[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02137386A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPH02137386A
JPH02137386A JP63291289A JP29128988A JPH02137386A JP H02137386 A JPH02137386 A JP H02137386A JP 63291289 A JP63291289 A JP 63291289A JP 29128988 A JP29128988 A JP 29128988A JP H02137386 A JPH02137386 A JP H02137386A
Authority
JP
Japan
Prior art keywords
layer
active layer
laser
photodiode
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63291289A
Other languages
Japanese (ja)
Inventor
Yasumasa Imoto
井元 康雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63291289A priority Critical patent/JPH02137386A/en
Publication of JPH02137386A publication Critical patent/JPH02137386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enhance a linearity and a temperature characteristic of an optical-output monitoring efficiency by forming a layer structure where a region used as a semiconductor laser is constituted while a double heterostructure is sandwiched between two grooves and a region used as a photodiode is formed in such a way that the double heterostructure is filled by a current-blocking layer. CONSTITUTION:A layer structure of a laser part 1 is formed in the following way: an active layer and a clad layer 5 are laminated on a substrate 3; after that, an etching operation is executed; the active layer is divided into a first stripe-shaped active layer 6 and a second active layer 7; a current-blocking layer 8 constituted of three layers is formed; lastly, a cap layer 9 is formed. On the other hand, a layer structure of a photodiode part is formed in the following way: the active layer and the clad layer 5 are laminated; the current-blocking layer 8 and the cap layer 9 are formed on both sides and at the upper part of the first active layer 6. As a result, a temperature dependence of a leakage current of an injected current is small in the laser part 1; the temperature dependence of a laser oscillation characteristic is small; in the photodiode part 2, a laser is hardly subjected to a natural radiant beam and a scattered beam. Thereby, it is possible to obtain a device whose linearity and temperature characteristic of an optical-output monitoring efficiency are excellent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光出力モニター用のフォトダイオードがモノリ
シックに集積された半導体発光装置、とりわけ光出力モ
ニター効率の直線性、温度特性にすぐれた光出力モニタ
ー用のフォトダイオードと半導体レーザをモノリシック
集積した半導体発光装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor light emitting device in which a photodiode for monitoring optical output is monolithically integrated, and in particular to a semiconductor light emitting device with excellent linearity of optical output monitoring efficiency and temperature characteristics. This invention relates to a semiconductor light emitting device that monolithically integrates a photodiode for monitoring and a semiconductor laser.

〔従来の技術〕[Conventional technology]

近年、光通信技術の進歩とともに半導体光デバイスの高
速化・高機能化が強く求められており、並列伝送用レー
ザアレイやレーザに駆動回路・信号処理回路等をモリシ
ック集積した光電子集積回路の開発が期待されている。
In recent years, with the advancement of optical communication technology, there has been a strong demand for higher speed and higher functionality of semiconductor optical devices, and the development of laser arrays for parallel transmission and optoelectronic integrated circuits in which drive circuits, signal processing circuits, etc. are integrated with lasers is progressing. It is expected.

