[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02122985A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH02122985A
JPH02122985A JP63277899A JP27789988A JPH02122985A JP H02122985 A JPH02122985 A JP H02122985A JP 63277899 A JP63277899 A JP 63277899A JP 27789988 A JP27789988 A JP 27789988A JP H02122985 A JPH02122985 A JP H02122985A
Authority
JP
Japan
Prior art keywords
recording
reflectance
melting point
recording film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63277899A
Other languages
Japanese (ja)
Inventor
Koji Ono
浩司 小野
Koichi Saito
晃一 斉藤
Nobuyuki Miyake
信行 三宅
Koichiro Horino
堀野 紘一郎
Yoshiki Tanaka
善喜 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP63277899A priority Critical patent/JPH02122985A/en
Publication of JPH02122985A publication Critical patent/JPH02122985A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To contrive higher reflectance and contrast by dispersing a high-reflectance element in a low melting point substance, and setting the concentration of the element higher on the base side on which a recording light is incident. CONSTITUTION:A recording film is provided in which a high-reflectance element having a reflectance for a recording light higher than the reflectance of a low melting point substance having a melting point of 500 deg.C or below is dispersed in the low melting point substance. The high-reflectance element is dispersed with such a concentration gradient that the concentration of the element is high at the surface of a recording film on the side of irradiation with the recording light (ordinarily, the base side), and is lowered along the depth direction of the recording film. As the highreflectance element, an element selected from Au, Ag, Cu, Al, In, Ni, Pt and the like, preferably Au, is used. The low-melting point substance layer is preferably a Te layer or a Te alloy layer comprising at least 10 atom % of Te. The desired concentration gradient may be obtained as follows. For instance, where the recording film is provided by vacuum deposition, a DC power applied to an evaporation source of the high-reflectance element is gradually reduced. Where the recording film is provided by sputtering, an electric power applied to a target of the high-reflectance element is gradually reduced.

Description

【発明の詳細な説明】 ・:産業上の利用分野] 本発明は光ビーム(例えばレーザ光)を照射することに
より情報の記録および再生を行う光学記録媒体に関する
。特に光ビームを照射して、高反射率の記録膜に低反射
率のピット部を形成することにより情報を記録する光学
記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical recording medium on which information is recorded and reproduced by irradiation with a light beam (for example, a laser beam). In particular, the present invention relates to an optical recording medium in which information is recorded by irradiating a light beam to form pits with a low reflectance on a recording film with a high reflectance.

[従来の技術] レーザ光によって情報の記録および再生を行う光学記録
媒体は、半導体レーザ、記録材料および成膜方法などの
基本技術の向上と、大宮!記録が可能であるという特徴
により、最近急速に実用化の道が開かれてきた。上記光
学記録媒体の記録方法としては、レーザ光の照射による
熱エネルギーによって、(1)記録膜を変形してビット
またはバブルを形成する方法、(2)記録膜の反射率等
の光学的性質を変化させる方法などがある。
[Prior Art] Optical recording media that record and reproduce information using laser light have been developed through improvements in basic technologies such as semiconductor lasers, recording materials, and film-forming methods, and Omiya! Due to its ability to record, the path to practical use has been rapidly opened recently. Recording methods for the optical recording medium include (1) deforming the recording film to form bits or bubbles using thermal energy from laser beam irradiation, and (2) modifying optical properties such as reflectance of the recording film. There are ways to change it.

従来の光学記録媒体の記録材料としてはTe、 Seお
よびS等のカルコゲン系の元素を主成分とするものがあ
る。たとえば、プラスチック基板の表面に、TeとSe
とを主成分とし、さら、にPb等を添加した記録膜を設
け、集束レーザ光により局部的に上記記録膜を溶融除去
してピットを形成し、これにより情報を記録し、再生時
には上記ピットの有無を、レーザ光の反射強度の違いに
よって検出する光学記録媒体が知られている。
Conventional recording materials for optical recording media include those containing chalcogen-based elements such as Te, Se, and S as main components. For example, Te and Se can be placed on the surface of a plastic substrate.
A recording film containing Pb or the like as a main component is provided, and the recording film is locally melted and removed using a focused laser beam to form pits, thereby recording information, and during reproduction, the pits are removed. An optical recording medium is known that detects the presence or absence of a laser beam based on a difference in the reflected intensity of laser light.

