JPH0213874B2 - - Google Patents
Info
- Publication number
- JPH0213874B2 JPH0213874B2 JP58036394A JP3639483A JPH0213874B2 JP H0213874 B2 JPH0213874 B2 JP H0213874B2 JP 58036394 A JP58036394 A JP 58036394A JP 3639483 A JP3639483 A JP 3639483A JP H0213874 B2 JPH0213874 B2 JP H0213874B2
- Authority
- JP
- Japan
- Prior art keywords
- anode
- phosphor layer
- anode conductor
- substrate
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 claims description 49
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 44
- 238000001816 cooling Methods 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 description 42
- 230000007423 decrease Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 101700004678 SLIT3 Proteins 0.000 description 4
- 102100027339 Slit homolog 3 protein Human genes 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/024—Details of scanning heads ; Means for illuminating the original
- H04N1/028—Details of scanning heads ; Means for illuminating the original for picture information pick-up
- H04N1/02815—Means for illuminating the original, not specific to a particular type of pick-up head
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Light Sources And Details Of Projection-Printing Devices (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Facsimile Scanning Arrangements (AREA)
Description
【発明の詳細な説明】
この発明は、フアクシミリ送信機において原稿
を照射し光電変換を行うための光源用真空蛍光管
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum fluorescent tube for a light source in a facsimile transmitter for illuminating a document and performing photoelectric conversion.
一般に真空蛍光管とは、基板および前囲器から
構成された真空容器内に配設した陰極から放出さ
れる電子が陽極の表面に被着した蛍光体層に射突
することによつて蛍光体層が発光する現象を利用
したものである。すなわち従来の蛍光表示管の原
理を応用した光源である。 In general, a vacuum fluorescent tube is a vacuum tube made up of a substrate and a front envelope, in which electrons emitted from a cathode impinge on a phosphor layer attached to the surface of an anode. This takes advantage of the phenomenon in which layers emit light. In other words, it is a light source that applies the principle of a conventional fluorescent display tube.
この真空蛍光管は、比較的低い消費電力できわ
めて明るく発光し、非照明物の表面の照度を高く
とれることと、光源の形状が平面状でスペースフ
アクターに優れている点や、さらに従来の白熱灯
や蛍光灯等の光現よりも寿命が非常に長い等の優
れた特長を有している。したがつてこれらの特長
を利用して非発光表示装置、例えば液晶表示装置
のバツクライト用の光源とか、フアクシミリ送信
機、複写機等の光源として検討されている。 This vacuum fluorescent tube emits light extremely brightly with relatively low power consumption, can provide high illuminance on the surface of non-illuminated objects, has a flat light source shape and has an excellent space factor, and has the advantages of It has superior features such as a much longer lifespan than light sources such as incandescent and fluorescent lamps. Therefore, utilizing these features, it is being considered as a light source for back lights of non-luminous display devices, such as liquid crystal display devices, facsimile transmitters, copying machines, and the like.
従来のフアクシミリ送信機の光源としては蛍光
灯が多く使用されていた。しかしながらこの蛍光
灯は一般の家底用の蛍光灯とは異り、高い照度が
とれるように設計された特殊な蛍光灯であるが、
必要とする高い照度を維持できる期間が短いとい
う寿命の点で問題点がある。 Fluorescent lamps have often been used as light sources for conventional facsimile transmitters. However, unlike ordinary fluorescent lights for the bottom of a house, this fluorescent light is a special fluorescent light designed to provide high illuminance.
There is a problem in terms of lifespan, in that the period during which the required high illuminance can be maintained is short.
そこで前述のように蛍光表示管の原理を応用し
た光源である真空蛍光管の利用が検討されてい
る。 Therefore, as mentioned above, the use of vacuum fluorescent tubes, which are light sources that apply the principles of fluorescent display tubes, is being considered.