ところでこれらレーザの集積化デバイスには光出力モニ
ター用のフォトダイオードを集積化する必要があり、こ
れを実現するために半導体レーザ層を電気的に分離し、
分離された一方の半導体レーザ層をフォトダイオードと
して用いる方法がある。フォトダイオードの特性として
は光出力モニター効率の直線性が良く温度依存性の小さ
いものが望ましい。このような特性を満足するためには
フォトダイオードはレーザの散乱光・自然放出光を拾い
にくい構造を持ち、半導体レーザは温度特性の良い構造
が必要である。従来から用いられている半導体レーザ層
としては活性層の両側にこの活性層と同一組成の層が残
り、かつ、電流阻止層により埋め込まれた層構造をもつ
もの(昭和60年電子通信学会総合全国大会予稿集P、
925)や、活性層の両側にこの活性層と同一組成の層
がなく、かつ、電流阻止層により埋め込まれた層構造を
持つものく電子情報通信学会、光量子エレクトロニクス
研究会OQE・87−52.P、41〜46.1987
)が知られていた。前者は半導体レーザとしては、電流
阻止層でのもれ電流がバンドギャップの小さい活性層両
側に残された活性層と同一組成の層を介して流れるため
、もれ電流の温度依存性が小さく、発振しきい値の温度
依存性を小さくできる。そのため、レーザ発振時の活性
層温度と周囲温度との差が小さく、温度上昇により発振
波長の長波長側へのシフト量も小さいため、フォトダイ
オードの量子効率の低下も少なくでき、モニター効率の
温度依存性を小さくできる。しかし、フォトダイオード
としては光吸収層となる活性層両側にこの活性層と同一
組成の層がある為、ここで半導体レーザの散乱光や自然
放出光を拾ってしまい、モニター効率の直線性が悪くな
ってしまう。一方、後者ではこの逆でモニター効率の直
線性は良いが、温度依存性が大きくなるといった欠点を
有していた。
By the way, it is necessary to integrate a photodiode for monitoring optical output in these laser integrated devices, and to achieve this, the semiconductor laser layer is electrically separated.
There is a method of using one of the separated semiconductor laser layers as a photodiode. As for the characteristics of the photodiode, it is desirable that the optical output monitoring efficiency has good linearity and low temperature dependence. In order to satisfy these characteristics, the photodiode must have a structure that makes it difficult to pick up scattered light and spontaneously emitted light from the laser, and the semiconductor laser must have a structure with good temperature characteristics. Conventionally used semiconductor laser layers have a layer structure in which layers with the same composition as the active layer remain on both sides of the active layer, and are embedded in a current blocking layer (1985 Institute of Electronics and Communication Engineers Comprehensive National Award). Conference proceedings P,
925) and those with a layer structure in which there are no layers with the same composition as the active layer on both sides of the active layer and are buried by current blocking layers. IEICE, Photon Photonics Research Group OQE 87-52. P, 41-46.1987
) was known. In the former, as a semiconductor laser, the leakage current in the current blocking layer flows through layers with the same composition as the active layer left on both sides of the active layer with a small band gap, so the temperature dependence of the leakage current is small. The temperature dependence of the oscillation threshold can be reduced. Therefore, the difference between the active layer temperature during laser oscillation and the ambient temperature is small, and the amount of shift of the oscillation wavelength toward longer wavelengths due to temperature rise is also small, so the decline in photodiode quantum efficiency can be minimized, and the monitor efficiency temperature Dependency can be reduced. However, as photodiodes have layers with the same composition as the active layer on both sides of the active layer, which serves as a light absorption layer, they pick up scattered light and spontaneously emitted light from the semiconductor laser, resulting in poor linearity of monitoring efficiency. turn into. On the other hand, in the latter case, the linearity of the monitoring efficiency is good, but it has the disadvantage of increased temperature dependence.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的はこのような問題点を解決し、モニター効
率の直線性、温度特性すぐれた光出力モニターフォトダ
イオードと半導体レーザをモノリシック集積化した半導
体発光装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and to provide a semiconductor light emitting device in which a light output monitor photodiode and a semiconductor laser are monolithically integrated, which has excellent linearity of monitoring efficiency and excellent temperature characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体発光装置の構成は、半導体レーザ層を、
電気的に分離された2つの領域に分け、前記2つの領域
の一方を半導体レーザとして、他方をフォトダイオード
として機能させ、この時、前記半導体レーザ層のうち、
半導体レーザとなる領域は半導体レーザ層を構成してい
る活性層の両側に2本の溝を有し、この溝の外側に前記
活性層と同一組成の層が残りかつ電流阻止層により埋め
込まれた層構造を有し、フォトダイオードとなる領域は
活性層、すなわち光吸収層の両側に前記光吸収層と同一
組成の層が無く、ストライプ状に形成された活性層の両
側を電流阻止層により埋め込まれた層構造を有すること
を特徴とする。
The structure of the semiconductor light emitting device of the present invention includes a semiconductor laser layer,
It is divided into two electrically isolated regions, and one of the two regions functions as a semiconductor laser and the other as a photodiode, and at this time, of the semiconductor laser layer,
The region that becomes the semiconductor laser has two grooves on both sides of the active layer constituting the semiconductor laser layer, and a layer having the same composition as the active layer remains outside of these grooves and is filled with a current blocking layer. The region that becomes the photodiode has a layered structure, and there is no layer with the same composition as the light absorption layer on both sides of the active layer, that is, the light absorption layer, and both sides of the active layer formed in a stripe shape are buried with current blocking layers. It is characterized by having a thin layered structure.

