[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02131924A - Manufacture of latticed fiber reinforced plastic(frp) reinforcing member - Google Patents

Manufacture of latticed fiber reinforced plastic(frp) reinforcing member

Info

Publication number
JPH02131924A
JPH02131924A JP63287210A JP28721088A JPH02131924A JP H02131924 A JPH02131924 A JP H02131924A JP 63287210 A JP63287210 A JP 63287210A JP 28721088 A JP28721088 A JP 28721088A JP H02131924 A JPH02131924 A JP H02131924A
Authority
JP
Japan
Prior art keywords
resin
lattice
braided
tension
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63287210A
Other languages
Japanese (ja)
Inventor
Jiro Ichikawa
市川 二朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63287210A priority Critical patent/JPH02131924A/en
Publication of JPH02131924A publication Critical patent/JPH02131924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

PURPOSE:To enhance the adhesion strength to material to be reinforced such as concrete or the like and consequently effectively reinforce said concrete or the like by a method wherein reinforcing fibers are braided in braided cords and, after that, assembled in a lattice and, finally, tension is applied to each braided cord under the state that the resin is melted so as to fill the interior of each braided cord with molten resin. CONSTITUTION:When reinforcing fiber bundle 10 is covered by thermoplastic resin, no impregnation at all or not much impregnation of resin in the fiber bundle is preferable, since the impregnation of the resin in the fiber bundle proportional impairs the flexibility of a composite 20. A braided cord 22 is produced by braiding the composite 20. In this case, dense braiding is preferably for favorable impregnation of resin in the following process. Next, the braided cords thus obtained are assembled in a lattice. At this time, each lattice point (intersecting point) is joined by entwining braided cords with each other. Next, the latticed assembly 24 is heated under tension or tension is applied to the assembly 24, the thermoplastic resin of which is put in molten state. By cooling the resin as tension is applied to the longitudinal and the lateral braided cords under the state that the thermoplastic resin is in molten state, the resin is solidified, resulting in obtaining latticed FRP formed body.

