JPH0212386B2 - - Google Patents
Info
- Publication number
- JPH0212386B2 JPH0212386B2 JP58147727A JP14772783A JPH0212386B2 JP H0212386 B2 JPH0212386 B2 JP H0212386B2 JP 58147727 A JP58147727 A JP 58147727A JP 14772783 A JP14772783 A JP 14772783A JP H0212386 B2 JPH0212386 B2 JP H0212386B2
- Authority
- JP
- Japan
- Prior art keywords
- tin
- lead
- lead alloy
- slab
- calcium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 28
- 229910000978 Pb alloy Inorganic materials 0.000 claims description 22
- 239000002253 acid Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- DPDORTBBLUCNJG-UHFFFAOYSA-N calcium tin Chemical compound [Ca].[Sn] DPDORTBBLUCNJG-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 claims description 2
- 238000004080 punching Methods 0.000 claims 1
- YBOXAZZJNODWJE-UHFFFAOYSA-N [Pb].[Sn].[Ca] Chemical compound [Pb].[Sn].[Ca] YBOXAZZJNODWJE-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002142 lead-calcium alloy Substances 0.000 description 5
- QQHJESKHUUVSIC-UHFFFAOYSA-N antimony lead Chemical compound [Sb].[Pb] QQHJESKHUUVSIC-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011149 active material Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 150000002611 lead compounds Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000882 Ca alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- PRSMTOHTFYVJSQ-UHFFFAOYSA-N [Ca].[Pb] Chemical compound [Ca].[Pb] PRSMTOHTFYVJSQ-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001174 tin-lead alloy Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/68—Selection of materials for use in lead-acid accumulators
- H01M4/685—Lead alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明はペースト式鉛蓄電池用電極基体の製造
法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an electrode substrate for a paste type lead-acid battery.
従来例の構成とその問題点
ペースト式鉛極板の基体は、アンチモン−鉛系
合金を鋳造により格子状として用いる方法と、錫
−カルシウム−鉛系合金によりまず板をつくつた
後に、機械加工でエキスパンド状としたり、打ち
抜き板とする方法などが広く実施されている。こ
こでアンチモン−鉛系合金を用いる場合と、錫−
カルシウム−鉛系合金を用いる場合において加工
方法が異なるのは、錫−カルシウム−鉛系合金の
方がアンチモン−鉛系合金よりも鋳造がかなり難
しいことによるものである。つぎに、アンチモン
−鉛系合金を用いた場合と、錫−カルシウム−鉛
系合金を用いた場合の特性上の主な違いは、錫−
カルシウム−鉛系合金を用いた場合においては、
鉛蓄電池の自己放電が少なくなり、たとえば自動
車用の鉛蓄電池としたときは長期間補水の必要が
なくなる特長を有することである。Structures of conventional examples and their problems The base of paste-type lead electrode plates can be made by casting an antimony-lead alloy in the form of a lattice, or by first making a plate from a tin-calcium-lead alloy and then machining it. Methods such as making it into an expanded shape or making it into a punched plate are widely practiced. Here, there is a case where an antimony-lead alloy is used, and a case where a tin-lead alloy is used.
The difference in processing methods when using calcium-lead alloys is due to the fact that tin-calcium-lead alloys are considerably more difficult to cast than antimony-lead alloys. Next, the main difference in characteristics between using an antimony-lead alloy and using a tin-calcium-lead alloy is that
When using calcium-lead alloy,
The self-discharge of lead-acid batteries is reduced, and when used as lead-acid batteries for automobiles, for example, there is no need for water replenishment for a long period of time.
なお、この錫−カルシウム−鉛系合金を用いる
場合は、とくに正極に適用するときに顕著である
が、錫の割合が多ければ多いほど蓄電池の起電反
応に直接関与する鉛ペーストから生成した活物質
との密着状態が良好になるためであると考えられ
るが、繰り返し充放電サイクル時の放電容量の減
少が小さくなつたり、異常に深い放電を行なつた
後で比較的長期間充電をせずに放置した時の充電
の受入れ性能が良好になるなどの特徴がある。 Note that when using this tin-calcium-lead alloy, the higher the proportion of tin, the more active it is generated from the lead paste, which is directly involved in the electromotive reaction of the storage battery, which is especially noticeable when applied to the positive electrode. This is thought to be due to better adhesion to the material, but the decrease in discharge capacity during repeated charge/discharge cycles may become smaller, or if the battery is not charged for a relatively long period of time after an abnormally deep discharge. It has characteristics such as better charging acceptance performance when left alone.
