JPH02139827A - Focus adjusting circuit of color crt - Google Patents
Focus adjusting circuit of color crtInfo
- Publication number
- JPH02139827A JPH02139827A JP63229957A JP22995788A JPH02139827A JP H02139827 A JPH02139827 A JP H02139827A JP 63229957 A JP63229957 A JP 63229957A JP 22995788 A JP22995788 A JP 22995788A JP H02139827 A JPH02139827 A JP H02139827A
- Authority
- JP
- Japan
- Prior art keywords
- output
- focus
- counter
- circuit
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 claims description 12
- 230000001131 transforming effect Effects 0.000 claims description 3
- 230000004069 differentiation Effects 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000005070 sampling Methods 0.000 abstract description 6
- 101150097247 CRT1 gene Proteins 0.000 abstract 2
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はカラーブラウン管の検査、調整工程においてフ
ォーカス調整を行うためのフォーカス調整回路に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a focus adjustment circuit for performing focus adjustment in the inspection and adjustment process of color cathode ray tubes.
従来、カラーブラウン管のフォーカス調整は、カラーブ
ラウン管を所定の条件で作動させ、格子縞や点状の発光
パターンの出画した状態を目視にて観察しながらカラー
ブラウン管に加えるフォーカス電位を調整し、最も鮮明
になるようにしているO
〔発明が解決しようとする課題〕
上記従来技術は、目視によるために、調整者間の設定値
のばらつきが大きい。またコンピュータを初めとする情
報機器に使用するカラーブラウン管においては、画面ζ
こ細かいパターンや文字を表示するために、フォーカス
調整も微細な線や点が対象となり、労働衛生の面からも
問題があった。Conventionally, focus adjustment for color CRTs involves operating the color CRT under predetermined conditions, and adjusting the focus potential applied to the color CRT while visually observing the appearance of checkered or dotted light emitting patterns. [Problems to be Solved by the Invention] In the above-mentioned prior art, the setting values vary widely between adjusters because the adjustment is performed visually. In addition, in color cathode ray tubes used in information equipment such as computers, the screen ζ
In order to display fine patterns and letters, focus adjustment also targets fine lines and dots, which also poses problems from an occupational health perspective.
不発明の目的は、簡単な回路でフォーカス調整の自動化
が図れるカラーブラウン管のフォーカス調整回路を提供
することにある。An object of the invention is to provide a focus adjustment circuit for a color cathode ray tube that can automate focus adjustment with a simple circuit.
上記目的は、カラーブラウン管の発光パターンを撮像す
る撮像手段と、この撮像出力を微分する微分回路と、こ
の微分出力を2値化する2値化回路と、この2値化信号
をフーリエ変換するフーリエ変換手段と、フーリエ変換
出力を計数するカウンタと、この計数信号が入力されて
計数が完了するたびに次のフォーカス電位指令を出力す
る制御回路と、このフォーカス電位指令によりカラーブ
ラウン管にフォーカス電位を加えるフォーカス電位発生
電源とを備え、計数出力が最大となる点を最良フォーカ
ス点として調整することにより達成される。The above purpose is to provide an imaging means for imaging the light emission pattern of a color cathode ray tube, a differentiation circuit for differentiating this imaging output, a binarization circuit for binarizing this differential output, and a Fourier transform for Fourier transforming this binarized signal. A conversion means, a counter that counts Fourier transform outputs, a control circuit that outputs the next focus potential command each time the count signal is input and counting is completed, and a focus potential is applied to the color cathode ray tube using the focus potential command. This is achieved by adjusting the point where the counting output is maximum as the best focus point.
カラーブラウン管を作動させた状態で発光パターンを撮
像する。この撮像出力は、微分され、2値化され、その
後2次元のフーリエ変換されてカウンタに計数される。The light emission pattern is imaged with the color cathode ray tube in operation. This imaging output is differentiated, binarized, and then subjected to two-dimensional Fourier transform and counted by a counter.
そこで、カウンタの計数、即ち7−クエ変換出力が最大
になるように制御回路よりフォーカス電位指令をフォー
カス電位発生電源に出力し、フォーカス電位発生電源よ
りカラーブラウン管にフォーカス電位を順次変化させて
加える。このようにフォーカス電位を順次変化させた時
に得られる特性711)ら、カウンタの計数出力が最大
出力となった時のフォーカス電位を最良点としてカラー
ブラウン管のフォーカス電位として与えることにより調
整できる。Therefore, the control circuit outputs a focus potential command to the focus potential generation power source so that the count of the counter, that is, the 7-Que conversion output is maximized, and the focus potential generation source sequentially applies a varying focus potential to the color cathode ray tube. Based on the characteristics 711) obtained when the focus potential is sequentially changed in this way, adjustment can be made by setting the focus potential when the counting output of the counter reaches the maximum output as the best point and giving it as the focus potential of the color cathode ray tube.