従来の真空蛍光管は、第1図に示す平形管タイ
プのものと、第2図に示すような丸形管のタイプ
がある。平形管タイプの真空蛍光管Aは、ガラス
基板1上に銀ペーストをスクリーン印刷法によつ
て被着させるか、またはAl、Au、Ag等の金属を
蒸着法やスパツタリング法等で被着させて陽極導
体2を形成する。従つて陽極導体2は、前記基板
1と密着している。この陽極導体2のほぼ中央に
は、陽極導体2の被着されないスリツト部3を形
成する。前記陽極導体2の上面に蛍光体層4を印
刷法や電着法や沈殿法等で被着させ、陽極5を形
成している。従つて基板1と陽極導体2と蛍光体
層4は積層されて一体となつている。さらに前記
蛍光体層4に対面してフイラメント状の陰極6を
張架配設する。そして前記電極等を覆うように平
底船形状の前囲器7を基板1上に封着する。前記
基板1と前囲器7とにより真空容器を形成する。
この真空容器内を図示してない排気管より排気し
て容器内を真空状態にする。この真空蛍光管Aの
スリツト3の下側に蛍光体層4から発光された光
が原稿面で反射し、その反射光をスリツト3を透
過して集光させるためにレンズ系8を配設する。
このレンズ8で集光された光は、センサー9によ
つて光電変換されて電気信号となる。 Conventional vacuum fluorescent tubes include a flat tube type shown in FIG. 1 and a round tube type shown in FIG. 2. The flat tube type vacuum fluorescent tube A is made by depositing silver paste on the glass substrate 1 by screen printing method, or by depositing metal such as Al, Au, Ag, etc. by vapor deposition method, sputtering method, etc. An anode conductor 2 is formed. Therefore, the anode conductor 2 is in close contact with the substrate 1. A slit portion 3 to which the anode conductor 2 is not attached is formed approximately at the center of the anode conductor 2. A phosphor layer 4 is deposited on the upper surface of the anode conductor 2 by a printing method, an electrodeposition method, a precipitation method, or the like to form an anode 5. Therefore, the substrate 1, anode conductor 2, and phosphor layer 4 are laminated and integrated. Furthermore, a filament-shaped cathode 6 is provided in a stretched manner facing the phosphor layer 4 . Then, a flat-bottom boat-shaped front enclosure 7 is sealed onto the substrate 1 so as to cover the electrodes and the like. The substrate 1 and the front enclosure 7 form a vacuum container.
The inside of this vacuum container is evacuated from an exhaust pipe (not shown) to bring the inside of the container into a vacuum state. A lens system 8 is disposed below the slit 3 of the vacuum fluorescent tube A so that the light emitted from the phosphor layer 4 is reflected on the document surface, and the reflected light is transmitted through the slit 3 and focused. .
The light collected by this lens 8 is photoelectrically converted by a sensor 9 into an electrical signal.
また第2図に示す丸形管のタイプの真空蛍光管
Bは、パイプ状のガラス管からなる外囲器1aの
内壁に陽極導体2と蛍光体層4からなる陽極5を
積層配設するとともに、底部にスリツト3を配設
する。また外囲気1a内にメツシユ状のグリツド
6a及びレンズ系8及びフイラメント状陰極6を
配設されている。したがつて真空蛍光管Bの構造
は複雑で製造コストも高価で、真空蛍光管Bの寿
命がつきたときレンズ系も含めて交換しなければ
ならず、交換の費用も大となる。 Further, the vacuum fluorescent tube B of the round tube type shown in FIG. , a slit 3 is provided at the bottom. Further, a mesh-like grid 6a, a lens system 8, and a filament-like cathode 6 are arranged in the surrounding air 1a. Therefore, the vacuum fluorescent tube B has a complicated structure and is expensive to manufacture, and when the vacuum fluorescent tube B reaches the end of its life, it must be replaced along with the lens system, which increases the cost of replacement.
従来の真空蛍光管は、いずれのタイプにしても
ガラスの外囲器1aに直接陽極導体2を密着固定
し、その上面に蛍光体層4が被着された構造であ
るので、外囲器1aと一体構造になつている。し
たがつて陽極に電流が流れ蛍光体層4が発光する
と発熱し、その熱が熱伝導性のよくないガラスの
外囲器に蓄熱されてしまい、そして蛍光体層4
は、外囲器の温度とともに次第に温度が上つてし
まい、蛍光体の温度消光特性のために輝度が下が
つてしまうという問題点があつた。 Regardless of the type of conventional vacuum fluorescent tube, the anode conductor 2 is closely fixed directly to the glass envelope 1a, and the phosphor layer 4 is adhered to the top surface of the anode conductor 2. It has an integrated structure. Therefore, when current flows to the anode and the phosphor layer 4 emits light, it generates heat, which is stored in the glass envelope with poor thermal conductivity, and the phosphor layer 4
However, there was a problem in that the temperature gradually rose with the temperature of the envelope, and the brightness decreased due to the temperature quenching characteristics of the phosphor.
第3図は、第1図に示すフアクシミリ用光源に
電圧を印加させて発光させたときの基板温度及び
蛍光体層4の輝度が経過時間とともにどのように
変化するかを調べるために、陽極に100Vの電圧
を印加し、陰極に1.8Vを印加して発光させたと
きの基板温度と蛍光体層の輝度の変化データをグ
ラフにしたものである。この図は左の縦軸に基板
温度を示し、右の縦軸に蛍光体層4の輝度を示
し、横軸に経過時間を示したグラフである。 Figure 3 shows how the substrate temperature and the brightness of the phosphor layer 4 change over time when a voltage is applied to the facsimile light source shown in Figure 1 to emit light. This is a graph showing changes in substrate temperature and brightness of the phosphor layer when a voltage of 100V is applied and 1.8V is applied to the cathode to generate light. This figure is a graph in which the left vertical axis shows the substrate temperature, the right vertical axis shows the brightness of the phosphor layer 4, and the horizontal axis shows the elapsed time.