ただし、ここで有効な成分として働く錫は、あ
まり量が多すぎると、極端に深い放電状態となつ
た時に、電解液が中性に近くなるため錫の溶解度
が増し、蓄電池の充電によりこの多量に溶解した
錫がデンドライト状に析出して正極と負極の間を
シヨートさせる現象があつた。 However, if the amount of tin that is effective here is too large, the solubility of tin will increase as the electrolyte becomes close to neutrality when the electrolyte reaches an extremely deep discharge state. There was a phenomenon in which tin dissolved in water precipitated in the form of dendrites and shot between the positive and negative electrodes.
そこで、充放電特性からの要望と、この深い放
電時のシヨート防止からの要望から、錫の割合は
0.2〜1重量%程度の範囲としていることが多い。
勿論、極端に深い放電時のシヨート現象を除け
ば、特性向上を指向するためには錫成分を1重量
%以上とすることが良いことは当然明らかであ
る。 Therefore, based on the requirements for charge/discharge characteristics and the prevention of shortening during deep discharge, the proportion of tin was reduced.
It is often in the range of about 0.2 to 1% by weight.
Of course, except for the shoot phenomenon during extremely deep discharge, it is obvious that in order to improve the characteristics, it is better to increase the tin content to 1% by weight or more.
発明の目的
本発明は、錫−カルシウム−鉛系合金を用いる
鉛蓄電池の錫の割合を平均としては比較的少ない
量のみしか使用せずに、多い割合で用いる場合と
同様の効果を得るとともに、正極と負極間のシヨ
ート現象を抑制することを目的とする。Purpose of the Invention The present invention provides a lead-acid battery using a tin-calcium-lead alloy that uses only a relatively small amount of tin on average, but achieves the same effect as when using a higher proportion of tin. The purpose is to suppress the shoot phenomenon between the positive and negative electrodes.
発明の構成
本発明は、錫−カルシウム−鉛系鉛合金よりな
るスラブの表面に、スラブよりも錫含有量の多い
錫系鉛合金のコーテイングを施した後、スラブを
圧延工程により薄板とし、得られた薄板をエキス
パンド加工または打ち抜き加工により多孔性電極
基体とすることを特徴とする。Structure of the Invention The present invention involves coating the surface of a slab made of a tin-calcium-lead-based lead alloy with a tin-based lead alloy having a higher tin content than the slab, and then rolling the slab into a thin plate. The method is characterized in that the obtained thin plate is expanded or punched to form a porous electrode substrate.
本発明において、スラブ表面にのみ錫系鉛合金
をコーテイングするのは、このスラブを薄板にし
たうえで多孔体とし、この多孔体を電極基体とし
たとき、主に電極基体とペーストより生成した活
物質との接触面で充放電時の特性に好影響を及ぼ
すのは電極基体表面近傍に存在する錫あるいは半
導体的性格を持つものと思われる錫酸化物の濃度
の大きさであると考えるからである。 In the present invention, the reason why the tin-based lead alloy is coated only on the surface of the slab is that this slab is made into a thin plate and made into a porous body, and when this porous body is used as an electrode base, the active material generated mainly from the electrode base and paste This is because it is believed that the concentration of tin existing near the surface of the electrode substrate or tin oxide, which is thought to have semiconducting properties, has a positive effect on the charging and discharging characteristics at the contact surface with substances. be.
実施例の説明
正極板5枚、負極板6枚、セパレータ10枚より
なる単電池6個を一組とする公称電圧12V、5時
間率の放電容量28Ahの自動車用鉛蓄電池に対す
る適用例を示す。DESCRIPTION OF EMBODIMENTS An example of application to an automobile lead-acid battery having a nominal voltage of 12 V and a discharge capacity of 28 Ah at a 5 hour rate, which is a set of 6 cells each consisting of 5 positive electrode plates, 6 negative electrode plates, and 10 separators, will be described.