Description

【発明の詳細な説明】 (産業上の利用分野) 、この発明はセメント,モルタル,コンクリートなどの
補強用等として用いられる格子状FRP補強部材の製造
方法に関し,詳しくは基材樹脂として熱可塑性樹脂を用
いたものの製造方法に関する. (従来の技術) これらコンクリート等を補強するためのものとして、従
来一般には鉄筋を溶接して格子状に組み上げたものが用
いられているが.鉄筋は腐食の問題があって寿命が短く
、このため近時,かがる格子状補強部材をFRPにて構
成することが考えられている. ところで従来のこの種格子状FRP補強部材は、基材樹
脂として熱硬化性樹脂を用い、一般に次のような方法、
即ち (イ)強化繊維束に硬化荊の樹詣を連続的に含浸させつ
つ引抜成形にてFRPの丸棒を製造し、これを第5図に
示すように格子状に配置して各丸棒100の交点部分を
結束.接着,交差等により接合する方法、 (a)強化繊維束に硬化前の樹脂を含浸させた状ygで
、これらを格子状のキャビティを有する金型内に配置し
て硬化させる方法、 (ハ)強化&MM束に硬化荊の樹脂を含浸させてこれを
格子状に組み上げた後硬化させる方法、(二)強化繊維
束を格子状に組み上げた後、これに硬化前の樹脂を含浸
させてその後硬化させる方法, 等の方法により製造していた. (発明が解決しようとする課題) しかしながら上記(イ)の方法の場合,格子点(交点)
での結合力が弱い問題があり,また(a)の方法では成
形金型が必要である外,キャビティ内への各繊維束の配
列作業が面倒且つ困難である問題がある. また(ハ)の方法の場合,強化繊維束に含浸させた樹脂
が粘着性を有するため、強化繊維束を格子状に機械的に
組み上げるのが困難である問題がある. 更に(二)の方法の場合,強化繊a束を格子状に組み上
げる際にmiaが損傷を受け易く、また格子状に組み上
げた後に樹脂を含浸させるために格子点(交点)への樹
脂の含浸が困難で、交点の強度が低くなる問題がある. (課題を解決するための手段) 本発明はこのような課題を解決するためになされたもの
であり,その要旨は、(イ)強化用の連続m維と熱可塑
性樹脂とを複合化して柔軟性のある複合体を製造する工
程と、(a)該複合体を編組加工して組紐を製造する工
程と、(ハ)該編組加工の後又は編組加工と同時に組紐
を格子点で絡ませながら格子状に組み上げる工程と、(
二)該格子状の組上体を加熱して熱可塑性樹脂を溶融さ
せる工程と、(本)少なくとも該熱可塑性樹詣が溶融し
た状悪で縦,横の各組紐に張力を加えてそれら組紐を径
方向に収縮させる工程と、(へ)張力を加えた状態で該
組上体を熱可塑性樹脂の融点以下まで冷却して固化させ
る工程と,を含むことにある.このように本発明は強化
m#Iを繍組して組紐とし、その組紐を格子状に組み上
げた後樹脂溶融状態の下で各組紐に張力を加え、溶融し
た樹脂にて各組紐内部を埋めるようにしたものである.
即ち格子状の組上体を構成する段階では未だ樹脂は溶融
状態ではなく、従って樹脂の粘着性に妨げられることな
く格子状組上体を容易に組上げ・構成することができる
し、また組上体を固化●成形する段階で成形型を用いな
いために成形作業も簡便・容易であり,全体として高虎
率で格子状のFRP補強部材を生産することができる.
また上記のように本発明では格子状の組上体を構成した
後に樹脂を含浸させるのでなく、格子状組上体を構成し
た後に予め複合化してある樹脂を溶融ざせるよラにして
いるため,即ち樹脂を予め組紐内部に入り込ませておい
て、その樹脂を溶融させて強化繊維間の隙間を埋めるよ
うにしているため、各#am間に樹脂が十分に浸透して
各m維を強固に17ilRする.また同じ理由によって
、格子状組上体を構成した後に樹脂を含浸させる場合に
比ベて各格子点への樹脂の含浸も十分であり,従って交
点の強度も高くなる. また強化繊醋と樹脂とを複合化する方法として、強化繊
膳東の外表面を樹詣にてチューブ状に被覆する方法を用
いれば、強化繊維が損傷し易い場合であっても、強化繊
維束を編組して組紐とする際或いは組紐を格子状に組み
上げる際に各繊維東同士が擦れるなどして損傷するのな
回避することができる.各繊雑束が熱可塑性樹脂にて被
覆・保護された状態にあるからである. 更に加えて、本発明により得られる格子状補強部材は外
表面に凹凸があるため、これをコンクリート等の補強用
として用いた場合に,コンクリート等被補強材との接着
力が高く、かかるコンクリート等を効果的に補強する. 本発明では、先ず強化用の連続した繊維と熱可塑性樹脂
とを複合化して柔軟性の有る複合体を製造する. ここで強化amとしては、従×FRP用に用いられてい
る全ての繊維,例えばガラス繊維,炭素繊維,7ラミド
lam.アルミナm維,炭化珪素繊維等が使用できる.
また#a雄東としては、各単臓雄を一方向に揃えたロー
ビング,撚りの入ったヤーン,嵩高加工したヤーン等連
続繊維を主体としたものならば何れも使用可1走である
.尚含浸性の悪い樹脂を用いる場合などにおいては、含
浸性の良い嵩高加エヤーンを用いるのが好都合である. 一方樹脂としては,ナイロン樹脂,ポリプロピレン樹脂
,ポリエチレン樹脂,ポリフェニレンサルファイド樹脂
.ポリエチレンテレフタレート樹脂等各種のものが使用
でき、要求される強度,耐熱性,耐食性等から適宜選択
して用いる.強化繊維と熱可塑性樹脂とを複合化する方
法には各種の方法がある.例えば(ア)強化繊維束の外
側を熱可塑性樹脂にてチューブ状に被覆しても良いし、
(イ)強化繊雑束に熱可塑性樹脂の粉末をまぶした上で
更にその外側から熱可塑性樹脂にてチューブ状に被覆し
ても良い.(ウ)更には強化繊雑と熱可!!!!+4樹
脂とを合糸することによって複合化しても良い. このうち(7).(イ)の方法では,強化繊維束が樹脂
にて被覆・保護された状態となるので、組紐及び格子状
組上体の製造時に繊維の損傷が防止できて好都合である
. 尚,何れの場合においても得られた複合体は柔軟性を有
することが必要である.従って熱可塑性樹脂にて強化繊
維束を被覆する場合には、繊m東内に樹脂を含浸させる
とその分複合体の柔軟性が損なわれるから,全く又はあ
まり樹脂を含浸させない方が望ましい. 本発明ではこのようにして得た複合体を纒組加工して組
紐とする.ここで組紐加工は後の工程で樹脂の含浸を良
くするため密に編組した方が良い. 次にこのようにして得た組紐を用いてこれを格子状に組
み上げて行く.このとき格子点(交点)では各組紐を絡
めることによって互いに接合する.絡める方法としては
各種の方法が可能である. 尚、強化繊維を編組して組紐とするとき同時に格子状に
組み上げるようにしても良い.次に格子状の組上体を引
張しつつ加熱するか、またはこれをs1詣の融点以上に
加熱して熱可塑性樹脂を溶融させた状態において組上体
に張力を加える.而してこのように樹脂溶融状態で格子
状組上体を構成する縦,横の組紐に張力を加えると各組
紐が半径方向に収縮してかかる組紐を構成している各繊
維が接近し、そしてそれらが然可塑性樹詣を介して互い
に密着する.即ち当初ある程度半径方向に広がった状態
にあって各繊維間に隙間が存在していたのが,,組紐に
張力を加えることによって各繊維が接近し、それらの間
に樹脂が十分に詰まった状態となる.ここで加熱方法と
しては熱風,輻射,熱伝導等各種方法が可能である.加
熱温度は樹脂の融点直上ではまだ樹脂の粘度が高く,従
って各m維間への樹脂の含浸が十分に行われない恐れが
あるので、一般には融点より20〜100℃高い温度ま
で加熱するのが望ましい.またカロえるべき張力は、そ
の強さが弱いと各織維同士が十分近接せず、従ってその
まま固化した場合にFRP成形体内部に空隙が生ずる恐
れがあるので.iam束の太さ,本数.ljA組方式等
に応じて適宜に選定●調整する(例えば500g〜10
kg程度). さて樹脂溶融状悪の下で縦.横の組紐に張力を加えてそ
のまま樹脂の融点以下まで冷却すると、樹脂が固化して
ここに格子状FRP成形体が得られる.尚樹脂を冷却す
る際に各組紐、即ち格子状の組一L体を引張状態に保っ
ておくのは、引張により近接したam同士が再び離れて
FRP成形体内部に空隙が生じてしまうのを防止するた
めである. このようにして得られたFRP成形体は外面にある程度
の凹凸があるため、これをコンクリート等の補強部材と
して用いたときコンクリート等との接着力が高くなり、
優れた補強効果を発揮する. (実施例) 次に本発明の特徴をより明確にすべく以下にその実施例
を詳述する. 太さ13ALmの575テックスのガラス繊維ロービン
グ10(第11d(A))を用意し、その外周面を第2
図に示すように張力調整機12,クロスヘット付押出機
14,引取4!!16,巻取機18を有する被l′I装
置にて、ガラスm維の比率が69重量%となるように樹
脂の被覆を施した(第1図中(B) ) .この樹脂被
覆の強化繊維束20を16本組}f機にかけて組紐22
とした(第1図中(C) ) .次いでこの組紐22を
第1図(D)に示すように格子の大きさ文が1001で
、幅Wが3501となるように格子状に組み上げて組上
体24を得た.このとき各組紐22は交点で第3図(A
)〜(D)に示すような方法により互いに絡らませた.
尚絡ませる方法としてはその他の方法も勿論可能である
. 次に第4図に示すように組上体24をボビン26に巻い
てこれをゴムローラ28により引き出しつつ、途中加熱
ソーンHで遠赤外線ヒータ30により加熱した後,冷却
ゾーンCで冷却を行った.尚M」」二体24に対する縦
方向(引出方向)の引張はボビン26とゴムローラ2 
81111 テ行い、横方向(引出方向と直角な方向)
の引張は適宜の張力発生l&32にて行った.このとき
の引張力は2kgであり,また加熱温度は280℃、引
出速度は30c+s/分であった. このようにして得られた格子状FRP補強部材は強度的
に十分な特性を有しており、また成形作業も従来の熱硬
化性樹脂を用いたFRP成形体に比べて容易であり、高
能率で製造することがで!た. 以上本発明の実施例を詳述したが,本発明はその主旨を
逸脱しない範囲において、当業者の知識に基づき、様々
な変更を加えた態様において実施することが可能である