ところで、カラーブラウン管の発光面の輝度は、フォー
カス状態が最良ならば電子ビームの拡がりが最小となる
ために最大輝度となる。また、一般にカラーブラウン管
の電子ビーム形状はガウス分布で拡がっており、更にシ
ャドウマスクの穴?こよってサンプリングした状態での
発光であるので、単純に光電変換出力の最大を求めても
十分な精度が得られない。この点、本発明はシャドウマ
スクの穴によるサンプリングを除外するため、撮像出力
をフーリエ変換した後に測定することで精度が高い。By the way, the brightness of the light emitting surface of a color cathode ray tube reaches its maximum brightness when the focus state is the best because the spread of the electron beam is minimized. In addition, the electron beam shape of color cathode ray tubes generally spreads out with a Gaussian distribution, and there is also a hole in the shadow mask? Therefore, since the light is emitted in a sampled state, sufficient accuracy cannot be obtained simply by determining the maximum photoelectric conversion output. In this regard, the present invention eliminates sampling due to the holes in the shadow mask, and therefore has high accuracy by performing measurement after Fourier transforming the imaging output.
以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
第1図及び第2図1こ示すように、カラーブラウン管l
の画面iaに対して微小な発光点2を出画させる。この
発光点2の発光パターンを撮像カメラ3で撮像する。こ
こで、撮像カメラ3の撮像範囲3aは発光点2に対して
十分な余裕を持たせである。As shown in Figures 1 and 2, a color cathode ray tube l
A minute light emitting point 2 is displayed on the screen ia. The light emitting pattern of this light emitting point 2 is imaged by an imaging camera 3. Here, the imaging range 3a of the imaging camera 3 is set to have a sufficient margin with respect to the light emitting point 2.
ところで、カラーブラウン管1の発光点2の実際の光出
力分布は、第3図に示すように拡がりを持っており、フ
ォーカス電位の変化に伴ってすそ野の拡がりが増減する
。ただし、X%y方向で不均一な場合が普通である。こ
の光出力分布はもともと、第4図に示すようにシャドウ
マスクの穴を通過した通過光P、〜への集合体であり、
任意の走査線界−1を見れば、p、、p、、 p、と順
次発光しており、フォーカス電位が最良点ならば、通過
光PI−への高域成分が最大となる。つまり、画像の微
分出力を2次元領域で積分を考え、下記の式(1)の出
力Fが最大となる点を最良フォーカス点とすれば良いこ
とになる。Incidentally, the actual light output distribution of the light emitting point 2 of the color cathode ray tube 1 has a spread as shown in FIG. 3, and the spread of the base increases or decreases as the focus potential changes. However, it is normal that it is non-uniform in the X%y direction. This light output distribution is originally an aggregation of the passing light P, which has passed through the hole in the shadow mask, into ~, as shown in Fig. 4.
If we look at an arbitrary scanning line field -1, light is emitted in sequence p, p, p, and if the focus potential is at the best point, the high frequency component to the passing light PI- will be maximum. In other words, it is sufficient to consider the integration of the differential output of the image in a two-dimensional area, and set the point where the output F of the following equation (1) is maximum as the best focus point.
・・・11)
但しf:カメラ出力
Uニステップ関数
またカラーブラウン管1の螢光体、走査している輝点が
ともに水平走査線の間隔dに比べて十分に小さいとすれ
ば、画像をy方向にデルタ関数δでサンプリングした結
果となり、下記のr21式で表わせる。...11) However, f: Camera output U two-step function Also, if the phosphor of the color cathode ray tube 1 and the scanning bright spot are both sufficiently small compared to the interval d between the horizontal scanning lines, then the image is This is the result of sampling with a delta function δ in the direction, and can be expressed by the following r21 formula.
g(x、y)=f(x、y)Σδ(y−nd)
−−−+21但しf(x、y) :元画像
g(X、y) :出力画像
n :0.1.2・・―
これは座標領域の乗算であるので、フーリエ変換G(u
、v)は、式(3)のようになる。g(x,y)=f(x,y)Σδ(y-nd)
−−−+21 However, f(x, y): Original image g(X, y): Output image n: 0.1.2... Since this is a multiplication of coordinate areas, Fourier transform G(u
, v) are as shown in equation (3).
G(u、v) =F(u、v)−x8(v) *
** (3)スペクトルS(v月ま間隔dのデルタ関数
のスペクトル、つまり周波数2に/dのパルスとなる。G(u,v) =F(u,v)−x8(v)*
** (3) Spectrum S (spectrum of a delta function with an interval of v months or d, that is, a pulse of /d at frequency 2).