ところで、カルコゲン系の元素を主成分とした合金から
なる上記記録膜を用いた光学記録媒体では、材料の特性
上反射率は40%程度である。一方、コノパクトディス
ク等の再生専用光学記録媒体の再生装置で読み取られる
光学記録媒体には高反射率が要求されるので、カルコゲ
ン系元素を主成分とした上記記録膜を用いることは難し
い。
Incidentally, in an optical recording medium using the above recording film made of an alloy containing chalcogen-based elements as a main component, the reflectance is about 40% due to the characteristics of the material. On the other hand, since a high reflectance is required for an optical recording medium that is read by a reproduction device of a reproduction-only optical recording medium such as a conopact disk, it is difficult to use the above-mentioned recording film containing a chalcogen-based element as a main component.

そこで、反射率の高い(50%以上)光学記録媒体を得
るために、特開昭63−191332号には、プラスチ
ック基板と記録膜との間に、屈折率が上記プラスチック
基板の屈折率よりも低い透明薄膜層を介在させる技術か
開示されている。
Therefore, in order to obtain an optical recording medium with a high reflectance (50% or more), Japanese Patent Application Laid-Open No. 191332/1983 proposes a method in which the refractive index is higher than the refractive index of the plastic substrate. A technique of interposing a transparent thin film layer has been disclosed.

また、Au、 Ag等の高反射率の金属を含む記録膜を
用いた光学記録媒体が特開昭61−194137号、特
開昭61−272191号、特表昭59−502139
号等に示されている。
In addition, optical recording media using recording films containing metals with high reflectivity such as Au and Ag are disclosed in Japanese Patent Application Laid-Open Nos. 194137-1982, 272191-1981, and 502139-1980.
It is shown in the number etc.

[発明が解決しようとする課題] ところが特開昭63−191332号に係る技術では、
上記の条件を満たすものであれば特に材料は限定されな
いが、十分な効果を得るためには、上記透明薄膜層を反
射型多重干渉膜となる厚さにする必要があり、膜厚の制
御が極めて困難であった。
[Problem to be solved by the invention] However, in the technology related to JP-A-63-191332,
The material is not particularly limited as long as it satisfies the above conditions, but in order to obtain sufficient effects, the transparent thin film layer needs to be thick enough to form a reflective multi-interference film, and the film thickness cannot be controlled. It was extremely difficult.

特開昭61−194137号に記載されている技術は、
高反q=を率の金属を用い、レーザ光の照射による熱エ
ネルギーによって構造変化をおこす上記(2)の記録方
法である。しかし、上記記録方法(2)では、記録時に
比較的高いレーザパワーを必要とするうえに、形状変化
による記録方法(1)に比べて、光学的コントラスト低
くなる問題がある。このため、提案されているが、膜構
成が曳稚になってしまう。
The technology described in JP-A-61-194137 is
This is the recording method described in (2) above, in which a metal with a high anti-q ratio is used and a structural change is caused by thermal energy caused by laser beam irradiation. However, the recording method (2) requires a relatively high laser power during recording, and has the problem that the optical contrast is lower than that of the recording method (1) based on shape change. For this reason, although it has been proposed, the membrane structure becomes unsophisticated.