Detailed Description of the Invention (Industrial Field of Application) This invention relates to a method for manufacturing a lattice-shaped FRP reinforcing member used for reinforcing cement, mortar, concrete, etc. This article relates to a method of manufacturing products using . (Prior Art) Conventionally, reinforcing bars have been welded and assembled into a lattice-like structure to reinforce concrete, etc. Reinforcing bars have a short lifespan due to corrosion problems, and for this reason, it has recently been considered that lattice-like reinforcing members can be made of FRP. By the way, this type of conventional lattice-shaped FRP reinforcing member uses thermosetting resin as the base resin, and is generally manufactured using the following methods.
That is, (a) FRP round bars are produced by pultrusion molding while continuously impregnating reinforcing fiber bundles with hardened thorns, and each round bar is arranged in a lattice shape as shown in Figure 5. Bind the 100 intersection points. A method of joining by adhesion, crossing, etc. (a) A method of impregnating reinforcing fiber bundles with resin before curing and placing them in a mold having a lattice-like cavity and curing them; (c) Method of impregnating reinforcing & MM bundles with hardened resin, assembling them in a lattice shape, and then curing them. (2) After assembling reinforcing fiber bundles in a lattice shape, impregnating them with uncured resin and then curing them. It was manufactured using methods such as (Problem to be solved by the invention) However, in the case of method (a) above, the lattice points (intersection points)
In addition, method (a) requires a mold, and the process of arranging each fiber bundle in the cavity is troublesome and difficult. Furthermore, in the case of method (c), since the resin impregnated into the reinforcing fiber bundles is sticky, there is a problem in that it is difficult to mechanically assemble the reinforcing fiber bundles into a lattice shape. Furthermore, in the case of method (2), the mia is easily damaged when the reinforcing fiber bundles are assembled into a lattice shape, and the lattice points (intersection points) are impregnated with resin after being assembled into a lattice shape. The problem is that the strength of the intersection points is low. (Means for Solving the Problems) The present invention has been made to solve the above problems, and the gist thereof is (a) to create a flexible material by combining continuous reinforcing fibers and thermoplastic resin. (a) a step of braiding the composite to produce a braid; and (c) a step of braiding the composite while intertwining the braid at lattice points after or simultaneously with the braiding. The process of assembling it into a shape (
2) heating the lattice-shaped assembled body to melt the thermoplastic resin; and (2) applying tension to each of the vertical and horizontal braids when at least the thermoplastic resin is in a molten state; and a step of cooling and solidifying the assembled body under tension to a temperature below the melting point of the thermoplastic resin. In this way, the present invention embroiders reinforced m#I to form braids, and after braiding the braids into a lattice shape, tension is applied to each braid under a resin melting state, and the inside of each braid is filled with the melted resin. This is how it was done.
In other words, the resin is not yet in a molten state at the stage of constructing the lattice-like assembled body, and therefore the lattice-like assembled body can be easily assembled and constructed without being hindered by the adhesiveness of the resin. The molding process is simple and easy since no molds are used during the solidification and molding stage, and the overall production of lattice-shaped FRP reinforcing members is possible at a high rate.