G(U、v)のスペクトルは幅を持つので、撮像用カメ
ラ3の周波数帯域Bwに対して式(4)を満足する間隔
でサンプ17ングを行えば良いことになる。Since the spectrum of G (U, v) has a width, sampling 17 may be performed at intervals that satisfy equation (4) for the frequency band Bw of the imaging camera 3.
Bw(−・・・(4)
そこで、式(1)の処理を第1図に示す回路によって行
う。即ち、撮像用カメラ3の映像出力3bを微分回路4
で微分し、式(1)の肛を行う。この微δX
分出力4aは2値化回路5により1.0のデジタル信号
5aに変換される。このデジタル信号5aはフリップ7
0ツブ6の入力に加えられ、フリップフロップ出力6a
はアンドゲート7の一方の入力となる。アンドゲート7
の他方の入力には式(4)に合致したサンプル信号CL
を加え、サンプリング出カフaを得る。これにより、式
(11の〔〕円が得られる。このサンプリング出カフa
をカウンタ8で計数すると、式(1)の出力Fが得られ
る。この計数出力8a、即ち出力Fは制御回路9へ入力
される。制御回路9は1つの計数が完了するたびに次の
フォーカス電位指令9aをフォーカス電位発生電源10
に与え、フォーカス電位10aをカラーブラウン管1に
加える。Bw(−...(4)) Therefore, the process of equation (1) is performed by the circuit shown in FIG.
, and perform the calculation of equation (1). This differential δX output 4a is converted by the binarization circuit 5 into a 1.0 digital signal 5a. This digital signal 5a is applied to the flip 7
0 input to the input of the flip-flop 6, and the flip-flop output 6a
becomes one input of the AND gate 7. and gate 7
The other input of is a sample signal CL that matches equation (4).
is added to obtain the sampling output cuff a. As a result, the [] circle of equation (11) is obtained.This sampling output cuff a
When counted by the counter 8, the output F of equation (1) is obtained. This count output 8a, ie, output F, is input to the control circuit 9. The control circuit 9 sends the next focus potential command 9a to the focus potential generation power source 10 every time one count is completed.
and a focus potential 10a is applied to the color cathode ray tube 1.
この動作を繰返し、カウンタ8の計数出力8aが最大に
なる点を求め、最良フォーカス点を決め、これに相当す
るフォーカス電位指令9aを与え、カラーブラウン管1
に最良フォーカス電位を加えることでフォーカス調整が
完了する。By repeating this operation, the point at which the count output 8a of the counter 8 becomes maximum is determined, the best focus point is determined, and the focus potential command 9a corresponding to this point is given to the color cathode ray tube.
Focus adjustment is completed by adding the best focus potential to .
なお、上記実施例においては、カラーブラウン管lの画
像の撮像手段としてカメラを用いたが、これIζ限定さ
れるものではなく、例えばフォトダイオードなどの0次
元光電変換素子を用い、カラーブラウン管1の発光面を
光電変換素子を覆う面積以上に発光させても同様の結果
が得られる。この場合には、微小発光点を作るための信
号源、映像回路等を省略することができる。In the above embodiment, a camera is used as a means for capturing an image of the color cathode ray tube 1, but this is not limited to Iζ. For example, a zero-dimensional photoelectric conversion element such as a photodiode is used to capture the light emitted from the color cathode ray tube Similar results can be obtained even if the surface is made to emit light in an area larger than that covering the photoelectric conversion element. In this case, a signal source, a video circuit, etc. for creating a minute light emitting point can be omitted.
本発明によれば、簡単な回路でフォーカス調整を自動化
することができる。また調整精度は、例えば7KV程度
のフォーカス電位に対してばらつきをIOV以下にでき
、精度が著しく向上する。According to the present invention, focus adjustment can be automated with a simple circuit. Furthermore, the adjustment accuracy can be reduced to less than IOV with respect to a focus potential of about 7 KV, for example, and the accuracy is significantly improved.
第1図は本発明の一実施例になるフォーカス調整回路の
ブロック図、第2図はカラーブラウン管の画面の正面図
、第3図及び第4図は発光点の説明図である。
1・・・カラーブラウン管、 2・・・発光点、3・
・・撮像カメラ、 4・・・微分回路、5・・
・2値化回路、 6・・・クリップフロップ。
7・・・アンドゲート、8・・・カウンタ、9・・・制
御回路、10・・・フォーカス電位発生電源。
第1図
代理人 弁理士 小 川 勝 男 iAl・′−5゛′
(乳2./
I:カラーフ゛ラウ〉肴
0ニアオーηス電位発住電堀FIG. 1 is a block diagram of a focus adjustment circuit according to an embodiment of the present invention, FIG. 2 is a front view of a color cathode ray tube screen, and FIGS. 3 and 4 are illustrations of light emitting points. 1... Color cathode ray tube, 2... Luminous point, 3...
...Image camera, 4...Differential circuit, 5...