陽極電圧を印加した直後の輝度は、約8000(ft
−L)ある。そのときの基板温度は、32℃位であ
るが、その後蛍光体層の発熱が基板に蓄熱される
ために急上昇し約10分後には、約70℃位まで上昇
する。しかし、その後は、70℃位で横ばいであ
る。これに対し輝度は、初期8000(ft−L)あつ
たのが基板温度が上るのとは逆に輝度は急に下降
してしまう。約10分位経過すると約6400(ft−L)
位に下降し、さらに除々に下り30分経過したら約
6300(ft−L)位まで下降してしまつた。陽極電
圧を印加してから32分経過した時点で基板1に風
を送つて、空冷をすると基板温度70℃から50℃位
まで下降し、50℃位で安定し横ばい状態になつた
のでさらに空冷の風を強くすることにより、基板
温度は、さらに下降し45℃位までになつた。40分
経過した時点で空冷を止めると基板温度が上昇は
じめた。一方蛍光体層の輝度は、基波温度が70℃
から下降はじめると、その逆に上昇し、空冷を強
くしてさらに基板温度が下降し45℃になると、輝
度はさらに上昇し最高7100(ft−L)位まで上昇
した。そして空冷をやめると輝度は、また下降し
はじめた。 The brightness immediately after applying the anode voltage is approximately 8000 (ft
-L) Yes. The substrate temperature at that time is about 32°C, but after that, the heat generated by the phosphor layer is stored in the substrate, so it rapidly rises to about 70°C after about 10 minutes. However, after that, the temperature leveled off at around 70℃. On the other hand, the brightness was initially 8000 (ft-L), but as the substrate temperature rose, the brightness suddenly decreased. Approximately 6400 (ft-L) after about 10 minutes
After 30 minutes, descend to
I descended to around 6300 (ft-L). When 32 minutes had passed after applying the anode voltage, air was sent to the substrate 1 to air-cool it, and the substrate temperature dropped from 70℃ to about 50℃, and then stabilized at about 50℃, so it was further air-cooled. By increasing the wind strength, the substrate temperature further decreased to about 45°C. When air cooling was stopped after 40 minutes, the substrate temperature began to rise. On the other hand, the brightness of the phosphor layer is determined by the fundamental temperature of 70℃.
When the temperature of the substrate started to decrease from 100°C to 45°C, the brightness increased to a maximum of 7100 (ft-L). When air cooling was stopped, the brightness began to decrease again.
この実験データのグラフから真空蛍光管の基板
温度と輝度の間には、一定の相関々係があること
がわかる。この関係は、蛍光体の温度消光特性と
一致している。すなわち蛍光体の温度が上昇する
と発光輝度が下がるという特性である。以上の二
点から考えると真空蛍光管の蛍光体層4が発光し
はじめると同時に発熱現象も起こし、その熱が陽
極導体2を通つて熱伝導性の悪いガラス基板1に
蓄熱し、蛍光体層4の温度も上昇させることにな
る。したがつて蛍光体の温度消光特性により輝度
も下降する。また、基板1を冷却すると基板温度
が下降し、蛍光体層4の温度は下がり、温度消光
を防ぎ輝度も上昇し、発光効率もよくなることが
知見した。 From the graph of this experimental data, it can be seen that there is a certain correlation between the substrate temperature and brightness of vacuum fluorescent tubes. This relationship is consistent with the temperature quenching property of the phosphor. In other words, the luminance of the phosphor decreases as the temperature of the phosphor increases. Considering the above two points, when the phosphor layer 4 of the vacuum fluorescent tube starts emitting light, it also generates heat, and the heat passes through the anode conductor 2 and accumulates in the glass substrate 1, which has poor thermal conductivity, and the phosphor layer 4 The temperature of No. 4 will also rise. Therefore, the brightness also decreases due to the temperature quenching characteristics of the phosphor. It has also been found that when the substrate 1 is cooled, the substrate temperature decreases, the temperature of the phosphor layer 4 decreases, temperature quenching is prevented, brightness increases, and luminous efficiency improves.
従来の真空蛍光管は以上のような現象が起き
て、発光効率が著しく下降し、正常値の1/3〜1/4
程度になるという問題点があつた。発光効率が下
がると輝度も下がり、したがつて原稿面での照度
も低くなり、かつ消費電力は大きくなるという問
題点もあつた。 With conventional vacuum fluorescent tubes, the above phenomenon occurs, and the luminous efficiency drops significantly, to 1/3 to 1/4 of the normal value.
There was a problem with the extent. When the luminous efficiency decreases, the brightness also decreases, and therefore the illuminance on the document surface also decreases, and power consumption also increases.