Furthermore, as described above, in the present invention, the resin is not impregnated after forming the lattice-like assembled body, but rather the pre-composite resin is melted after the lattice-like assembled body is formed. , In other words, the resin is injected into the braid in advance and melted to fill the gaps between the reinforcing fibers, so the resin sufficiently penetrates between each #am and strengthens each m fiber. 17ilR. Furthermore, for the same reason, the impregnation of resin at each lattice point is sufficient compared to the case where resin is impregnated after constructing the lattice-like assembled body, and therefore the strength of the intersection points is also increased. In addition, as a method of compositing reinforcing fiber and resin, if the outer surface of the reinforcing fiber is covered in a tube shape with a tree, even if the reinforcing fiber is easily damaged, the reinforcing fiber When braiding bundles into braided cords or when assembling braided cords in a lattice pattern, it is possible to avoid damage caused by rubbing of the fibers against each other. This is because each bundle is covered and protected by thermoplastic resin. In addition, since the lattice-shaped reinforcing member obtained by the present invention has irregularities on its outer surface, when it is used for reinforcing concrete, etc., it has a high adhesive strength with the reinforced material such as concrete, and such concrete, etc. Effectively reinforce. In the present invention, first, continuous reinforcing fibers and thermoplastic resin are combined to produce a flexible composite. Here, as the reinforcement am, all fibers used for conventional FRP, such as glass fiber, carbon fiber, 7-lamid lam. Alumina M fiber, silicon carbide fiber, etc. can be used.
In addition, as #a male east, any material that is mainly made of continuous fibers such as roving in which each single male is aligned in one direction, twisted yarn, bulky yarn, etc. can be used. When using a resin with poor impregnability, it is convenient to use a bulky yarn with good impregnability. On the other hand, resins include nylon resin, polypropylene resin, polyethylene resin, and polyphenylene sulfide resin. Various types of resin such as polyethylene terephthalate resin can be used, and they are selected as appropriate based on the required strength, heat resistance, corrosion resistance, etc. There are various methods for compositing reinforcing fibers and thermoplastic resins. For example, (a) the outside of the reinforcing fiber bundle may be covered with thermoplastic resin in a tube shape;
(b) The reinforced fiber bundle may be sprinkled with thermoplastic resin powder and then covered with thermoplastic resin from the outside in a tube shape. (C) Furthermore, reinforced fibers and thermoplastics! ! ! ! It may also be made into a composite by doubling it with +4 resin. Of these (7). In method (a), the reinforcing fiber bundles are covered and protected with resin, which is advantageous in that damage to the fibers can be prevented during the production of braided cords and lattice-like assembled bodies. In any case, the resulting composite must be flexible. Therefore, when covering a reinforcing fiber bundle with a thermoplastic resin, it is preferable not to impregnate the resin at all or to a small extent, since impregnating the inside of the fibers with the resin will impair the flexibility of the composite. In the present invention, the composite thus obtained is processed into a braided cord. In this case, it is better to braid the cord tightly in order to improve resin impregnation in the later process. Next, use the braid obtained in this way to assemble it into a lattice shape. At this time, each braid is tied together at the lattice points (intersection points) to connect them to each other. Various methods are possible for intertwining. In addition, when the reinforcing fibers are braided to form a braid, they may also be braided in a lattice pattern at the same time. Next, the lattice-shaped assembled body is heated while being stretched, or it is heated above the melting point of s1 to melt the thermoplastic resin, and then tension is applied to the assembled body. In this way, when tension is applied to the vertical and horizontal braids that make up the lattice-like assembled body while the resin is in a molten state, each braid contracts in the radial direction and the fibers that make up the braid approach each other. And they come into close contact with each other through natural plasticity. In other words, initially, the fibers were spread out in the radial direction to some extent, with gaps between them, but by applying tension to the braid, the fibers came closer together, and the resin became fully packed between them. becomes. Various heating methods are possible here, including hot air, radiation, and heat conduction. The viscosity of the resin is still high just above the melting point of the resin, so there is a risk that the resin will not be sufficiently impregnated into each m fiber, so it is generally heated to a temperature 20 to 100°C higher than the melting point. is desirable. In addition, if the tension that should be applied is too weak, the individual woven fibers will not be close enough to each other, and if it solidifies as it is, there is a risk that voids will be created inside the FRP molded product. Thickness and number of iam bundles. Select and adjust as appropriate depending on the ljA group system, etc. (for example, 500g to 10