・Binarization circuit, 6...Clip flop. 7...AND gate, 8...Counter, 9...Control circuit, 10...Focus potential generation power supply. Figure 1 Agent: Patent Attorney Katsutoshi Ogawa iAl・'-5゛'
Claims (1)
段と、この撮像出力を微分する微分回路と、この微分出
力を2値化する2値化回路と、この2値化信号をフーリ
エ変換するフーリエ変換手段と、フーリエ変換出力を計
数するカウンタと、この計数信号が入力されて計数が完
了するたびに次のフォーカス電位指令を出力する制御回
路と、このフォーカス電位指令によりカラーブラウン管
にフォーカス電位を加えるフォーカス電位発生電源とを
備え、計数出力が最大となる点を最良フォーカス点とし
て調整することを特徴とするカラーブラウン管のフォー
カス調整回路。1. An imaging means for imaging the light emission pattern of a color cathode ray tube, a differentiation circuit for differentiating this imaging output, a binarization circuit for binarizing this differential output, and a Fourier transformation means for Fourier transforming this binarized signal. , a counter that counts the Fourier transform output, a control circuit that outputs the next focus potential command every time this count signal is input and counting is completed, and a focus potential that applies a focus potential to the color cathode ray tube based on this focus potential command. A focus adjustment circuit for a color cathode ray tube, characterized in that the circuit is equipped with a power source and adjusts the point at which the counting output is maximum as the best focus point.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229957A JPH02139827A (en) | 1988-09-16 | 1988-09-16 | Focus adjusting circuit of color crt |
KR1019890005967A KR920009850B1 (en) | 1988-05-06 | 1989-05-03 | Measuring device |
US07/347,216 US4988857A (en) | 1988-05-06 | 1989-05-04 | Misconvergence measuring apparatus |
CN89104290A CN1040888A (en) | 1988-05-06 | 1989-05-06 | Apparatus for detecting convergence deflection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229957A JPH02139827A (en) | 1988-09-16 | 1988-09-16 | Focus adjusting circuit of color crt |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02139827A true JPH02139827A (en) | 1990-05-29 |
Family
ID=16900356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63229957A Pending JPH02139827A (en) | 1988-05-06 | 1988-09-16 | Focus adjusting circuit of color crt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02139827A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0734627A1 (en) * | 1993-12-16 | 1996-10-02 | Thomson Consumer Electronics, Inc. | Method for mounting a deflection yoke and support structure therefor |
-
1988
- 1988-09-16 JP JP63229957A patent/JPH02139827A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0734627A1 (en) * | 1993-12-16 | 1996-10-02 | Thomson Consumer Electronics, Inc. | Method for mounting a deflection yoke and support structure therefor |
EP0734627A4 (en) * | 1993-12-16 | 1999-11-17 | Thomson Consumer Electronics | Method for mounting a deflection yoke and support structure therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10976536B2 (en) | Image-forming device, and dimension measurement device | |
US3835245A (en) | Information modification in image analysis systems employing line scanning | |
DE112016004422T5 (en) | SEM image capture device and SEM imaging process | |
US20050145791A1 (en) | Scanning electron microscope | |
DE1921642A1 (en) | Imager | |
JPH02139827A (en) | Focus adjusting circuit of color crt | |
JPH11296680A (en) | Image processor provided with contrast improving function and charged particle ray device | |
CA1181540A (en) | Scanning-image forming apparatus using photo response signal | |
KR950010703B1 (en) | Apparatus for and method of measuring beann spot luminescence distribution | |
KR920009850B1 (en) | Measuring device | |
JPS62103510A (en) | Measuring lengths of pattern | |
JP2595104B2 (en) | CRT focus measurement method | |
JPS63119147A (en) | Focus condition detecting device of changed corpuscular beams | |
JPS584993B2 (en) | Electron beam current density distribution measurement method | |
JPS61220261A (en) | Method and apparatus for exciting subject zone of sample surface | |
MY107583A (en) | Method and device for measuring the beam diameter of a cathode-ray tube(crt). | |
US6495976B2 (en) | Color purity measuring method and color purity measuring apparatus | |
JPS59933B2 (en) | Color: Brown | |
KR100402396B1 (en) | method for 3D magnetic field visulysing and system for performing the same | |
JPH0696711A (en) | Display method for image of scanning electron microscope | |
JP2852054B2 (en) | Spin-polarized scanning electron microscope | |
JP2001325885A (en) | Pattern position detecting apparatus and cathode-ray tube adjusting apparatus, and pattern position detecting method, cathode-ray tube adjusting method and manufacturing method of cathode-ray tube | |
JPH10255662A (en) | Landing measuring device for color picture tube | |
JP3395517B2 (en) | Scanning microscope, dimension measurement method and image processing method | |
JPS61159140A (en) | Display device for radiation image |