正極用の電極支持体を以下のようにして作つ
た。 An electrode support for the positive electrode was made as follows.
まず、錫0.2%(重量比率で示す、以下同じ)、
カルシウム0.08%、残部を純鉛とする組成の鉛合
金で厚さ9mm、幅6cmのスラブを鋳造する。得ら
れたスラブを、錫10%、残部を純鉛とする鉛合金
の溶湯中へ連続的に浸漬し直ちに取出すことによ
り、スラブ表面に厚さ約0.3mmの錫成分の多い鉛
合金層を付着形成させる。つぎに、このスラブを
ロールで圧延して厚さ1.2mmの薄板とする。この
薄板を公知の方法でエキスパンドメタル状の多孔
体として正極用の支持体とした。 First, 0.2% tin (indicated by weight ratio, same below),
A slab with a thickness of 9 mm and a width of 6 cm is cast from a lead alloy with a composition of 0.08% calcium and the balance pure lead. The resulting slab is continuously immersed in a molten lead alloy containing 10% tin and the remainder pure lead, and immediately taken out, resulting in a layer of lead alloy with a high tin content of approximately 0.3 mm thick on the slab surface. Let it form. Next, this slab is rolled into a thin plate with a thickness of 1.2 mm. This thin plate was made into an expanded metal-like porous body by a known method and used as a support for a positive electrode.
比較例として、上記の実施例に用いた錫成分の
多い鉛合金層を付着形成する前の鉛合金スラブ、
すなわち錫0.2%、カルシウム0.08%、残部純鉛
の鉛合金のみで鋳造されているスラブをそのまま
ロールで圧延して厚さ約1.2mmの薄板とし、つぎ
に、実施例と同様にエキスパンドメタル状の多孔
体としたものを正極用支持体とする。 As a comparative example, the lead alloy slab used in the above example before the deposition of the lead alloy layer with a high tin content,
That is, a slab cast only from a lead alloy consisting of 0.2% tin, 0.08% calcium, and the balance pure lead was rolled as it was with rolls into a thin plate with a thickness of about 1.2 mm, and then, as in the example, it was rolled into an expanded metal shape. The porous body is used as a positive electrode support.
実施例および比較例の正極用支持体に公知の方
法で鉛ペーストを練塗して厚さ約1.8mmの帯状に
連続する正極板とし、これを所定の寸法に切断す
ることにより一枚ずつの正極板を得た。 The positive electrode supports of Examples and Comparative Examples are coated with lead paste using a known method to form a continuous positive electrode plate approximately 1.8 mm thick, which is then cut into a predetermined size to form individual positive electrode plates. A positive electrode plate was obtained.
なお、負極板は、実施例、比較例いずれの蓄電
池も公知のエキスパンドメタル(鉛−錫−カルシ
ウム系合金を用いる)を支持体とした。 In addition, the negative electrode plate used a well-known expanded metal (using a lead-tin-calcium alloy) as a support in both the storage batteries of the example and the comparative example.
以上の工程で得られた実施例および比較例の鉛
蓄電池に各々定格12V、10Wの電球を負荷として
接続した状態で14日間、40℃の雰囲気中に置き、
その後、負荷を取りはずし、常温中で12V、最大
25Aの定電圧充電器により2時間充電を行ない、
150Aの急放電を端子電圧が6Vになるまで行なつ
た時の放電持続時間はつぎの通りとなつた。 The lead-acid batteries of the example and comparative example obtained through the above steps were placed in an atmosphere at 40°C for 14 days with a light bulb rated at 12V and 10W connected as a load.
After that, remove the load and turn the voltage to 12V maximum at room temperature.
Charge for 2 hours using a 25A constant voltage charger,
When a sudden discharge of 150A was carried out until the terminal voltage reached 6V, the discharge duration was as follows.