〔実施例〕〔Example〕

次に図面を用いて本発明の実施例を詳細に説明する。第
1図は本発明の一実施例の光出力モニターフォトダイオ
ードと半導体レーザをモノリシック集積した半導体発光
装置である。第1図(a)は外観図でありレーザ部1と
フォトダイオード部2との電気的分離と、レーザ部の共
振器端面形成とがエツチングによりなされている。第1
図(b)、(C)はそれぞれレーザ部1とフォトダイオ
ード部2の断面図である。レーザ部1はn型InPによ
りなる基板3上にノンドープI nGaAsP(波長組
成で1.3μm)よりなる活性層、p型InPよりなる
クラッド層5を積層した後エツチングにより活性層をス
トライプ状の第1の活性M6と第2の活性層7に分け、
p型InP、n型1nP、p型InPを順次積層してこ
れら3つの層で構成された電流阻止層8を形成し、最後
にp型InGaAsP(波長組成で1.15μm)のキ
ャップ層9を形成した層構造となっている。一方、フォ
トダイオード部は基板3上に活性層、クラッド層5を積
層した後エツチングにより活性層のうちストライプ状の
第1の活性層6を残し、その他を除去し、第1の活性層
6の両側及び上に電流阻止NI8.キャップ眉9を形成
した層構造となっている。尚、10はp側電極、11は
n側電極である。
Next, embodiments of the present invention will be described in detail using the drawings. FIG. 1 shows a semiconductor light emitting device in which an optical output monitor photodiode and a semiconductor laser are monolithically integrated according to an embodiment of the present invention. FIG. 1(a) is an external view, in which the electrical separation between the laser section 1 and the photodiode section 2 and the formation of the resonator end face of the laser section are done by etching. 1st
Figures (b) and (c) are cross-sectional views of the laser section 1 and the photodiode section 2, respectively. The laser section 1 consists of a substrate 3 made of n-type InP, an active layer made of non-doped InGaAsP (wavelength composition: 1.3 μm), and a cladding layer 5 made of p-type InP, and then etched to form a striped pattern of the active layer. divided into one active layer M6 and a second active layer 7,
P-type InP, n-type 1nP, and p-type InP are sequentially laminated to form a current blocking layer 8 composed of these three layers, and finally a cap layer 9 of p-type InGaAsP (1.15 μm in wavelength composition) is formed. It has a layered structure. On the other hand, for the photodiode section, after laminating an active layer and a cladding layer 5 on a substrate 3, etching is performed to leave a striped first active layer 6 of the active layer and remove the rest. Current blocking NI8. on both sides and top. It has a layered structure in which a cap eyebrow 9 is formed. Note that 10 is a p-side electrode and 11 is an n-side electrode.

第2図は本実施例の光出力モニターフォトダイオードが
モノリシックに集積された半導体発光装置の製作工程図
である。まず基板3上に活性層4、クラッド層5をLP
E法により成長する(第2図(a))。次にフォトレジ
ストをマスクとして臭素及びメタノールよりなるエツチ
ング液でレーザ部1は活性層4に2本の溝を形成し、活
性層4を第1の活性層6と第2の活性N7に分ける。
FIG. 2 is a manufacturing process diagram of a semiconductor light emitting device in which the optical output monitor photodiode of this embodiment is monolithically integrated. First, LP the active layer 4 and cladding layer 5 on the substrate 3.
It grows by E method (Fig. 2(a)). Next, using the photoresist as a mask, the laser unit 1 forms two grooves in the active layer 4 using an etching solution made of bromine and methanol, dividing the active layer 4 into a first active layer 6 and a second active layer N7.

