, 90 mol% or more, or 97 mol% or more.

また、ポリビニルアルコール系重合体の重合度は、10
00以上、好ましくは2000以上、ざらには3000
以上のものが機械的強度の点から好ましい。
In addition, the degree of polymerization of the polyvinyl alcohol polymer is 10
00 or more, preferably 2000 or more, roughly 3000
The above are preferable from the viewpoint of mechanical strength.

本発明の極細ゲル繊維の含水率は高く、重合体に対して
30重量%(以下wt%と略記)以上、さらには8Qw
t%以上、そして150wt%前後さらには200wt
%前後と非常に高いものも1qられる。
The water content of the ultrafine gel fiber of the present invention is high, 30% by weight (hereinafter abbreviated as wt%) or more based on the polymer, and even 8Qw
t% or more, and around 150wt% and even 200wt
Very high values, around %, are also valued at 1q.

本発明における極細ゲル繊維は、繊維状であればすべて
対象となり、例えばガツト、フィラメント、ステープル
などいずれでもよいが、特に細ければ細いほど反応に対
する比表面積が大きくなり、かつしなやかとなって布帛
にした時、反応に対する応答性の違いが顕著にあられれ
る。つまり、応答性素子として利用した場合、応答速度
が速くなるという点で繊維径は小さいほうが好ましい。
The ultrafine gel fibers used in the present invention can be used in any fibrous form, such as strings, filaments, staples, etc., but the thinner the fibers, the larger the specific surface area for reaction, and the more supple they become, allowing them to form into fabrics. When this happens, there is a noticeable difference in responsiveness. In other words, when used as a responsive element, the smaller the fiber diameter is, the better the response speed will be.

具体的な繊維径は、含水状態で20μ以下(絶乾状態で
10μ以下)、好ましくは10μ以下(絶乾状態で5μ
以下)、ざらには5μ以下(絶乾状態で2.5μ以下)
がより好ましい。
The specific fiber diameter is 20μ or less in a hydrated state (10μ or less in an absolutely dry state), preferably 10μ or less (5μ or less in an absolutely dry state).
(below), coarsely less than 5μ (less than 2.5μ when completely dry)
is more preferable.

一方、その断面形状には特に制限はなく、円形断面、異
形断面、中実、中空いずれでもよく、繊維の長さ方向に
断面形状が変化していてもよい。
On the other hand, the cross-sectional shape is not particularly limited, and may be circular, irregularly shaped, solid, or hollow, and the cross-sectional shape may change in the length direction of the fiber.

本発明の水系原液には、ポリビニルアルコール系重合体
のほかに下記高分子電解質またはその他の重合体を含ん
でいてもよい。
The aqueous stock solution of the present invention may contain the following polymer electrolytes or other polymers in addition to the polyvinyl alcohol polymer.

高分子電解質の場合、解離基を高分子鎖中に含有したポ
リマで水に溶けると解離して高分子イオンとなるもので
あればすべてよく、一部あるいはすべてが塩になって0
てもよく、イオン性基はカチオン系、アニオン系のいず
れでも良く両者を共有していてもよい。
In the case of polymer electrolytes, any polymer that contains a dissociative group in the polymer chain and dissociates into polymer ions when dissolved in water is acceptable, and some or all of them become salts and become zero.
The ionic group may be either a cationic group or an anionic group, or may share both.

高分子電解質としては、ポリアクリル酸系、ポリメタク
リル酸系、ポリスチレンスルホン酸、ポリ(アクリルア
ミド−アクリル酸)共重合体、ポリ(アクリルアミド−
メタクリル酸)共重合体、ポリ(アクリルアミド−トリ
メチル(N−アクリロイル−3−アミノプロピル)アン
モニウムアイオダイド)共重合体の4級化物、ポリアク
リルアミド−2−メチルプロパンスルホン酸、ポリ(2
−アクリルアミド−2−メチルプロパンスルホン酸−メ
タクリル酸−2−ヒドロキシルエチル)共重合体、ポリ
(2−アクリルアミド−2−メチルプロパンスルホン酸
−アクリロニトリル)共重合体、アルギン酸、カルボキ
シメチルセルロース、おるいはこれらのアルカリ金属塩
、アンモニウム塩などである。
Examples of polymer electrolytes include polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, poly(acrylamide-acrylic acid) copolymer, and poly(acrylamide-acrylic acid) copolymer.
methacrylic acid) copolymer, poly(acrylamide-trimethyl(N-acryloyl-3-aminopropyl)ammonium iodide) copolymer quaternized product, polyacrylamide-2-methylpropanesulfonic acid, poly(2-methacrylic acid) copolymer,
-acrylamide-2-methylpropanesulfonic acid-2-hydroxylethyl methacrylate) copolymer, poly(2-acrylamide-2-methylpropanesulfonic acid-acrylonitrile) copolymer, alginic acid, carboxymethyl cellulose, or these alkali metal salts, ammonium salts, etc.