ところで、記録および再生方法としてピットのエツジで
読み取るマーク長記録においては、記録ピットのエツジ
の安定性(ノツター値)が良好であることが要求されて
いる。ところが従来のピット形成による記録方法では、
記録膜が溶けて広がるために、ピットエツジの形状が不
均一になりゃすく、良好なジッター値を得るこ。とが困
難であった。
By the way, in mark length recording in which the edges of pits are read as a recording and reproducing method, it is required that the edges of recording pits have good stability (knotter value). However, in the conventional recording method using pit formation,
Since the recording film melts and spreads, the shape of the pit edge is less likely to become uneven, making it possible to obtain a good jitter value. It was difficult to

特開昭61−272191号には、Inや金属硫化物等
を主成分とし、さらにAg、^U等の金属を基板側と表
面側において異なる濃度で含有させた記録膜を有する光
学記録媒体が示されている。しかしこの光学記録媒体の
ピット形状を制御して良好なジッター値を得ろことは難
しかった。
JP-A No. 61-272191 discloses an optical recording medium having a recording film mainly composed of In, metal sulfides, etc., and further containing metals such as Ag and U at different concentrations on the substrate side and the surface side. It is shown. However, it has been difficult to control the pit shape of this optical recording medium to obtain a good jitter value.

一方、特表昭59−502139号に開示されている技
術によっても、良好なジッター値を得ることは困難で、
さらに、分散のマトリックスとしてゼラチンを用いてい
るために、吸贋によって書き込み特性が変化してしまう
という欠点を有している。
On the other hand, even with the technique disclosed in Japanese Patent Publication No. 59-502139, it is difficult to obtain a good jitter value.
Furthermore, since gelatin is used as a dispersion matrix, it has the disadvantage that the writing characteristics change due to adsorption.

この発明は上記課題に鑑みてなされたもので、所定の波
長領域の光を強く吸収して、該先によって基板に形成さ
れた記録膜を変形除去して、ピットを形成することによ
り情報が書き込まれろ光学記録媒体において、高反射率
、高コントラストを何し、良好な記録および再生特性が
得られ、かつ、良好なノツター値を示す光学記録媒体を
冴供することを目的としている。
This invention was made in view of the above problem, and information is written by strongly absorbing light in a predetermined wavelength range, deforming and removing the recording film formed on the substrate by the tip, and forming pits. The object of the present invention is to provide an optical recording medium that has high reflectance, high contrast, good recording and reproduction characteristics, and exhibits a good Notter value.

[課題を解決するための手段] 上記目的を達成するために、この出願の請求項(1)の
光学記録媒体は、融点が5[10℃以下である低融点物
質層中に、記録光に対する反射率が上記低融点物質より
も高い高反射率元素が分散されて記り膜が形成されてお
り、上記高反射率元素の濃度は上記記録光の照射側の記
録膜表面(通常基板…II )は高く、記録膜の深さ方
向に向かって低くなるような濃度勾配をもって分散され
ている。
[Means for Solving the Problems] In order to achieve the above object, the optical recording medium of claim (1) of this application includes a layer of a low melting point material having a melting point of 5 [10° C. or less] that is resistant to recording light. A recording film is formed by dispersing a high reflectance element whose reflectance is higher than that of the low melting point substance, and the concentration of the high reflectance element is determined by the concentration of the high reflectance element on the surface of the recording film on the side irradiated with the recording light (usually the substrate...II ) is high and is dispersed with a concentration gradient that decreases toward the depth of the recording film.

ここで、上記高反射率元素の濃度は、基板側表面では7
0原子数パ一セント以上であるのが良い。
Here, the concentration of the high reflectance element is 7 on the substrate side surface.
It is preferable that the number of atoms is 0% or more.

そして、堰板側から記録膜表面側に向かって膜厚が増加
するにつれて上記濃度は急激に低下し、記録漠の全膜軍
の略1/2よりも記録膜表面側では上記濃度はOである
のが良い。なお、この出願における濃度とは、ESCA
法により上記記録膜の深さ方向の組成分析を行った結果
得られる値である。
Then, as the film thickness increases from the weir plate side to the recording film surface side, the above concentration decreases rapidly, and the above concentration is O at about 1/2 of the total film force on the recording film surface side. It's good to have one. Note that the concentration in this application refers to ESCA
This is a value obtained as a result of analyzing the composition of the recording film in the depth direction using a method.