kg). Now, the resin is melted vertically. When tension is applied to the horizontal braid and the resin is cooled to below the melting point of the resin, the resin solidifies and a lattice-shaped FRP molded body is obtained. The purpose of keeping each braid, that is, the lattice-like set L body in tension when cooling the resin, is to prevent the ams that are close to each other from being separated again due to tension, creating voids inside the FRP molded body. This is to prevent this. The FRP molded body obtained in this way has a certain degree of unevenness on its outer surface, so when it is used as a reinforcing member for concrete etc., the adhesive strength with concrete etc. is high,
Demonstrates excellent reinforcing effect. (Example) Next, in order to clarify the characteristics of the present invention, examples will be described in detail below. A glass fiber roving 10 (No. 11d (A)) of 575 tex with a thickness of 13 ALm is prepared, and its outer peripheral surface is
As shown in the figure, there is a tension adjuster 12, an extruder with a crosshead 14, and a take-off machine 4! ! 16. Using a to-be-received device equipped with a winder 18, a resin coating was applied so that the ratio of glass m fibers was 69% by weight ((B) in Fig. 1). This resin-coated reinforcing fiber bundle 20 is passed through a 16-piece braiding machine to a braided cord 22
((C) in Figure 1). Next, this braided cord 22 was assembled into a lattice shape with a lattice size of 1001 and a width W of 3501 as shown in FIG. 1(D) to obtain a assembled body 24. At this time, each braid 22 is connected at the intersection point in FIG. 3 (A
) to (D).
Of course, other methods of intertwining are also possible. Next, as shown in FIG. 4, the assembled body 24 was wound around a bobbin 26, and while being pulled out by a rubber roller 28, it was heated by a far infrared heater 30 in a heating sawn H, and then cooled in a cooling zone C. The tension in the vertical direction (drawing direction) on the two bodies 24 is applied to the bobbin 26 and the rubber roller 2.
81111 Te direction, horizontal direction (direction perpendicular to the pull-out direction)
The tension was performed using an appropriate tension generator 1&32. The tensile force at this time was 2 kg, the heating temperature was 280°C, and the drawing speed was 30 c+s/min. The lattice-shaped FRP reinforcing member obtained in this way has sufficient strength characteristics, is easier to mold than conventional FRP molded bodies using thermosetting resin, and has high efficiency. It can be manufactured in! Ta. Although the embodiments of the present invention have been described in detail above, the present invention can be implemented with various modifications based on the knowledge of those skilled in the art without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である格子状FRP補強部材
の製造方法の各工程を説明するための説明図であり、第
2図は同実施例において用いた被覆装置の外略構成図で
ある.第3図は同実施例において各組紐を交点で絡ませ
る方法の一例を示す図であり、第4図は同実施例で用い
た成形装置の概略構成図.第5図は従来方法の不具合を
説明するための説明図である, lO:ガラス繊雑ロービング 20:樹脂被覆強化繊維束 22編組紐 24:格子状組上体 第 1 図 特許出願人   大同特殊鋼株式会社
FIG. 1 is an explanatory diagram for explaining each step of a method for manufacturing a lattice-shaped FRP reinforcing member, which is an embodiment of the present invention, and FIG. 2 is a schematic diagram of a coating device used in the embodiment. It is. Fig. 3 is a diagram showing an example of a method of intertwining each braid at the intersection point in the same example, and Fig. 4 is a schematic diagram of the forming apparatus used in the same example. FIG. 5 is an explanatory diagram for explaining the defects of the conventional method. 1O: Glass fiber roving 20: Resin-coated reinforcing fiber bundle 22 Braided cord 24: Lattice-like assembled body FIG. 1 Patent applicant: Daido Steel Co., Ltd. Co., Ltd.