また基板温度が上昇すると、基板1は陽極導体
2と密着しているので熱膨張で伸びるが、平底船
形状の前囲器7は、陽極導体とは離れているため
基板1ほど温度が上らない。しかして、真空蛍光
管Aは、その長さ方向に反りの現象が発生する。
するとフイラメント状陰極6と陽極5の蛍光体層
4間の間隔が部分的に変つて長さ方向の中間部分
の発光が弱くなる。さらに原稿面と蛍光体層4間
の間隔も場所によつて変つてくるために原稿面で
の照度むらが生じるという問題点もあつた。 Furthermore, when the substrate temperature rises, the substrate 1 expands due to thermal expansion because it is in close contact with the anode conductor 2, but the flat-bottomed front envelope 7 is separated from the anode conductor, so the temperature does not rise as much as the substrate 1. do not have. Therefore, the vacuum fluorescent tube A is warped in its length direction.
Then, the distance between the filament-shaped cathode 6 and the phosphor layer 4 of the anode 5 changes partially, and the light emission in the middle portion in the length direction becomes weaker. Furthermore, since the distance between the document surface and the phosphor layer 4 varies depending on the location, there is a problem in that illuminance unevenness occurs on the document surface.
さらにまた、フアクシミリ送信機の光源の場合
は、光源上のある原稿の一線上に集光させて、原
稿面の照度を上げかつ均一な照度を得ることが必
要である。しかし、従来の真空蛍光管は、第1図
に示すように陽極導体2が平坦な基板1上に配設
されているために蛍光体層4も前囲器7の前面板
とほぼ平行に被着され、前囲器7上の原稿10に
平均に照射されている。しかしながら必要とする
原稿面10aは、スリツト3に対面する前囲器7
上の一直線上だけなのである。しだがつてこの原
稿面10aにのみ集光されるのであれば同じ発光
輝度であつても、原稿面10aでの照度は高くな
るはずである。 Furthermore, in the case of a light source for a facsimile transmitter, it is necessary to focus the light onto a line on a certain document on the light source to increase the illuminance on the surface of the document and to obtain uniform illuminance. However, in the conventional vacuum fluorescent tube, since the anode conductor 2 is disposed on the flat substrate 1 as shown in FIG. The document 10 on the front envelope 7 is irradiated evenly. However, the required document surface 10a is the front envelope 7 facing the slit 3.
It is only on the straight line above. However, if the light is focused only on the original surface 10a, the illuminance on the original surface 10a will be higher even if the luminance is the same.
本発明は、以上のような問題点に鑑みてなされ
たものであり、陽極導体の熱放散をよくするため
に金属板で形成し、蛍光体層の温度を下げて発光
効率を上げるとともに、陽極導体を山形または断
面半円形の凹面溝状に成形し、その表面に配設し
た蛍光体層の発光が原稿の所定の一線上に集光さ
せ、蛍光体層の輝度を上げ、かつ照度もムラがな
く均一で高くすることが可能な長寿命のフアクシ
ミリ光源用真空蛍光管を提供することを目的とす
るものである。 The present invention has been made in view of the above-mentioned problems, and in order to improve heat dissipation of the anode conductor, it is formed of a metal plate, lowers the temperature of the phosphor layer, increases luminous efficiency, and improves the heat dissipation of the anode conductor. The conductor is formed into a concave groove shape with a chevron-shaped or semicircular cross section, and the emitted light from the phosphor layer placed on the surface is focused on a predetermined line on the document, increasing the brightness of the phosphor layer and uneven illuminance. It is an object of the present invention to provide a vacuum fluorescent tube for a facsimile light source that has a long life and can be made uniform and high in quality without any damage.
本発明の目的を達成するために本発明の構成
は、真空容器内に配設された陽極導体とその表面
に被着された蛍光体層からなる陽極と、この陽極
に対面して配設された陰極とから構成されるフア
クシミリ光源用真空蛍光管において、陽極導体
は、スリツトを穿設した金属板を真空容器内に配
設し、この金属板の端部を真空容器外へ延出し、
延出部分を外気に接する冷却部としたことを特徴
とする。 In order to achieve the object of the present invention, the present invention has an anode consisting of an anode conductor disposed in a vacuum container and a phosphor layer deposited on the surface of the anode conductor, and an anode disposed facing the anode. In a vacuum fluorescent tube for a facsimile light source consisting of a cathode and a cathode, the anode conductor is a metal plate with a slit provided inside the vacuum vessel, and the end of this metal plate is extended outside the vacuum vessel.
It is characterized in that the extended portion is a cooling portion that is in contact with the outside air.
以下、図面に示す実施例によりこの発明の光源
用真空蛍光管を説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the vacuum fluorescent tube for light sources of this invention will be explained with reference to the embodiments shown in the drawings.
第4図は、本発明のフアクシミリ光源用真空蛍
光管の第1実施例を示した縦断面図である。 FIG. 4 is a longitudinal sectional view showing a first embodiment of a vacuum fluorescent tube for a facsimile light source according to the present invention.
本発明のフアクシミリ光源用真空蛍光管は、横
長の長方形であり、横の長さは、縦の長さの10倍
位はあるが、その構造は、中央付近は、すべて同
じ構造であるので一部省略した。 The vacuum fluorescent tube for a facsimile light source of the present invention has a horizontally long rectangular shape, and the horizontal length is about 10 times the vertical length, but the structure is the same around the center, so the structure is the same. Parts have been omitted.