上記高反射率元素としてはAu、八g、 Cu、 AI
、 In、NiおよびPt等から選ばれた元素が用いら
れる。
The high reflectance elements mentioned above include Au, 8g, Cu, and AI.
, In, Ni, Pt, etc. are used.

上記低融点物質の融点は500℃以下であるのが上く、
それ以上の温度であると書き込み感度が低下する。低融
点物質としては、例えばTe5Se等の蛍金属層、Te
 −SeまたはこれらとBiとの合金層、ポリプロピレ
ン、ポリエチレンテレフタレート等の高分子化合物層等
の中から選ばれる。
The melting point of the low melting point substance is preferably 500°C or less,
If the temperature is higher than that, the writing sensitivity will decrease. Examples of low melting point substances include fluorescent metal layers such as Te5Se, Te5Se, etc.
-Se or an alloy layer of these and Bi, a layer of a polymer compound such as polypropylene, polyethylene terephthalate, etc.

低融点物質は請求項(2)のTe層らくしはTeを原子
数パーセントで10%以上含有するTe系合金層である
ことか好ましい。Teを含む記録膜はピット形成か容易
であるので好適に用いられろ。特にTeを原子数パーセ
ントで60%以上含み、TeとSeとからなる合金層を
低融点物質層とすると高記録感度が得られるので好まし
い。
The low melting point substance is preferably a Te-based alloy layer containing 10% or more of Te in terms of atomic percent. A recording film containing Te is preferably used because pits can be easily formed therein. In particular, it is preferable to use an alloy layer consisting of Te and Se as the low-melting point material layer, which contains 60% or more of Te in terms of atomic percent, since high recording sensitivity can be obtained.

上記高反射率元素は請求項(3)記載のAu元素であろ
のが良い。
The high reflectance element may be the Au element described in claim (3).

Au元素は合成樹脂基板等との密着性が低く、Au元素
を分散させると高い記録感度が得られるので好ましい。
The Au element has low adhesion to synthetic resin substrates, etc., and dispersing the Au element is preferable because high recording sensitivity can be obtained.

この出願の請求項(4)の光学記録媒体は基板上にフロ
ロカーボンを含む中間層が形成されており、上記記録膜
は上記中間層上に積層されている。上記フロロカーホン
中間層を設けると記録ピット形状の均一化および記録の
際の高感度化を達成することができろ。ES CA法に
よる分析から得られる、1記フロロ力−ボン層における
Fの含有量は、F’/(F+C)XIQOで表されるF
の原子数パーセントh<40%以上65%以下であれば
良い。この範囲を越え、Fが少なすぎると、記録ピット
の均一化および記録の際の高感度化といった効果が薄れ
、逆に多すぎると、中間層と記録膜との密着性が悪ぐな
り、記録膜がはがれ易くなるといった問題が生じる。
In the optical recording medium according to claim (4) of this application, an intermediate layer containing fluorocarbon is formed on a substrate, and the recording film is laminated on the intermediate layer. By providing the above-mentioned fluorocarbon intermediate layer, it is possible to achieve uniform recording pit shapes and high sensitivity during recording. The content of F in the fluorocarbon layer obtained from the analysis using the ES CA method is F'/(F+C)XIQO.
It is sufficient if the atomic number percent h<40% or more and 65% or less. If F exceeds this range and is too small, the effect of making the recording pits uniform and increasing the sensitivity during recording will be weakened.On the other hand, if it is too large, the adhesion between the intermediate layer and the recording film will deteriorate and the recording A problem arises in that the film tends to peel off.