またその他の重合体としては、例えばポリエチレングリ
コール、ポリビニルピロリドン、あるいはヒドロキシエ
チルセルロースなどのセルロース誘導体などの単独ある
いは混合物があげられるが、ポリビニルアルコール系重
合体の水系原液に、ブレンド可能なものでおれば上記高
分子電解質またはその他の重合体に制限されるものでは
ない。
Examples of other polymers include polyethylene glycol, polyvinylpyrrolidone, and cellulose derivatives such as hydroxyethyl cellulose, singly or in mixtures. It is not limited to polyelectrolytes or other polymers.

本発明においてポリビニルアルコール系重合体に対する
上記高分子電解質またはその他の重合体のブレンド比は
、300wt%を越えると機械的に弱いものとなり好ま
しくない。このため300wt%以下がよく、好ましく
は150wt%以下が、さらには100wt%以下がよ
い。
In the present invention, if the blend ratio of the polymer electrolyte or other polymer to the polyvinyl alcohol polymer exceeds 300 wt%, it becomes mechanically weak, which is not preferable. Therefore, the content is preferably 300 wt% or less, preferably 150 wt% or less, and even more preferably 100 wt% or less.

一方、応答性を発現するためには高分子電解質あるいは
高分子電解質塩をブレンドすることが望ましく、ポリビ
ニルアルコール系重合体に対するブレンド比は、10w
t%以上でないと効果なく、好ましくは20wt%以上
、ざらには30wt%以上がよい。
On the other hand, in order to develop responsiveness, it is desirable to blend a polymer electrolyte or a polymer electrolyte salt, and the blend ratio to the polyvinyl alcohol polymer is 10w.
It is not effective unless it is t% or more, preferably 20wt% or more, more preferably 30wt% or more.

水系紡糸原液のポリマ濃度は、5wt%以上、好ましく
は1Qwt%以上、さらには20wt%以上がよい。
The polymer concentration of the aqueous spinning stock solution is preferably 5 wt% or more, preferably 1 Qwt% or more, and further preferably 20 wt% or more.

また、その溶媒は水系であることが必須であるが、50
wt%以下であれば水溶性溶剤を含んだ混合溶媒でもよ
く、好ましくは3Qwt%以下、さらには、10wt%
以下がよい。
In addition, the solvent must be aqueous, but 50
A mixed solvent containing a water-soluble solvent may be used as long as it is not more than 3Qwt%, preferably 10wt% or less.
The following is good.

水溶性溶剤としては、ジメチルスルホキシド、ジメチル
ホルムアミド、ジメチルアセトアミド、N−メチルピロ
リドン、ヘキサメチルホスホルアミド、グリセリン、エ
チレングリコールなどの水に可溶な有機溶剤、あるいは
ギ酸、5A酸などの水に可溶な無機溶剤などがあげられ
るが、特にこれ等に制限されるものではない。
Examples of water-soluble solvents include water-soluble organic solvents such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoramide, glycerin, and ethylene glycol, and water-soluble organic solvents such as formic acid and 5A acid. Examples include, but are not limited to, soluble inorganic solvents.

本発明における水溶性ポリマ原液とは、ポリビニルアル
コール系重合体の水系原液と複合吐出することが可能で
、しかもポリビニルアルコール系重合体を残して除去で
きる水溶性ポリマの原液であればすべてよい。
The water-soluble polymer stock solution in the present invention may be any water-soluble polymer stock solution as long as it can be discharged in combination with the water-based stock solution of the polyvinyl alcohol polymer and can be removed leaving behind the polyvinyl alcohol polymer.

かかる水溶性ポリマの具体例としては、ポリエチレング
リコール系、ポリビニルピロリドン系、アルギン酸系、
セルロース系、ポリプロピレン系、ポリスルホン系、ポ
リフッ化ビニリデン系、ポリシロキサン系、ポリウレタ
ン系、ポリアミド系、ポリエステル系、ポリアクリルア
ミド系、ボリアクリール酸系、ポリメタクリル酸系ある
いはそれらの混合物などがポリマとして選択できるがこ
れに限定されるものではない。
Specific examples of such water-soluble polymers include polyethylene glycol-based, polyvinylpyrrolidone-based, alginic acid-based,
Cellulose-based, polypropylene-based, polysulfone-based, polyvinylidene fluoride-based, polysiloxane-based, polyurethane-based, polyamide-based, polyester-based, polyacrylamide-based, polyacrylic acid-based, polymethacrylic acid-based, or mixtures thereof can be selected as the polymer. It is not limited to this.