Claims (1)

【特許請求の範囲】 (イ)強化用の連続繊維と熱可塑性樹脂とを複合化して
柔軟性のある複合体を製造する工程と、(ロ)該複合体
を編組加工して組紐を製造する工程と、 (ハ)該編組加工の後又は編組加工と同時に組紐を格子
点で絡ませながら格子状に組み上げる工程と、 (ニ)該格子状の組上体を加熱して熱可塑性樹脂を溶融
させる工程と、 (ホ)少なくとも該熱可塑性樹脂が溶融した状態で縦、
横の各組紐に張力を加えてそれら組紐を径方向に収縮さ
せる工程と、 (ヘ)張力を加えた状態で該組上体を熱可塑性樹脂の融
点以下まで冷却して固化させる工程と、を含むことを特
徴とする格子状FRP補強部材の製造方法。
[Claims] (a) A step of manufacturing a flexible composite by combining reinforcing continuous fibers and a thermoplastic resin; (b) A step of braiding the composite to manufacture a braided cord. (c) After the braiding process or simultaneously with the braiding process, assembling the braided cords in a lattice shape while intertwining them at lattice points, (d) heating the lattice-shaped assembled body to melt the thermoplastic resin. (e) vertically in a state where the thermoplastic resin is molten;
a step of applying tension to each horizontal braid to cause the braid to contract in the radial direction; and (f) a step of cooling and solidifying the braided body under tension to a temperature below the melting point of the thermoplastic resin. A method for manufacturing a lattice-shaped FRP reinforcing member, the method comprising:
JP63287210A 1988-11-14 1988-11-14 Manufacture of latticed fiber reinforced plastic(frp) reinforcing member Pending JPH02131924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287210A JPH02131924A (en) 1988-11-14 1988-11-14 Manufacture of latticed fiber reinforced plastic(frp) reinforcing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287210A JPH02131924A (en) 1988-11-14 1988-11-14 Manufacture of latticed fiber reinforced plastic(frp) reinforcing member