実施例:3分15秒
比較例:2分00秒
本発明は、上記の説明において示したように、
異常に深い放電状態で長期間保つた時の充電の受
け入れ性にすぐれており、その結果として、放電
特性がすぐれた電池を得ることができる。これは
本発明の構成では、正極板の支持体の表面におけ
る錫成分の割合が多いので、支持体と活物質であ
る鉛化合物との物理的な密着性が良好になるた
め、あるいは鉛蓄電池の充電時に生じることが予
想される錫酸化物が活物質である鉛化合物と支持
体表面の間の電気的な接触抵抗を下げるためなど
であろうと考えられる。Example: 3 minutes 15 seconds Comparative example: 2 minutes 00 seconds As shown in the above description, the present invention
It has excellent charge acceptance when kept in an abnormally deep discharge state for a long period of time, and as a result, a battery with excellent discharge characteristics can be obtained. This is because, in the structure of the present invention, the ratio of tin component on the surface of the support of the positive electrode plate is high, so the physical adhesion between the support and the lead compound, which is the active material, is good, or It is thought that this is because tin oxide, which is expected to be generated during charging, lowers the electrical contact resistance between the lead compound, which is the active material, and the support surface.
なお、実施例では、本発明の適用を正極板用の
支持体に対する場合について説明したが、本発明
は負極板の支持体に対して適用しても、正極の支
持体に適用した場合ほど顕著ではないが、同様の
効果を期待することができる。 In addition, in the examples, the application of the present invention to a support for a positive electrode plate was explained, but even if the present invention is applied to a support for a negative electrode plate, it is more noticeable when applied to a support for a positive electrode. However, similar effects can be expected.
また、錫−カルシウム系鉛合金製のスラブにコ
ーテイングする錫系鉛合金中の錫の含有割合は、
スラブ中の錫の含有割合より多い範囲で自由に選
ぶことができるが、概ね1〜63%程度の範囲で良
好な効果が見られることが明らかとなつた。 In addition, the proportion of tin in the tin-based lead alloy that is coated on the tin-calcium-based lead alloy slab is as follows:
Although the tin content can be freely selected within a range greater than the tin content in the slab, it has become clear that good effects can be seen in a range of about 1 to 63%.
錫系鉛合金でできたコーテイング層は、コーテ
イングされたスラブや圧延された薄板の機械的強
度の向上には寄与しないが、コーテイングする際
の錫合金が錫−鉛の二成分のみであることから、
コーテイング層の成分の安定化がきわめて容易で
ある特長を有する。 Coating layers made of tin-based lead alloys do not contribute to improving the mechanical strength of coated slabs or rolled thin sheets, but since the tin alloy used for coating has only two components, tin-lead. ,
It has the feature that it is extremely easy to stabilize the components of the coating layer.
さらに、本発明では、電極基体表面には錫成分
の割合の多い鉛合金のコーテイングを施すが、こ
のコーテイング層は鉛合金製スラブに形成させた
のち、このスラブを圧延して薄板とする工程を経
るので、極めて薄い層となつており、このため電
極基体全体としては錫成分が余り増加せず、この
ため極端に深い放電を行なつた後の充電時におい
ても錫のデンドライト成長による正極と負極間の
シヨート現象は見られない。 Furthermore, in the present invention, the surface of the electrode substrate is coated with a lead alloy having a high proportion of tin, and this coating layer is formed on a lead alloy slab, and then this slab is rolled into a thin plate. As a result, the tin content of the electrode substrate as a whole does not increase much, and even during charging after an extremely deep discharge, the positive and negative electrodes are separated by the growth of tin dendrites. No shortening phenomenon is observed between the two.
発明の効果
本発明によれば、錫の割合を少なくして充放電
特性にすぐれ、シヨートのない鉛蓄電池を与える
電極基体を得ることができる。Effects of the Invention According to the present invention, it is possible to obtain an electrode substrate that has excellent charging and discharging characteristics by reducing the proportion of tin and provides a lead-acid battery without shoots.