そして、溶剤としては水をはじめ、ジメチルスルホキシ
ド、ジメチルホルムアミド、ジメチルアセトアミド、N
−メチルピロリドン、ヘキサメチルホスホルアミドなど
の水に可溶な有機溶剤、あるいはギ酸、riA酸などの
水に可溶な無機溶剤が良い。
Solvents include water, dimethyl sulfoxide, dimethyl formamide, dimethyl acetamide, N
- Water-soluble organic solvents such as methylpyrrolidone and hexamethylphosphoramide, or water-soluble inorganic solvents such as formic acid and riA acid are preferred.

本発明における複合紡糸とは、既に公知で通常行われて
いる芯鞘繊維紡糸、海島繊維紡糸を湿式、乾式、乾湿式
紡糸法で実施する事ができる。
Composite spinning in the present invention can be carried out by wet, dry, or dry-wet spinning methods such as core-sheath fiber spinning and sea-island fiber spinning, which are already known and commonly performed.

また、複合吐出して凍結紡糸することも可能であり、適
当な凝固液のない水溶性ポリマ原液を用いた場合に複合
凍結紡糸は有効である。
It is also possible to carry out composite discharge and freeze-spinning, and composite freeze-spinning is effective when a water-soluble polymer stock solution without an appropriate coagulating liquid is used.

本発明における凍結紡糸とは、水系紡糸原液を口金から
吐出して直接−10℃以下の環境下に導いてポリビニル
アルコール系重合体の水系原液を凍結させる紡糸であり
、具体的には、ドライアイス共存液体、液体窒素などを
凍結液として用いることができるが、特にこれに制限さ
れるものではない。
Freeze spinning in the present invention refers to spinning in which an aqueous spinning stock solution is discharged from a spinneret and directly introduced into an environment of -10°C or lower to freeze the aqueous stock solution of a polyvinyl alcohol polymer. A coexisting liquid, liquid nitrogen, or the like can be used as the freezing liquid, but is not particularly limited thereto.

本発明における凍結処理は、−10’C以下の温度で行
なえばよく、具体的には冷凍庫、氷、ドライアイス、液
体窒素などを使って実施することができる。
The freezing treatment in the present invention may be carried out at a temperature of -10'C or lower, and specifically can be carried out using a freezer, ice, dry ice, liquid nitrogen, or the like.

本発明にお(プる解凍処理は、o′c以上の温度でおこ
なえばよいが、高温ではゲルの機械的強度が低下する悪
影響が見られるので100’C以下の温度がよく、好ま
しくは50′C以下、ざらには3゜°C以下がよい。
The thawing process according to the present invention may be carried out at a temperature of 0'C or higher, but since high temperatures have the negative effect of reducing the mechanical strength of the gel, a temperature of 100'C or lower is preferable, preferably 50'C or higher. 'C or less, preferably 3°C or less.

本発明における凍結・解凍は、1回だけ実施してもよい
が、2回、3回と繰返す方が機械的強度が高くなるため
、好ましくは3回以上繰返すのがよい。
Freezing and thawing in the present invention may be performed only once, but repeating the freezing and thawing process two or three times increases the mechanical strength, so it is preferably repeated three or more times.

また、解凍する前の凍結状態で含水ゲル繊維を減圧下に
放置して脱水する方法で所望の含水率のゲル繊維を得る
ことができる。
Alternatively, gel fibers with a desired water content can be obtained by dehydrating hydrogel fibers by leaving them under reduced pressure in a frozen state before thawing.

水溶性ポリマの除去は、水溶性溶剤などを用いて溶出除
去などの手段で行なうことができるが、最終の含水極細
ゲル繊維が得られるならばその方法に特に制限はなく、
また複合吐出以降いつ除去しても差支えない。
The water-soluble polymer can be removed by elution and removal using a water-soluble solvent, but there is no particular restriction on the method as long as the final water-containing ultrafine gel fibers can be obtained.
Further, it can be removed at any time after the composite discharge.

また、ブレンドした高分子電解質を塩にするために中和
処理を施してもよく、具体的には、アルカリあるいは酸
に浸漬する方法が好ましい。
Further, the blended polymer electrolyte may be subjected to a neutralization treatment in order to turn it into a salt, and specifically, a method of immersing it in an alkali or an acid is preferable.