一方、フォトダイオード部2は同じくフォトレジストを
マスクとして臭素及びメタノールよりなるエツチング液
で第1の活性層6のみがストライプ状に残るようエツチ
ングする。(第2図(b))。
On the other hand, the photodiode section 2 is etched using an etching solution of bromine and methanol using the photoresist as a mask so that only the first active layer 6 remains in a striped pattern. (Figure 2(b)).

次に、LPE法により電流阻止層8、キャップ層9を積
層する(第2図(C))。次にp側電極10を形成し、
塩素ガスを用いたドライエツチングによりレーザ部1と
フォトダイオード部2の電気的分離及びレーザ部1の共
振器端面形成を行ない、n1m電極11を形成し、半導
体発光装置が完成する(第2図(d))、本実施例では
レーザ部1では注入電流のうち、もれ電流がバンドギャ
ップの小さい第2の活性層7を介して流れるため、もれ
電流の温度依存性が小さく、レーザ発振特性の温度依存
性も小さくなる構造である。またフォトダイオード部2
では受光部は、第1の活性層6のみであり、レーザの自
然放出光や散乱光を受けにくい。従って、光出力モニタ
ー効率の直線性。
Next, a current blocking layer 8 and a cap layer 9 are laminated by the LPE method (FIG. 2(C)). Next, a p-side electrode 10 is formed,
By dry etching using chlorine gas, the laser section 1 and the photodiode section 2 are electrically separated and the resonator end face of the laser section 1 is formed, and the n1m electrode 11 is formed to complete the semiconductor light emitting device (see Fig. 2). d)) In this embodiment, in the laser section 1, the leakage current of the injected current flows through the second active layer 7 with a small band gap, so the temperature dependence of the leakage current is small and the laser oscillation characteristics are improved. This structure also reduces the temperature dependence of . Also, the photodiode section 2
In this case, the light-receiving portion is only the first active layer 6, and it is difficult to receive spontaneously emitted light or scattered light from the laser. Therefore, the linearity of light output monitor efficiency.

温度特性にすぐれた光出力モニター用のフォトダイオー
ドと半導体レーザをモノリシック集積した半導体発光装
置が構成できる。しかも、製作工程は上述の通り従来の
ものと比べて同様の工程で製作できる。
A semiconductor light emitting device can be constructed by monolithically integrating a photodiode for monitoring optical output with excellent temperature characteristics and a semiconductor laser. Furthermore, the manufacturing process can be similar to that of conventional products as described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光出力モニター
効率の直線性、温度特性にすぐれた光出力モニターフォ
トダイオードと半導体レーザをモノリシック集積した半
導体発光装置が得られる。
As described above, according to the present invention, it is possible to obtain a semiconductor light emitting device in which an optical output monitoring photodiode and a semiconductor laser are monolithically integrated with excellent linearity of optical output monitoring efficiency and temperature characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は本発明の一実施例の光出力モニ
ター用のフォトダイオードと半導体レーザを集積した半
導体発光装置の構造図、第2図(a)〜(d)はその製
作工程図である。図中では1・・・レーザ部、2・・・
フォトダイオード部、3・・・基板、4・・・活性層、
5・・・クラッド層、6・・・第1の活性層、7・・・
第2の活性層、8・・・電流阻止層、9・・・キャップ
層、10・・・p側電極、11・・・n側電極である。
Figures 1 (a) to (c) are structural diagrams of a semiconductor light emitting device that integrates a photodiode for monitoring optical output and a semiconductor laser according to an embodiment of the present invention, and Figures 2 (a) to (d) are structural diagrams thereof. It is a manufacturing process diagram. In the figure, 1... laser section, 2...
Photodiode section, 3...substrate, 4... active layer,
5... Cladding layer, 6... First active layer, 7...
Second active layer, 8: current blocking layer, 9: cap layer, 10: p-side electrode, 11: n-side electrode.