11は、ガラスの透光性を有する絶縁性基板で
あり、この基板11の外縁に側面板12aと透光
性を有する前面板12bからなる前囲器12が密
封されて真空容器を構成する。この真空容器内に
金属板で陽極導体13を配設する。この陽極導体
13を形成する金属は、例えば、Niが42%、Cr
が6%、残部がFeを主成分とする426合金があ
る。この426合金の膨張係数は、真空容器の材料
であるガラスの膨張係数とほぼ等しい値を有す
る。426合金の他には13Cr合金や18Cr合金Fe−
Ni合金等でも同様の膨張係数を有する。また陽
極導体13には中央付近に、長手方向にスリツト
13aが穿設されかつその縦断面の形状がスリツ
ト13aを挟んで対向する一対の山形状になつて
いる。このスリツト13aの横幅は、少なくとも
原稿14の幅だけ必要とする。またその陽極導体
13の端部は、真空容器の外部へ連続して延びて
いる。この第1実施例の場合は、図示のように長
方形の真空容器の長辺側に延出している。この延
出部分は、外気に接する冷却部13bとする。さ
らにこの陽極導体13は前囲器12の側面板12
aと基板11の間から延出している。側面板12
aとかさなり合う付近の陽極導体13には小孔1
3cが多数設けられ、この小孔13c内に基板1
1と前囲器12を封着する封着材15が充填され
て強度が大でリークなしに気密に封着することが
できる。 Reference numeral 11 denotes a glass translucent insulating substrate, and a front enclosure 12 consisting of a side plate 12a and a translucent front plate 12b is sealed on the outer edge of this substrate 11 to form a vacuum container. An anode conductor 13 made of a metal plate is arranged in this vacuum container. The metal forming this anode conductor 13 is, for example, 42% Ni and Cr.
There is a 426 alloy whose main component is 6% Fe and the balance is Fe. The expansion coefficient of this 426 alloy is approximately equal to the expansion coefficient of glass, which is the material of the vacuum container. In addition to 426 alloy, 13Cr alloy and 18Cr alloy Fe−
Ni alloys have similar expansion coefficients. Further, a slit 13a is formed in the anode conductor 13 in the longitudinal direction near the center thereof, and its vertical cross section is shaped like a pair of mountains facing each other with the slit 13a in between. The width of this slit 13a needs to be at least the width of the document 14. Further, the end of the anode conductor 13 extends continuously to the outside of the vacuum vessel. In the case of this first embodiment, as shown in the figure, the groove extends to the long side of the rectangular vacuum container. This extended portion serves as a cooling portion 13b that is in contact with the outside air. Furthermore, this anode conductor 13 is connected to the side plate 12 of the front enclosure 12.
It extends from between a and the substrate 11. Side plate 12
There is a small hole 1 in the anode conductor 13 near the intersection with a.
A large number of holes 3c are provided, and the substrate 1 is inserted into the small holes 13c.
1 and the front envelope 12 are filled with a sealing material 15, which has high strength and can be airtightly sealed without leakage.
前記陽極導体13の上面で、かつスリツト13
aを挟んで対向する傾斜面13cには蛍光体層1
6がスクリーン印刷法や電着法等で被着され、陽
極17が形成される。さらにこの傾斜面13cに
対面してフイラメント状の陰極18が陰極支持体
19に張架配設されている。このように電極が配
設された真空容器内のガスは、図示しない排気管
から排気して気密に封止し、内部を高真空状態に
保持する。また陰極支持体19および陽極導体1
3に接続して外部端子20を配設する。また真空
蛍光管外でスリツト13aの下側に集光レンズ2
1を配設しさらにこの集光レンズ21の下側にセ
ンサー22を配設する。 On the upper surface of the anode conductor 13 and through the slit 13
A phosphor layer 1 is disposed on the inclined surface 13c facing each other with a
6 is deposited by a screen printing method, electrodeposition method, etc. to form an anode 17. Further, a filament-shaped cathode 18 is stretched on a cathode support 19 so as to face this inclined surface 13c. The gas in the vacuum container in which the electrodes are disposed in this way is exhausted from an exhaust pipe (not shown) and hermetically sealed to maintain the interior in a high vacuum state. Also, the cathode support 19 and the anode conductor 1
3, and an external terminal 20 is provided. Also, a condenser lens 2 is placed below the slit 13a outside the vacuum fluorescent tube.
1 is disposed, and further a sensor 22 is disposed below this condensing lens 21.