さらに、延伸などの後処理を施すこともでき、機械的強
度、寸法安定性などの向上という点から好ましい。実施
する時期としては、凍結・解凍処理の前後、途中あるい
は後処理1変のいずれでもよい。
Furthermore, post-treatment such as stretching can also be performed, which is preferable from the standpoint of improving mechanical strength, dimensional stability, and the like. The timing of implementation may be before, during, or after the freezing/thawing process, or after one change in post-processing.

(作用) 本発明では凍結・解凍法でポリビニルアルコール系含水
極細ゲル繊維を作っているので、含水ゲルにもかかわら
ず機械的強度が高くなる。このため、カットファイバー
、単糸、糸束、不織布、織物、編物おるいはこれらを組
合わせた任意の形態で使う事ができるようになる。
(Function) In the present invention, since polyvinyl alcohol-based hydrous ultrafine gel fibers are produced by a freezing/thawing method, the fibers have high mechanical strength despite being a hydrous gel. Therefore, it can be used in any form such as cut fibers, single yarns, yarn bundles, nonwoven fabrics, woven fabrics, knitted fabrics, or a combination of these.

また、複合紡糸、凍結複合紡糸を採用することで極細繊
維の取扱いが大幅に容易になって、生産性が向上するこ
とがわかった。
It was also found that by employing composite spinning and frozen composite spinning, the handling of ultrafine fibers became much easier and productivity improved.

本発明の極細ゲル繊維は、防振材、クツション材、保水
材、保冷材、結束材、人工餌料、芳香剤や薬液などの徐
放材、菌体や微生物の固定化材、生体組織修復材、バイ
オセンサー等の各種センサーなどに利用でき、診断・治
療用具、ドラッグデリバリシステム、診断薬、医薬品、
医療用具などの医療分野、バイオリアクタ等のバイオ分
野、ざらにはロボット、玩具と広い分野に応用できる。
The ultrafine gel fibers of the present invention can be used as vibration-proofing materials, cushioning materials, water retention materials, cold insulation materials, binding materials, artificial feeds, sustained release materials such as aromatics and chemical solutions, immobilization materials for bacterial cells and microorganisms, and biological tissue repair materials. It can be used in various sensors such as biosensors, diagnostic and therapeutic tools, drug delivery systems, diagnostic agents, pharmaceuticals,
It can be applied to a wide range of fields, including the medical field such as medical tools, the biological field such as bioreactors, and even robots and toys.

また、本発明の含水ゲル繊維からなる応答性素子は、こ
れらの用途の伯、人工筋肉、ケミカルバルブ、バイメタ
ル、ポンプ、モーター、アクチュエーター、計測機器、
スイッチなどの電子工業分野などにも応用できる。
In addition, the responsive element made of the hydrous gel fiber of the present invention can be used in these applications, such as artificial muscles, chemical valves, bimetals, pumps, motors, actuators, measuring instruments,
It can also be applied to the electronic industry such as switches.

(実施例) 以下の実施例によって本発明をざらに詳細に説明する。(Example) The invention will be explained in greater detail by the following examples.

実施例1 ポリビニルアルコールNH26(日本合成化学社製>2
50C1と精製水10009を100’Cで攪拌しなが
ら溶解してPC=20wt%の原液Aを得た。アルギン
酸ソーダ(牛丼化学社製、30QCps)80gと精製
水920gを80℃で攪拌しながら溶解してPC=8w
t%の原液Bを得た。原液Aを島成分として50部、原
液Bを海成分として50部からなる割合いで、80℃の
温度で吐出して40’020%塩化カルシウム水溶液中
に導いて凝固させ、1フイラメント中に36本の島成分
を有する海島型複合紡糸繊維を1qた。この含水海島型
複合紡糸繊維をドライアイス共存メタノール中に浸漬し
て一晩放置後、この繊維を取出して空気中に約8時間放
置して解凍した。さらに同じようにして凍結・解凍を5
回繰返した俊、そのゲル繊維を1Nの水酸化ナトリウム
水溶液に浸漬した後水洗してアルギン酸ソーダを溶出除
去し、直径的8μ(絶乾状態で約4μ)の白色の含水極
細ゲル繊維を得た。
Example 1 Polyvinyl alcohol NH26 (manufactured by Nippon Gosei Kagaku Co., Ltd.>2
50C1 and purified water 10009 were dissolved with stirring at 100'C to obtain stock solution A with PC=20 wt%. Dissolve 80g of sodium alginate (manufactured by Gyudon Kagaku Co., Ltd., 30QCps) and 920g of purified water with stirring at 80℃, PC = 8w.
A stock solution B of t% was obtained. A ratio of 50 parts of stock solution A as an island component and 50 parts of stock solution B as a sea component was discharged at a temperature of 80°C, introduced into a 40'020% calcium chloride aqueous solution, and solidified to form 36 filaments in one filament. 1 q of sea-island composite spun fibers having an island component of The water-containing sea-island type composite spun fibers were immersed in methanol coexisting with dry ice and allowed to stand overnight.The fibers were then taken out and left in the air for about 8 hours to thaw. Then freeze and thaw in the same way.
After repeating the process several times, the gel fibers were immersed in a 1N aqueous sodium hydroxide solution and washed with water to elute and remove the sodium alginate, yielding white hydrated ultrafine gel fibers with a diameter of 8μ (approximately 4μ in an absolutely dry state). .