この発明の光学記録媒体では上記フロロカーボン中間層
を設けると、Au元素を分散したTe −Se合金等か
らなる記録層と上記フロロカーボン層との密着性が低い
ために、記録のための先ビームを照射した際、バブル(
気泡)が形成されやすく、かつ、記録層が低融点物質の
ためピットがあきやすいので、バブルの頂上が吹き飛ん
だような形状のピットが形成される。
In the optical recording medium of the present invention, when the fluorocarbon intermediate layer is provided, the adhesion between the fluorocarbon layer and the recording layer made of a Te-Se alloy in which Au elements are dispersed is low. When you do this, a bubble (
Since the recording layer is made of a low-melting point material, pits are likely to form, so pits are formed that look like the tops of bubbles have been blown off.

光学記録媒体において、レーザ光を入射した時の記録前
の反射率は通常5〜60%の範囲である。
In an optical recording medium, the reflectance before recording when a laser beam is incident is usually in the range of 5 to 60%.

反射率が低すぎると、記録および再生時にトラッキング
が十分に行えず、安定した記録再生が困難となる。また
、高すぎると光を十分に吸収することができず、全く記
録ができないか、記録に高いパワーを要する。記録前の
反射率を10〜50%の範囲に設定することが特に望ま
しい。上記記録膜層がこの様な反射率を有するためには
元素配合によって差はあるが、一般に5〜200nmの
膜厚である。
If the reflectance is too low, tracking cannot be performed sufficiently during recording and reproduction, making stable recording and reproduction difficult. On the other hand, if it is too high, it will not be able to absorb enough light and recording will not be possible at all, or high power will be required for recording. It is particularly desirable to set the reflectance before recording in the range of 10 to 50%. In order for the recording film layer to have such a reflectance, it generally has a film thickness of 5 to 200 nm, although it varies depending on the element composition.

本発明において記録膜の成膜方法は特に限定されるもの
ではなく、スパッタリング法、真空蒸着法、イオンブレ
ーティング基筒既存の成膜方法で行うことができる。そ
して、真空蒸着法による成膜時には置板q=を率元素の
蒸着源に印加する直流パワーを徐々に小さくする、また
は、スパッタリング法によるときには高反射率元素のタ
ーゲットへの印加電力パワーを徐々に小さくする等によ
って、所望の濃度勾配を得ろことができる。
In the present invention, the method for forming the recording film is not particularly limited, and may be performed by sputtering, vacuum evaporation, or existing film forming methods for ion blating substrates. Then, when forming a film using the vacuum evaporation method, the DC power applied to the evaporation source of the element with a fixed plate q= is gradually reduced, or when using the sputtering method, the power applied to the target of the high reflectance element is gradually reduced. A desired concentration gradient can be obtained by, for example, making the concentration smaller.

また、上記フロロカーボン中間層はスパッタリング法等
を用いて形成することができる。上記フロロカーボン層
の厚さは5〜1100nが適当である。
Furthermore, the fluorocarbon intermediate layer can be formed using a sputtering method or the like. The appropriate thickness of the fluorocarbon layer is 5 to 1100 nm.

用いられる基板としては、レーザ光を透過するのに十分
透明であれば何でも使用できる。例えば、ガラス、ポリ
エステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、
ポリカーボネイト樹脂およびポリメタクリル樹脂等の透
明性にすぐれた基板材料が使用できる。上記透明性基板
上に、または中間層を積層して記録膜を形成し、この記
録膜上に任意の不透明性部材を貼り合わせても良い。ま
た、上記記録膜上に任意の透明保護層を@層することら
できる。基板の形状は円形、方形等であっても良く、デ
ィスク状、カード状等であっても上い。
Any substrate can be used as long as it is transparent enough to transmit laser light. For example, glass, polyester resin, polyolefin resin, polyamide resin,
Substrate materials with excellent transparency such as polycarbonate resin and polymethacrylic resin can be used. A recording film may be formed on the transparent substrate or by laminating an intermediate layer, and an arbitrary opaque member may be bonded onto this recording film. Further, an arbitrary transparent protective layer can be formed on the recording film. The shape of the substrate may be circular, rectangular, etc., or may be disk-shaped, card-shaped, etc.