この実施例は以上説明したような構造であるの
で、外部端子から、陽極導体13および陰極18
に電圧を印加すると、陰極18から電子が放出さ
れ、この電子が陽極導体13上の蛍光体層16に
射突し蛍光体層16が発光する。発光した光は第
4図の点線で示すように原稿14の送信する部分
である原稿面14aに集光するように照射され、
原稿面14aで反射してスリツト13aを通過し
て、集光レンズ21で集光され、センサー22で
光電変換される。しかして蛍光体層16が発光す
る際発熱するが、その熱は熱導電性のよい金属板
で構成された陽極導体13に伝導する。陽極導体
13の連続部分が真空容器外に冷却部13bを構
成しているので、陽極導体13に伝導された熱
は、この冷却部13bで風等の冷却処理により冷
却され放熱する。したがつて陽極導体13を介し
て蛍光体層16の発熱を放熱し、蛍光体層16の
温度を下げることが可能となる。しかして蛍光体
層16の温度消光を防ぎ、発光効率をよくし、輝
度を上げることができることになる。 Since this embodiment has the structure as explained above, the anode conductor 13 and the cathode 18 are connected from the external terminal.
When a voltage is applied to the cathode 18, electrons are emitted from the cathode 18, and the electrons impinge on the phosphor layer 16 on the anode conductor 13, causing the phosphor layer 16 to emit light. The emitted light is focused on the document surface 14a, which is the part of the document 14 to be transmitted, as shown by the dotted line in FIG.
The light is reflected by the document surface 14a, passes through the slit 13a, is focused by the condenser lens 21, and is photoelectrically converted by the sensor 22. When the phosphor layer 16 emits light, it generates heat, which is conducted to the anode conductor 13 made of a metal plate with good thermal conductivity. Since the continuous portion of the anode conductor 13 constitutes a cooling section 13b outside the vacuum vessel, the heat conducted to the anode conductor 13 is cooled and radiated by a cooling process such as wind in this cooling section 13b. Therefore, the heat generated by the phosphor layer 16 can be radiated through the anode conductor 13, and the temperature of the phosphor layer 16 can be lowered. Therefore, temperature quenching of the phosphor layer 16 can be prevented, light emission efficiency can be improved, and brightness can be increased.
さらにスリツト13aを挟んで対向する傾斜面
13cを有する構成であるから、蛍光体層16か
らの発光を原稿面14aに集光するように作用
し、原稿面14aでの照度を高くすることができ
る。また陽極導体13と基板11との接触面積が
少ないので真空容器に伝導する割合が小さくな
る。したがつて基板11の温度が上ることなく、
前面板12bと基板11との温度差が少ないの
で、両者の熱膨張の差から生じる真空容器のそり
を防止することができる。 Furthermore, since the structure has the inclined surfaces 13c facing each other with the slit 13a in between, the light emitted from the phosphor layer 16 is focused on the document surface 14a, and the illuminance on the document surface 14a can be increased. . Furthermore, since the contact area between the anode conductor 13 and the substrate 11 is small, the rate of conduction to the vacuum vessel is reduced. Therefore, the temperature of the substrate 11 does not rise;
Since the temperature difference between the front plate 12b and the substrate 11 is small, it is possible to prevent the vacuum container from warping due to the difference in thermal expansion between the two.
第5図は、本発明の第2実施例の縦断面図であ
る。 FIG. 5 is a longitudinal sectional view of a second embodiment of the invention.
この実施例においては、陽極導体13の金属板
が、図示のようにその断面形状が半円形の凹面を
した溝状に形成され、この凹面溝の底部にスリツ
ト13aが長手方向に配設されている。すなわち
半円筒形の陽極導体13の底部にスリツト13a
が穿設されその半円筒形の陽極導体13の内壁に
蛍光体層16が被着配設されている。陽極導体1
3の端部は、真空容器の長手方向の側面板12a
と前面板12bの間から真空容器外へ延出し、冷
却部13bを構成する。したがつて陽極導体13
は、底部付近が基板11と接触し、半円筒部以外
の平面部が前面板12bと接触している。このよ
うに両面に接触しているので、蛍光体層が発熱し
た場合においても、その熱は陽極導体13を伝導
し、冷却部13bで冷却放散されるが一部は、前
面板12bおよび基板11の双方にも伝導する。
したがつて第1実施例のように基板11のみが熱
膨張で膨張するのでなく、前面板12bと基板1
1の双方が熱膨張で膨張するために反りの現象が
防ぐことができる。 In this embodiment, the metal plate of the anode conductor 13 is formed into a groove having a semicircular concave cross section as shown in the figure, and a slit 13a is provided in the bottom of the concave groove in the longitudinal direction. There is. That is, a slit 13a is formed at the bottom of the semi-cylindrical anode conductor 13.
A phosphor layer 16 is adhered to the inner wall of the semi-cylindrical anode conductor 13. Anode conductor 1
3 is the longitudinal side plate 12a of the vacuum container.
The cooling portion 13b extends outside the vacuum vessel from between the front plate 12b and the front plate 12b. Therefore, the anode conductor 13
The vicinity of the bottom portion is in contact with the substrate 11, and the flat portion other than the semi-cylindrical portion is in contact with the front plate 12b. Since the phosphor layer is in contact with both surfaces, even if the phosphor layer generates heat, the heat is conducted through the anode conductor 13 and cooled and dissipated in the cooling section 13b, but some of it is transferred to the front plate 12b and the substrate 11. It also conducts to both sides.