この含水極細ゲル繊維をステンレス板に挟んで1 K3
の荷重で圧縮したがステンレス板から取出した含水極細
ゲル繊維に変化はなかった。また、この含水極細ゲル繊
維を一週間水中に放置してもポリマの溶出はなく、機械
強度も浸漬開始前とほとんど変化がみられなかった。こ
の含水極細ゲル繊維の含水率は約60wt%であった。
This hydrous ultrafine gel fiber is sandwiched between stainless steel plates and 1K3
Although the fibers were compressed under a load of Further, even when this hydrous ultrafine gel fiber was left in water for one week, no polymer elution occurred, and the mechanical strength showed almost no change from before the immersion. The water content of this water-containing ultrafine gel fiber was about 60 wt%.

比較例1 実施例1で紡糸して得た海島型複合紡糸繊維を凍結、解
凍処理をしないで1Nの水酸化ナトリウム水溶液に浸漬
した後水洗してアルギン酸ソーダを溶出除去したところ
、ポリビニルアルコールも溶解して繊維の形態がなくな
ってしまった。
Comparative Example 1 When the sea-island composite spun fiber obtained by spinning in Example 1 was immersed in a 1N sodium hydroxide aqueous solution without freezing and thawing, and then washed with water to elute and remove sodium alginate, polyvinyl alcohol was also dissolved. The fibers lost their shape.

実施例2 実施例1と同様にして吐出した複合吐出原液をジュワー
ピンのドライアイス共存メタノール中に直接導いて凍結
させた。その状態で一晩放置後、この海鳥型複合紡糸繊
維をポリエチレン製袋の中に取出して空気中に約8時間
放置して解凍した。
Example 2 A composite discharge stock solution discharged in the same manner as in Example 1 was directly introduced into methanol coexisting with dry ice in a Dewarpine and frozen. After being left in that state overnight, the seabird type composite spun fibers were taken out into a polyethylene bag and left in the air for about 8 hours to thaw.

ポリエチレン製袋に入れたままさらに同じようにして凍
結、解凍を5回繰返した後、水洗してアルギン酸ソーダ
を溶出除去し、直径10μ(絶乾状態で約5μ)の白色
の含水極細ゲル繊維を得た。
After repeating freezing and thawing 5 times in the same manner while still in a polyethylene bag, the sodium alginate was eluted and removed by washing with water, and white hydrated ultrafine gel fibers with a diameter of 10μ (approximately 5μ in an absolutely dry state) were obtained. Obtained.

この含水極細ゲル繊維は流動性を示さず、また繊維間に
膠着もなかった。続いて実施例1と同じ条件で圧縮テス
ト、水浸漬テストを行なったが、テスト前後の含水極細
ゲル繊維に変化はみられなかった。この含水極細ゲル繊
維の含水率は約80W↑%であった。
This hydrous ultrafine gel fiber did not exhibit fluidity, and there was no agglutination between the fibers. Subsequently, a compression test and a water immersion test were conducted under the same conditions as in Example 1, but no change was observed in the water-containing ultrafine gel fibers before and after the test. The water content of this water-containing ultrafine gel fiber was about 80W↑%.