上記基板は例えばトラッキング等のための案内溝のよう
な凹凸を有していてら良い。
The substrate may have irregularities such as guide grooves for tracking and the like.

記録等のために用いるレーザ光の波長は特に限定するも
のではないが、1ooon+a以下のものが使用に適し
ている。したがって現在の半導体レーザで、波長が75
0〜850nm領域のものが、有効に使われる。
Although the wavelength of the laser beam used for recording etc. is not particularly limited, a wavelength of 1oooon+a or less is suitable for use. Therefore, with current semiconductor lasers, the wavelength is 75
Those in the 0 to 850 nm region are effectively used.

この場合記録時のパワーとしては、一般に1〜15my
程度の範囲が用いられる。
In this case, the recording power is generally 1 to 15 my
A range of degrees is used.

[実施例コ 以下、実施例により本発明をより詳細に説明する。[Example code] Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例1) 記録部であるグループ部およびトラック案内溝であるラ
ンド部を有するポリカーボネイト製透明円板上にフロロ
カーボン中間層とTe−3eからなる以下にその成膜条
件を示す。チャンバー内を5×1CI@Torrまで真
空引きし、そののちArガスを導入し、A「ガス圧を5
X to−’Toorに設定した。ターゲットとしては
、ポリテトラ皇ロロエチレンのターケラト、Te、。S
 Q + u組成(原子数比)の合金ターゲットおよび
Auのターゲットを用いた。まずポリテトラフロロエヂ
レンのターゲットに高置m r<ターを印加し、I7さ
か2hmのフロロカーホン薄漠を形成しf二。なお同し
条件で成膜しLフロロカーボン薄1莫をESCA法によ
って組成分析すると、l?の含資虫は、P/(F−C)
X100で表わされるFの原子1jl バーセントが5
7%でめった。上記フロロカーボン中間層を形成しfこ
のらTe −Se合金ターゲットに高周波パワー、Au
ターゲットに直流パワーをそれぞれ印加してTe −S
e層中にAu元素か分散されfコ記録膜を得た(膜厚5
0nm)。ここでAuターゲットに印加する直流パワー
を徐々に小さくする条間し条件で成膜した薄膜をESC
A法によって深さ方向のAu元素の濃度分布を測定した
ところ、基板側表面におけるAu元素の濃度は90原子
数パーセントで、それから膜厚方向に向かって濃度は急
激に減少し、記録膜の膜厚の半分のところでAu元元素
変度0%であった。
(Example 1) Conditions for forming a film consisting of a fluorocarbon intermediate layer and Te-3e on a polycarbonate transparent disk having a group portion as a recording portion and a land portion as a track guide groove are shown below. The inside of the chamber was evacuated to 5×1 CI@Torr, then Ar gas was introduced, and the gas pressure was reduced to 5
It was set to X to 'Toor. The target is polytetrafluoroethylene tercerato, Te. S
An alloy target having a Q + u composition (atomic ratio) and an Au target were used. First, a high m r< tar was applied to the polytetrafluoroethylene target to form a fluorocarbon desert of 2 hm above I7 and f2. Furthermore, when the composition of L fluorocarbon thin film formed under the same conditions was analyzed by ESCA method, l? The fruit-bearing insect is P/(F-C)
F atom 1jl represented by X100 percent is 5
It was 7%. After forming the above fluorocarbon intermediate layer, high frequency power was applied to the Te-Se alloy target, and Au
By applying DC power to each target, Te-S
Au elements were dispersed in the e layer to obtain an f-co recording film (film thickness: 5
0nm). Here, the thin film formed under the conditions of gradually reducing the DC power applied to the Au target was subjected to ESC.
When the concentration distribution of the Au element in the depth direction was measured using the A method, the concentration of the Au element on the substrate side surface was 90 atomic percent, and then the concentration decreased rapidly in the direction of the film thickness. The Au elemental variation was 0% at half the thickness.