Therefore, instead of only the substrate 11 expanding due to thermal expansion as in the first embodiment, the front plate 12b and the substrate 1
1 expands due to thermal expansion, the phenomenon of warping can be prevented.
また断面半円形の陽極導体13の円周状の曲率
の中心付近に原稿14の複写されるべき原稿面1
4aがくるように陽極棒体13を配合してあるの
で、陽極導体13上に被着形成された蛍光体層1
6の発光はすべて原稿面14aに集光することに
なる。したがつて同一輝度であつても原稿面14
aでの照度を高くすることが可能である。原稿面
14aで反射された光は、スリツト13aを通過
して集光レンズで集光されセンサー22で光電変
換されるのである。また陽極導体13の端部は、
他の実施例と同じように基板11と側面板12a
の間から延出させることも可能である。 Further, the original surface 1 of the original 14 to be copied is located near the center of the circumferential curvature of the anode conductor 13 having a semicircular cross section.
Since the anode rod 13 is blended so that 4a is placed, the phosphor layer 1 formed on the anode conductor 13 is
All of the light emitted from No. 6 is focused on the document surface 14a. Therefore, even if the brightness is the same, the original surface 14
It is possible to increase the illuminance at point a. The light reflected from the document surface 14a passes through the slit 13a, is focused by a condensing lens, and is photoelectrically converted by the sensor 22. Moreover, the end of the anode conductor 13 is
As in other embodiments, the substrate 11 and the side plate 12a
It is also possible to extend from between.
本発明は以上説明した実施例、および図面に限
定されるものでなく、本発明の要旨を変更しない
範囲で種々変形して実施されるものも含まれるも
のである。 The present invention is not limited to the embodiments and drawings described above, and may be implemented with various modifications without departing from the gist of the present invention.
例えば、陽極導体の形状は、山形状や半円形状
以外にもある一定場所に集光できる傾斜面を有す
る形状であればどのような形状でもよい。 For example, the shape of the anode conductor may be any shape other than a mountain shape or a semicircular shape as long as it has an inclined surface that can focus light on a certain location.
冷却部13bの形状も単なる板状でなく放熱面
積を増やすような形状や風の通過しやすい形状等
に変形して実施してもよい。 The shape of the cooling part 13b may also be modified to a shape that increases the heat dissipation area, a shape that allows air to pass through easily, etc., instead of a simple plate shape.
本発明は、以上説明したように、陽極導体を熱
伝導性のよい金属板で構成し、その端部を真空容
器外に延出しそこに冷却部を配設したので、陽極
における蛍光体層の発熱を下げることができ、し
たがつて温度消光を防ぐことが可能となり発光効
率を上げることができるとともに高輝度の発光を
保持することができる効果がある。 As explained above, in the present invention, the anode conductor is composed of a metal plate with good thermal conductivity, and the end portion thereof is extended outside the vacuum vessel and a cooling section is disposed there. This has the effect of reducing heat generation, thereby preventing temperature quenching, increasing luminous efficiency, and maintaining high-intensity luminescence.
さらに陽極導体を山形状とか半円筒形状等の発
光を集光できる傾斜面を有する構成したので、陽
極の蛍光体層の発光を原稿面で集光でき、原稿面
での照度を高くすることができる効果もある。 Furthermore, since the anode conductor is configured to have an inclined surface such as a mountain shape or a semi-cylindrical shape that can condense the emitted light, the emitted light from the phosphor layer of the anode can be focused on the document surface, making it possible to increase the illuminance on the document surface. There are some effects that can be achieved.
また蛍光体層での発熱は、陽極導体を伝わつて
真空容器外の冷却部で冷却されるために基板には
蓄熱されることがないので、基板が熱膨張による
反りを防止できるので、原稿面照度のムラを防止
できる効果を有する。 In addition, the heat generated in the phosphor layer is transmitted through the anode conductor and cooled by a cooling section outside the vacuum container, so no heat is stored in the substrate. This prevents the substrate from warping due to thermal expansion, and the document surface This has the effect of preventing uneven illuminance.
さらにまた本発明の真空蛍光管は、集光レンズ
を真空蛍光管の外部に設けた光源であるので真空
蛍光管の構造を簡単にし製作コストを安価にする
ばかりでなく、真空蛍光管が寿命がつきたときで
も真空蛍光管のみを交換することが容易であり、
この交換により、また光源として使用することが
できるという効果もそなえている。 Furthermore, since the vacuum fluorescent tube of the present invention is a light source with a condensing lens provided outside the vacuum fluorescent tube, it not only simplifies the structure of the vacuum fluorescent tube and reduces manufacturing costs, but also shortens the lifespan of the vacuum fluorescent tube. It is easy to replace just the vacuum fluorescent tube even when it burns.
This exchange also has the effect of allowing it to be used as a light source.