実施例3 ポリビニルアルコールNH26(日本合成化学社製) 
150Cl、ポリアクリル酸ACIOLP(日本紬薬社
製>100g、精製水1000びを100℃で攪拌しな
がら溶解してPC=20wt%の原液Cを得た。この原
液Cを島成分として50部、実施例1と同様にして1q
た原液Bを海成分として50部からなる割合いで、80
℃の温度で吐出して40’C20%塩化カルシウム水溶
液中に導いて凝固させ、1フイラメント中に36本の島
成分を有する海島型複合紡糸繊維を得た。こ−の含水海
島型複合紡糸繊維をドライアイス共存メタノール中に浸
漬して一晩放置後、この繊維を取出して空気中に約8時
間放置して解凍した。さらに同じようにして凍結・解凍
を5回繰返した後、そのグル繊維を1Nの水酸化ナトリ
ウム水溶液に浸漬した後水洗してアルギン酸ソーダを溶
出除去し、直径的10μ(絶乾状態で約5μ)の白色の
含水極細ゲル繊維を得た。
Example 3 Polyvinyl alcohol NH26 (manufactured by Nippon Gosei Kagaku Co., Ltd.)
150Cl, polyacrylic acid ACIOLP (manufactured by Nippon Tsumugi Co., Ltd. >100g, purified water 1000ml was dissolved with stirring at 100 ° C. to obtain a stock solution C with PC = 20wt%. 50 parts of this stock solution C as an island component, 1q in the same manner as Example 1
The stock solution B is made up of 50 parts as a sea component, and 80 parts
The fibers were discharged at a temperature of 0.degree. C. and introduced into a 40'C 20% calcium chloride aqueous solution for coagulation to obtain sea-island type composite spun fibers having 36 island components in one filament. The water-containing sea-island type composite spun fibers were immersed in methanol coexisting with dry ice and allowed to stand overnight.The fibers were then taken out and left in the air for about 8 hours to thaw. After repeating freezing and thawing five times in the same manner, the glue fibers were immersed in a 1N aqueous sodium hydroxide solution and washed with water to elute and remove the sodium alginate. A white hydrated ultrafine gel fiber was obtained.

この含水極細ゲル繊維を約10mの艮ざに切取り、弱ア
ルカリ性水溶液中に約20m離して平行に設置した二枚
の白金電極板の中央に置いて40V、0.1Aの直流電
流を流して応答性を評価した。
This water-containing ultrafine gel fiber was cut into approximately 10 m long strips, placed in the center of two platinum electrode plates placed in parallel at a distance of approximately 20 m in a slightly alkaline aqueous solution, and a DC current of 40 V and 0.1 A was applied to the fibers. The gender was evaluated.

その結果、電極板に平行に繊維を置いた時は、電流を流
し始めると含水極細ゲル繊維は屈曲し始めておよそ3秒
後にはU字形になった。そして、電流を逆に流すともと
に戻り初め最後には反対方向に屈曲した。屈曲状態で電
流をストップすると徐々に真直ぐの状態に戻った。
As a result, when the fibers were placed parallel to the electrode plate, when the current started flowing, the hydrous ultrafine gel fibers began to bend and took on a U-shape after about 3 seconds. Then, when a current was passed in the opposite direction, it began to return to its original position and finally bent in the opposite direction. When the current was stopped in the bent state, it gradually returned to the straight state.

一方、電極板に垂直に含水極細ゲル繊維を置いた時は、
電流を流し始めると1!維の片端がら膨潤し始めついに
は体積が約8倍に膨潤した透明含水ゲルとなった。電流
をストップして放置するとほぼ元℃寸法に戻った。
On the other hand, when a hydrous ultrafine gel fiber is placed perpendicular to the electrode plate,
When the current starts flowing, it becomes 1! One end of the fibers began to swell, and finally became a transparent hydrogel whose volume had swelled to about 8 times. When the current was stopped and the temperature was left as it was, the temperature returned to almost the original temperature.

また、−週間水中に放置してもポリマの溶出はなく、機
械強度も浸漬開始前とほとんど変化がみられなかった。
Further, even after being left in water for -week, no elution of the polymer occurred, and there was almost no change in mechanical strength compared to before the start of immersion.

この含水極細ゲル繊維の含水率は約70wt%であった
The water content of this water-containing ultrafine gel fiber was about 70 wt%.

比較例2 実施例3で紡糸して得た含水海島型複合紡糸繊維を凍結
、解凍処理をしないで1Nの水酸化ナトリウム水溶液に
浸漬した後水洗してアルギン酸ソーダを溶出除去したと
ころポリビニルアルコールも溶解して繊維の形態がなく
なってしまった。
Comparative Example 2 The water-containing sea-island type composite spun fiber obtained by spinning in Example 3 was immersed in a 1N aqueous sodium hydroxide solution without freezing and thawing, and then washed with water to elute and remove sodium alginate, and polyvinyl alcohol was also dissolved. The fibers lost their shape.