上述の方法で作成した光ディスクは高反射率を有してお
り、波長780nmの光で基板側から測定した反射率は
ディスクミラ一部で71%であった。上記ディスクに線
速1.4m/s、書き込みパワー9mWでEFM変F!
記録を行ったところ、CNRは55dB。
The optical disk produced by the above method had a high reflectance, and the reflectance measured from the substrate side using light with a wavelength of 780 nm was 71% at a portion of the disk mirror. EFM change F on the above disk at a linear velocity of 1.4 m/s and a writing power of 9 mW!
When recording, the CNR was 55 dB.

ノツターは25nsであり、非常に良好な記録再生特性
を得ることができた。この光ディスクは市販のCDプレ
ーヤで再生可能であった。また上記記録膜1に、ウレタ
ン系接着剤でPETフィルムを貼り付けて保護層を形成
した。この光ディスクでは書き込みパワーにlomWを
要するようになったが、その他の特性は特に変化しなか
った。なお、この発明の光ディスクの記録ピットをSE
M観察すると、バブルの頂上が吹き飛んだカルデラ状の
ピットになっており、ビットエツジの形状は安定(均一
)であった。
The notter was 25 ns, and very good recording and reproducing characteristics could be obtained. This optical disc could be played on a commercially available CD player. Further, a PET film was attached to the recording film 1 using a urethane adhesive to form a protective layer. Although this optical disk required lomW of writing power, other characteristics did not change in particular. Note that the recording pits of the optical disc of this invention are SE
When observed by M, the top of the bubble was blown off to form a caldera-shaped pit, and the shape of the bit edge was stable (uniform).

ところで、Tea。se+5pbs (:原子数比)で
ある記録膜を有する光ディスクを作成し、上述と同様に
E F M変調記録を行ったが、ノツター値は60ns
であり、本実施例に比へ良好ではなかった。またこの先
ディスク表面をS E M観察すると記録ピットのVl
、囲にビット形成時に作られrニリムが観察された。
By the way, Tea. An optical disc having a recording film with se + 5 pbs (atomic ratio) was created, and E FM modulation recording was performed in the same manner as described above, but the notter value was 60 ns.
This was not as good as that of this example. Also, when the disk surface is observed by SEM, the Vl of the recording pit
, r-nirims created during bit formation were observed around the edges.

(に施例2〜4) 実施例Iとは低融へ物質、高反射率元素の種類を変えて
、またはフロロカーホン層を設けないで光学記録媒体を
作成し、実施例1と同様の方法でいずれの実憔例におい
ても良好な特性が得られた。
(Examples 2 to 4) In Example I, an optical recording medium was prepared by changing the type of low melting material and high reflectance element, or without providing a fluorocarbon layer, and by the same method as in Example 1. Good characteristics were obtained in all examples.

以下余白 第 表 )発明の効果コ 以上説明したように、この出願の請求項(1)の光学記
録媒体は、高反射率元素が低融点物質中に分散され、か
つ、記録光が照射される基板側において、上記高反射率
元素の畠度が高くなっているので、高反射率、高コント
ラストを有する光学記録媒体が得られる。
Blank Table below) Effects of the Invention As explained above, the optical recording medium of claim (1) of this application has a high reflectance element dispersed in a low melting point substance and is irradiated with recording light. On the substrate side, since the high reflectance element has a high density, an optical recording medium having high reflectance and high contrast can be obtained.

上記光学記録媒体では、低融点物質層としては請求項(
2)記載のTeまたはTe系合金、高反射率元素として
は請求項(3)記載のAuを用いると高い記録感度が得
られる。
In the above optical recording medium, the low melting point material layer is
High recording sensitivity can be obtained by using Te or a Te-based alloy as described in 2) and Au as described in claim (3) as the high reflectance element.