Publications (1)

Publication Number Publication Date
JPH02131924A true JPH02131924A (en) 1990-05-21

Family

ID=17714479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287210A Pending JPH02131924A (en) 1988-11-14 1988-11-14 Manufacture of latticed fiber reinforced plastic(frp) reinforcing member

Country Status (1)

Country Link
JP (1) JPH02131924A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846338B1 (en) * 2001-09-28 2008-07-15 아사히가라스마텍스가부시끼가이샤 Process for continuously producing a lattice body made of a fiber-reinforced synthetic resin
CN109705438A (en) * 2019-02-01 2019-05-03 贵州省材料产业技术研究院 Thermoplastic sheet material and application method for fibrous mesh cloth enhancing
KR102060285B1 (en) * 2019-10-01 2019-12-27 주식회사 위드림 Method for manufacturing frp-mesh for reinforcing concrete
CN114346248A (en) * 2022-01-11 2022-04-15 郑州机械研究所有限公司 Preparation process of multi-component spherical alloy powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846338B1 (en) * 2001-09-28 2008-07-15 아사히가라스마텍스가부시끼가이샤 Process for continuously producing a lattice body made of a fiber-reinforced synthetic resin
CN109705438A (en) * 2019-02-01 2019-05-03 贵州省材料产业技术研究院 Thermoplastic sheet material and application method for fibrous mesh cloth enhancing
KR102060285B1 (en) * 2019-10-01 2019-12-27 주식회사 위드림 Method for manufacturing frp-mesh for reinforcing concrete
CN114346248A (en) * 2022-01-11 2022-04-15 郑州机械研究所有限公司 Preparation process of multi-component spherical alloy powder
CN114346248B (en) * 2022-01-11 2023-03-17 郑州机械研究所有限公司 Preparation process of multi-component spherical alloy powder

Similar Documents

Publication Publication Date Title
CA1331733C (en) Process for continuously forming reinforced articles
US4992313A (en) Fiber-reinforced plastic strut connecting link
US4857124A (en) Fiber-reinforced plastic strut connecting link
US6090319A (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
TWI703030B (en) Process for the continuous production of fibre-reinforced profiles comprising a foam core
US11590714B2 (en) Method for producing a part made of composite material, and so obtained composite part
JPH07241915A (en) Manufacture of frame for game racket
CN109054296A (en) A kind of high-strength carbon fiber composite material bar material of surface resin rib and preparation method thereof
CN108481764A (en) A kind of method and device preparing grating band using composite fibre
WO1999065661A1 (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
JPH02131924A (en) Manufacture of latticed fiber reinforced plastic(frp) reinforcing member
CA2178311C (en) Process for manufacturing products made of a fibre-reinforced composite material
ES2203416T3 (en) REINFORCED COMPOSITE MATERIALS WITH FIBERS AND METHOD TO MANUFACTURE THEM.
JPH03249287A (en) Twisted structure made of fiber-reinforced thermosetting resin and its production
JPH0489346A (en) Concrete reinforcing member and its production
JPH0480451A (en) Structural material and its manufacture
JPH02131923A (en) Manufacture of long sized fiber reinforced plastic(frp) material
JPS6135231A (en) Manufacture of structural irregular-shaped reinforcing material
JPH0441907B2 (en)
JPS6149809A (en) Manufacture of structural deformed reinforcing member
WO1995000319A1 (en) Process for making a continuous cowound fiber reinforced thermoplastic composite article
JPS61118235A (en) Manufacture of reinforced plastic-molded material
EP4069136B1 (en) Process for making a reinforcing structure for dental prostheses in continuous fiber composite materials
WO1997003813A1 (en) A reinforced product manufactured from a reinforcement and a matrix plastic, as well as a method for manufacturing a reinforced product
JP3421956B2 (en) Method for producing flexible structural material