実施例4 実施例3と同様にして吐出した複合吐出原液をジュワー
ピンのドライアイス共存メタノール中に直接導いて凍結
させた。その状態で一晩放置)変、この含水海島型複合
紡糸繊維をポリエチレン製袋の中に取出して空気中に約
8時間放置して解凍した。ポリエチレン製袋に入れたま
まざらに同じようにして凍結、解凍を5回繰返した後、
水洗してアルギン酸ソーダを溶出除去した。
Example 4 A composite discharge stock solution discharged in the same manner as in Example 3 was directly introduced into methanol coexisting with dry ice in a Dewarpine and frozen. The water-containing sea-island composite spun fibers were then taken out into a polyethylene bag and left in the air for about 8 hours to thaw. After repeating freezing and thawing five times in the same way while still in a polyethylene bag,
The sodium alginate was eluted and removed by washing with water.

次いで1Nの水酸化ナトリウム水溶液に浸漬して中和処
理を行い、直径12μ(絶乾状態6μ)の白色の含水極
細ゲル繊維を得た。
Next, the fibers were neutralized by immersion in a 1N aqueous sodium hydroxide solution to obtain white hydrated ultrafine gel fibers with a diameter of 12 μm (6 μm in an absolutely dry state).

この含水極細ゲル繊維は流動性を示さず、また繊維間に
膠着もなかだ。実施例3と同様にして評価した結果、電
極板に平行に含水極細ゲル繊維を置いた時は、電流を流
し始めるとゲル繊維は屈曲し始めておよそ3秒後にはU
字形になった。そして、電流を逆に流すともとに戻り初
め最後には反対方向に屈曲した。屈曲状態で電流をスト
ップすると徐々に真直ぐの状態に戻った。
This water-containing ultrafine gel fiber does not exhibit fluidity, and there is little adhesion between the fibers. As a result of evaluation in the same manner as in Example 3, when the hydrous ultrafine gel fibers were placed parallel to the electrode plate, when the current started flowing, the gel fibers began to bend and after about 3 seconds, the U
It became a glyph. Then, when a current was passed in the opposite direction, it began to return to its original position and finally bent in the opposite direction. When the current was stopped in the bent state, it gradually returned to the straight state.

一方、電極板に垂直に含水極細ゲル繊維を買いた時は、
電流を流し始めると繊維の片端から膨潤し始めついには
体積が約10倍に膨潤した透明含水ゲルとなった。電流
をストップして放置するとほぼ元の寸法に戻った。また
、−週間水中に放置してもポリマの溶出はなく、機械強
度も浸漬開始前とほとんど変化がみられなかった。この
含水極細ゲル繊維の含水率は約90wt%であった。
On the other hand, when you buy hydrous ultrafine gel fibers perpendicular to the electrode plate,
When an electric current was started to flow, the fibers began to swell from one end and eventually became a transparent hydrogel whose volume swelled to about 10 times. When I stopped the current and left it alone, it returned to almost its original dimensions. Further, even after being left in water for -week, no elution of the polymer occurred, and there was almost no change in mechanical strength compared to before the start of immersion. The water content of this water-containing ultrafine gel fiber was about 90 wt%.

(発明の効果) 本発明の含水ゲル繊維は極細繊維であるため細ければ細
いほど反応に対する比表面積が大きくなり、かつしなや
かでおり、反応に対するる違いが顕著にあられれる。つ
まり、応答性素子として利用した場合、変化量が大きく
、応答速度が速くなるという特徴がある。
(Effects of the Invention) Since the hydrogel fibers of the present invention are ultrafine fibers, the finer the fibers, the larger the specific surface area for reaction, and the more flexible they are, and the difference in response to reactions is noticeable. In other words, when used as a responsive element, the amount of change is large and the response speed is fast.

また本発明では凍結・解凍法で含水極細ゲル繊維を作っ
ているため、含水ゲルにもかかわらず機械的強度が高く
なる。このため、カットフフイバ、単糸、糸束、不織イ
5.織物、編物おるいはこれらを組合わせた任意の形態
で使うことができるので、用途の汎用性にも優れている
Furthermore, in the present invention, since the hydrous ultrafine gel fibers are made by a freezing/thawing method, the mechanical strength is high despite the hydrous gel. For this reason, cut fibers, single yarns, yarn bundles, non-woven fibers, etc.5. Since it can be used in any form such as woven fabrics, knitted fabrics, or any combination of these, it has excellent versatility.

また、複合紡糸、凍結複合紡糸を採用することで極細繊
維の取扱いが大幅に容易になって生産性が向上できると
いう特徴もある。
Another feature is that by employing composite spinning and frozen composite spinning, handling of ultrafine fibers becomes much easier and productivity can be improved.