Claims (1)
面に、錫系鉛合金のコーテイングを施した後、圧
延工程により薄板とし、得られた薄板をエキスパ
ンド加工または打抜き加工により多孔性電極基体
とすることを特徴とする鉛蓄電池用電極基体の製
造法。1. After applying a coating of tin-based lead alloy to the surface of a slab made of tin-calcium-based lead alloy, it is made into a thin plate by a rolling process, and the obtained thin plate is made into a porous electrode substrate by expanding or punching. Characteristic method for manufacturing electrode substrates for lead-acid batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58147727A JPS6039766A (en) | 1983-08-11 | 1983-08-11 | Manufacture of electrode base body for lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58147727A JPS6039766A (en) | 1983-08-11 | 1983-08-11 | Manufacture of electrode base body for lead storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6039766A JPS6039766A (en) | 1985-03-01 |
JPH0212386B2 true JPH0212386B2 (en) | 1990-03-20 |
Family
ID=15436800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58147727A Granted JPS6039766A (en) | 1983-08-11 | 1983-08-11 | Manufacture of electrode base body for lead storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6039766A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986005031A1 (en) * | 1985-02-26 | 1986-08-28 | Matsushita Electric Industrial Co., Ltd. | Grid for lead storage batteries and a method of producing the same |
JPS6460963A (en) * | 1987-08-31 | 1989-03-08 | Shin Kobe Electric Machinery | Lead storage battery |
US6274274B1 (en) | 1999-07-09 | 2001-08-14 | Johnson Controls Technology Company | Modification of the shape/surface finish of battery grid wires to improve paste adhesion |
US6953641B2 (en) | 2001-01-05 | 2005-10-11 | Johnson Controls Technology Company | Battery grid |
US9748578B2 (en) | 2010-04-14 | 2017-08-29 | Johnson Controls Technology Company | Battery and battery plate assembly |
US9761883B2 (en) | 2011-11-03 | 2017-09-12 | Johnson Controls Technology Company | Battery grid with varied corrosion resistance |
DE102013111109A1 (en) | 2013-10-08 | 2015-04-09 | Johnson Controls Autobatterie Gmbh & Co. Kgaa | Grid arrangement for a plate-shaped battery electrode of an electrochemical accumulator and accumulator |
DE102013111667A1 (en) | 2013-10-23 | 2015-04-23 | Johnson Controls Autobatterie Gmbh & Co. Kgaa | Grid arrangement for a plate-shaped battery electrode and accumulator |
-
1983
- 1983-08-11 JP JP58147727A patent/JPS6039766A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6039766A (en) | 1985-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100305423B1 (en) | Expanded Grid For Electrode Plate of Lead-Acid Battery | |
US5120620A (en) | Binary lead-tin alloy substrate for lead-acid electrochemical cells | |
KR900003984B1 (en) | Grid for lead storage batteries and a method of producing thesame | |
JP4160856B2 (en) | Lead-based alloy for lead-acid battery and lead-acid battery using the same | |
US5024908A (en) | Lead storage battery | |
JPH0212385B2 (en) | ||
JPH0212386B2 (en) | ||
JP4274873B2 (en) | Lead-acid battery substrate and lead-acid battery using the same | |
JPS63213264A (en) | Lead storage battery | |
JPH06267544A (en) | Electrode plate for lead-acid battery and lead-acid battery using the electrode plate | |
EP1115167A1 (en) | Positive plate current collector for lead storage battery and lead storage battery comprising the same | |
JPH0213425B2 (en) | ||
JP3099328B2 (en) | Lead storage battery | |
JPH01140557A (en) | Lead-acid battery | |
JP4423837B2 (en) | Rolled lead alloy for storage battery and lead storage battery using the same | |
KR950004457B1 (en) | Lead battery | |
JP4066496B2 (en) | Manufacturing method of electrode plate for lead acid battery and lead acid battery using the electrode plate | |
JPH0837001A (en) | Positive electrode plate for lead-acid battery and manufacture of the electrode plate | |
JP2002319409A (en) | Lead acid storage battery anode current collector and lead acid storage battery using the same | |
JP4503358B2 (en) | Lead acid battery | |
JPS58198860A (en) | Lead storage battery | |
JPH07118321B2 (en) | Lead acid battery | |
JPS61198574A (en) | Lead storage battery | |
GB2238160A (en) | Lead accumulator | |
JPS58204473A (en) | Lead-acid battery anode plate |