第1図、第2図は、従来のフアクシミリ光源用
真空蛍光管の縦断面図、第3図は、基板温度と輝
度と経過時間との関係を示すグラフ、第4図は、
本発明によるフアクシミリ光源用真空蛍光管の一
実施例を示す縦断面図、第5図は、本発明の他の
実施例を示す縦断面図である。
11……基板、12……前囲器、13……陽極
導体、13a……スリツト、13b……冷却部、
13c……傾斜面、16……蛍光体層、17……
陽極、18……陰極。
1 and 2 are vertical cross-sectional views of conventional vacuum fluorescent tubes for facsimile light sources, FIG. 3 is a graph showing the relationship between substrate temperature, brightness, and elapsed time, and FIG. 4 is a graph showing the relationship between substrate temperature, brightness, and elapsed time.
FIG. 5 is a vertical cross-sectional view showing one embodiment of a vacuum fluorescent tube for facsimile light source according to the present invention. FIG. 5 is a vertical cross-sectional view showing another embodiment of the present invention. 11... Substrate, 12... Front enclosure, 13... Anode conductor, 13a... Slit, 13b... Cooling section,
13c... Inclined surface, 16... Phosphor layer, 17...
Anode, 18... cathode.
Claims (1)
の表面に被着された蛍光体層からなる陽極と、こ
の陽極に設けられたスリツトと、前記陽極に対面
して配設された陰極とから構成されるフアクシミ
リ光源用真空蛍光管において、陽極導体は、中央
部にスリツトが穿設されるとともに、前記スリツ
トを挟んで対向しかつ表面に蛍光体層が被着され
た傾斜面を有する金属板によつて形成され、前記
金属板の端部を真空容器外へ延出し、延出部分を
外気に接する冷却部としたことを特徴とするフア
クシミリ光源用真空蛍光管。1. An anode consisting of an anode conductor disposed in a box-shaped vacuum container and a phosphor layer coated on its surface, a slit provided in this anode, and a cathode disposed facing the anode. In a vacuum fluorescent tube for a facsimile light source, the anode conductor has a slit in the center and has inclined surfaces facing each other across the slit and having a phosphor layer coated on the surface. 1. A vacuum fluorescent tube for a facsimile light source, characterized in that the tube is made of a metal plate, an end of the metal plate extends outside the vacuum container, and the extended portion serves as a cooling part in contact with the outside air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58036394A JPS59161966A (en) | 1983-03-04 | 1983-03-04 | Vacuum fluorescent tube for facsimile light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58036394A JPS59161966A (en) | 1983-03-04 | 1983-03-04 | Vacuum fluorescent tube for facsimile light source |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59161966A JPS59161966A (en) | 1984-09-12 |
JPH0213874B2 true JPH0213874B2 (en) | 1990-04-05 |
Family
ID=12468633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58036394A Granted JPS59161966A (en) | 1983-03-04 | 1983-03-04 | Vacuum fluorescent tube for facsimile light source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59161966A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6259082B1 (en) * | 1997-07-31 | 2001-07-10 | Rohm Co., Ltd. | Image reading apparatus |
WO2005038935A1 (en) | 2003-10-15 | 2005-04-28 | Nichia Corporation | Light-emitting device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5732519U (en) * | 1980-07-31 | 1982-02-20 |
-
1983
- 1983-03-04 JP JP58036394A patent/JPS59161966A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5732519U (en) * | 1980-07-31 | 1982-02-20 |
Also Published As
Publication number | Publication date |
---|---|
JPS59161966A (en) | 1984-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4281274A (en) | Discharge lamp having vitreous shield | |
JP2002289138A (en) | Cold cathode fluorescent lamp | |
US7960907B2 (en) | Light-emitting apparatus | |
US5633556A (en) | Discharge lamp of the water cooled type | |
JPH0213874B2 (en) | ||
US1961719A (en) | Gaseous electric discharge device | |
JPH0519257B2 (en) | ||
US2785327A (en) | Electric discharge lamp with phosphorcoated rhodium reflector | |
US2579109A (en) | Electrode structure for electric discharge devices | |
US4902933A (en) | High efficacy discharge lamp having large anodes | |
JP2003346707A (en) | Fluorescent lamp | |
US6366020B1 (en) | Universal operating DC ceramic metal halide lamp | |
US7417375B2 (en) | Mercury free metal halide lamp | |
JP4830459B2 (en) | Cold cathode fluorescent discharge tube | |
JPH0452930Y2 (en) | ||
RU2382436C1 (en) | Diode cathode-luminescent lamp | |
JPH0452931Y2 (en) | ||
JPS60138841A (en) | Fluorescent lamp | |
JP3874517B2 (en) | Double tube fluorescent lamp | |
JP2001338610A (en) | Metal halide lamp | |
JPH0464140B2 (en) | ||
JP3591515B2 (en) | Short arc type ultra-high pressure discharge lamp | |
US2202199A (en) | Discharge device | |
JPH0539568Y2 (en) | ||
JPS5840764A (en) | Fluorescent light source tube |