Claims (3)

【特許請求の範囲】[Claims] (1)ポリビニルアルコール系重合体を主体とした微細
な含水繊維からなる極細ゲル繊維。
(1) Ultrafine gel fibers consisting of fine water-containing fibers mainly made of polyvinyl alcohol polymer.
(2)ポリビニルアルコール系重合体の水系原液と他の
水溶性ポリマ原液を複合紡糸して得た含水繊維に(A)
凍結処理、(B)解凍処理、(C)水溶性ポリマの除去
処理を施すことを特徴とする極細ゲル繊維の製法。
(2) Water-containing fiber obtained by composite spinning aqueous stock solution of polyvinyl alcohol polymer and other water-soluble polymer stock solution (A)
A method for producing ultrafine gel fibers, which comprises performing a freezing treatment, (B) a thawing treatment, and (C) a water-soluble polymer removal treatment.
(3)ポリビニルアルコール系重合体の水系原液と他の
水溶性ポリマ原液を複合凍結紡糸して得た含水繊維に(
A)凍結処理、(B)解凍処理、(C)水溶性ポリマの
除去処理を施すことを特徴とする極細ゲル繊維の製法。
(3) Hydrous fiber obtained by composite freeze-spinning of an aqueous stock solution of polyvinyl alcohol-based polymer and another water-soluble polymer stock solution (
A method for producing ultrafine gel fibers, comprising: A) freezing treatment, (B) thawing treatment, and (C) water-soluble polymer removal treatment.
JP63289184A 1988-11-16 1988-11-16 Ultrafine gel fiber and production thereof Pending JPH02145809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63289184A JPH02145809A (en) 1988-11-16 1988-11-16 Ultrafine gel fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63289184A JPH02145809A (en) 1988-11-16 1988-11-16 Ultrafine gel fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH02145809A true JPH02145809A (en) 1990-06-05

Family

ID=17739858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63289184A Pending JPH02145809A (en) 1988-11-16 1988-11-16 Ultrafine gel fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH02145809A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160414A (en) * 1985-01-08 1986-07-21 Kuraray Co Ltd Extremely thin yarn of high-strength polyvinyl alcohol type and production thereof
JPS6290308A (en) * 1985-08-23 1987-04-24 デーエスエム・ナムローゼ・フェンノートシャップ Production of polyvinyl alcohol product having high tensile strength and high modulus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160414A (en) * 1985-01-08 1986-07-21 Kuraray Co Ltd Extremely thin yarn of high-strength polyvinyl alcohol type and production thereof
JPS6290308A (en) * 1985-08-23 1987-04-24 デーエスエム・ナムローゼ・フェンノートシャップ Production of polyvinyl alcohol product having high tensile strength and high modulus

Similar Documents

Publication Publication Date Title
Xu et al. Reactive electrospinning of degradable poly (oligoethylene glycol methacrylate)-based nanofibrous hydrogel networks
TWI237073B (en) High-absorbent polyvinyl alcohol fibers and nonwoven fabric comprising them
CN111171362B (en) Conductive silk material and preparation method and application thereof
JPH0415287B2 (en)
Vega-Cázarez et al. Preparation and properties of chitosan–PVA fibers produced by wet spinning
TWI727079B (en) Modified acrylonitrile-based fiber, method for manufacturing fiber of the same, and fiber structure containing fiber thereof
CN110423363B (en) Preparation method and application of high-strength ultrahigh-elasticity hydrogel
JPH02145809A (en) Ultrafine gel fiber and production thereof
JPS5810509B2 (en) Novel water-swellable fiber and method for producing the same
JPH0295249A (en) Response element and production thereof
JPH02112407A (en) Highly hydrous gel fiber and production thereof
JPH07216730A (en) Ph buffering fiber and production thereof
JPH05168909A (en) Hydrogel with high water content and production thereof
JP2003342831A (en) Water-absorbing acrylic fiber and method for producing the same and fiber structure containing the fiber
JP2007254936A (en) Fiber slowly releasing amino acid derivative and having excellent wash resistance, fiber structure containing the fiber, and method for producing the same
JPH01136017A (en) Responsive element and its preparation
JP3281014B2 (en) Method for producing hydrophilic polymer alloy and method for producing porous membrane comprising hydrophilic polymer alloy
JPS6260502B2 (en)
KR100841463B1 (en) Cross-linking agent for polyvinyl alcohol, polyvinyl alcohol products and method for manufacturing the same
JPS62162010A (en) Production of polyvinyl alcohol fiber of high tenacity and elasticity
JP2942585B2 (en) Method for producing moisture-absorbing and stretched stretched products
JPS62215011A (en) Rapidly shrinkable fiber and production thereof
Hudson et al. Conversion of cellulose, chitin and chitosan to filaments with simple salt solutions
JP2927304B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JPH01138411A (en) Responsive element and its production