Claims (1)

【特許請求の範囲】[Claims] 活性層をこの活性層よりもバンドギャップの大きい半導
体で挟んだストライプ状のダブルヘテロ構造を電流阻止
層で埋め込んだ構造で成る半導体レーザ層を、電気的に
分離された2つの領域に分け、前記2つの領域の一方を
半導体レーザとして、他方をフォトダイオードとして機
能させる事を特徴とする半導体発光装置であって、前記
半導体レーザ層のうち半導体レーザとなる領域は前記ス
トライプ状のダブルヘテロ構造が2本の溝に挟まれて構
成され、溝の外側に前記ストライプ状ダブルヘテロ構造
と同一組成の層構造を有し、フォトダイオードとなる領
域は前記ストライプ状ダブルヘテロ構造の両側には前記
ストライプ状ダブルヘテロ構造と同一組成の層が無く、
電流阻止層によりストライプ状ダブルヘテロ構造が埋め
込まれた層構造になっていることを特徴とする半導体発
光装置。
A semiconductor laser layer consisting of a striped double heterostructure in which an active layer is sandwiched between semiconductors with a larger band gap than the active layer is buried in a current blocking layer is divided into two electrically isolated regions, and the semiconductor laser layer is divided into two electrically isolated regions. A semiconductor light emitting device characterized in that one of the two regions functions as a semiconductor laser and the other functions as a photodiode, wherein the region of the semiconductor laser layer that becomes the semiconductor laser has two striped double heterostructures. The striped double heterostructure is sandwiched between two grooves, and has a layer structure having the same composition as the striped double heterostructure on the outside of the groove. There is no layer with the same composition as the heterostructure,
A semiconductor light emitting device characterized by having a layered structure in which a striped double hetero structure is embedded in a current blocking layer.
JP63291289A 1988-11-18 1988-11-18 Semiconductor light-emitting device Pending JPH02137386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291289A JPH02137386A (en) 1988-11-18 1988-11-18 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291289A JPH02137386A (en) 1988-11-18 1988-11-18 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPH02137386A true JPH02137386A (en) 1990-05-25

Family

ID=17766955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291289A Pending JPH02137386A (en) 1988-11-18 1988-11-18 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPH02137386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009112A (en) * 1994-09-16 1999-12-28 Rohm Co., Ltd. Semiconductor laser and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009112A (en) * 1994-09-16 1999-12-28 Rohm Co., Ltd. Semiconductor laser and manufacturing method therefor
US6130108A (en) * 1994-09-16 2000-10-10 Rohm Co., Ltd. Semiconductor laser and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPS58186986A (en) Distributed feedback semiconductor laser with monitor
JPWO2010100738A1 (en) Semiconductor laser, silicon waveguide substrate, integrated device
US5281829A (en) Optical semiconductor device having semiconductor laser and photodetector
JPS59205787A (en) Single axial mode semiconductor laser
JP2000208862A (en) Semiconductor optical integrated device and its manufacture
CN114365359B (en) Semiconductor laser device
JPH03263388A (en) Optical semiconductor element and manufacture thereof
JPH02137386A (en) Semiconductor light-emitting device
JPS6089990A (en) Optical integrated circuit
CN115051239A (en) Tunable electroabsorption modulation laser and preparation method thereof
JPH04144182A (en) Optical semiconductor device array
JP2526898B2 (en) Semiconductor laser and method of using the same
JPS5948975A (en) Semiconductor light emitting element
JPS6386579A (en) Light emitting diode
JP2529260B2 (en) Semiconductor laser and method of using the same
JPS6218782A (en) Semiconductor laser of buried structure
JPH07221387A (en) Waveguide type optical element
JP2545994B2 (en) Semiconductor optical device
JPS5840881A (en) Manufacture of buried hetero-structure semiconductor laser-photodiode beam integrating element
JPS6320398B2 (en)
JPH0433386A (en) End surface emitting type semiconductor light emitting element and driving method therefor
JPH11212041A (en) Semiconductor optical element
JPS5875879A (en) Photointegrated element
JPH02271583A (en) Laser integration light modulator
JPH07142697A (en) Optical semiconductor device