また請求項(4)のようにフロロカーボン中間層を設け
ると、記録ピットの彩状が均一化するのでノツター値が
良好になる。
Furthermore, when a fluorocarbon intermediate layer is provided as in claim (4), the color of the recording pits becomes uniform, and the knotter value becomes good.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)基板と記録膜とを有し、上記記録膜に記録光を照
射することによつて上記記録膜を変形することにより情
報を記録する光学記録媒体において、上記記録膜は融点
が500℃以下である低融点物質層中に、上記記録光に
対する反射率が上記低融点物質よりも高い高反射率元素
が分散されて形成されており、上記高反射率元素の濃度
が上記記録光の照射側の記録膜表面は高く、記録膜の深
さ方向に向かって低くなるような濃度勾配をもつて分散
されていることを特徴とする光学記録媒体。
(1) In an optical recording medium that has a substrate and a recording film, and records information by deforming the recording film by irradiating the recording film with recording light, the recording film has a melting point of 500°C. A high reflectance element having a higher reflectance to the recording light than the low melting point substance is dispersed in the low melting point material layer, and the concentration of the high reflectance element is lower than the irradiation of the recording light. An optical recording medium characterized in that the surface of the recording film on the side is high and the concentration is distributed with a concentration gradient that decreases toward the depth of the recording film.
(2)上記低融点物質層がTe層もしくはTeを原子数
パーセントで10%以上含有するTe系合金層であるこ
とを特徴とする請求項1記載の光学記録媒体。
(2) The optical recording medium according to claim 1, wherein the low melting point material layer is a Te layer or a Te-based alloy layer containing 10% or more of Te in atomic percent.
(3)上記高反射率元素が、Au元素であることを特徴
とする請求項1または2記載の光学記録媒体。
(3) The optical recording medium according to claim 1 or 2, wherein the high reflectance element is an Au element.
(4)基板上にフロロカーボンを含む中間層が形成され
ており、上記記録膜は上記中間層上に積層されているこ
とを特徴とする請求項1ないし3記載の光学記録媒体。
(4) The optical recording medium according to any one of claims 1 to 3, wherein an intermediate layer containing fluorocarbon is formed on the substrate, and the recording film is laminated on the intermediate layer.
JP63277899A 1988-11-01 1988-11-01 Optical recording medium Pending JPH02122985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63277899A JPH02122985A (en) 1988-11-01 1988-11-01 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277899A JPH02122985A (en) 1988-11-01 1988-11-01 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH02122985A true JPH02122985A (en) 1990-05-10

Family

ID=17589843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277899A Pending JPH02122985A (en) 1988-11-01 1988-11-01 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH02122985A (en)

Similar Documents

Publication Publication Date Title
EP0536406B1 (en) Optical recording medium and its manufacturing
EP1215669B1 (en) Optical information recording medium, method for producing the same, and method and apparatus for recording information thereon
US4650742A (en) Recording media with recording layer of two metal layers sandwiching sublimable organic substance layer
JP2002133712A (en) Optical information recording medium, its manufacturing method, recording/reproducing method and recording/ reproducing device
JP3852408B2 (en) Optical recording medium
JP3752177B2 (en) Write-once optical information recording medium and manufacturing method thereof
JP2005022409A (en) Optical information recording medium and method for manufacturing the same
US6251561B1 (en) Optical information recording medium and manufacturing method thereof
JP2901433B2 (en) Optical recording medium
JPH04298389A (en) Optical recording medium and manufacture thereof
JPH02122985A (en) Optical recording medium
JPS6228941A (en) Information recording medium
JPH1134501A (en) Optical recording medium
JP2948899B2 (en) Optical recording medium and optical recording method
RU2488178C2 (en) Optical information recording medium and method of recording/reproduction for it
JPH02141283A (en) Optical recording medium
JPH0793806A (en) Information recording medium and information recording method
JPH0292683A (en) Optical recording medium
JPH02178086A (en) Optical recording medium
JPH10315622A (en) Optical recording medium
JPH05262040A (en) Optical data recording medium
JPH03240589A (en) Optical data recording medium
JPH02217289A (en) Optical recording medium
JPH02177137A (en) Optical information recording medium
JPH08276660A (en) Optical information recording medium