[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02122593A - Manufacture of printed wiring board - Google Patents

Manufacture of printed wiring board

Info

Publication number
JPH02122593A
JPH02122593A JP27582288A JP27582288A JPH02122593A JP H02122593 A JPH02122593 A JP H02122593A JP 27582288 A JP27582288 A JP 27582288A JP 27582288 A JP27582288 A JP 27582288A JP H02122593 A JPH02122593 A JP H02122593A
Authority
JP
Japan
Prior art keywords
copper
plating
oxide
copper oxide
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27582288A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tsubomatsu
良明 坪松
Naoki Fukutomi
直樹 福富
Akishi Nakaso
昭士 中祖
Yorio Iwasaki
順雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27582288A priority Critical patent/JPH02122593A/en
Publication of JPH02122593A publication Critical patent/JPH02122593A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To simply manufacture a printed wiring board having excellent adhesion between a circuit and an insulated substrate and high concentration by forming a thin layer consisting of an oxide on a temporary holding base material and laminating insulating organic materials for removing the holding base material followed by performing deoxidation treatment and forming a plated circuit pattern by plating. CONSTITUTION:For instance, a copper oxide thin film 2 is formed on a teflon tape 1, and after pressure adhesion of an insulating organic glass cloth - epoxy prepreg 3 and a copper oxide 2 face followed by peeling and removing a teflon film 1 to be dipped in a reducer water solution to deoxidize a copper oxide layer. Next, non-electrolytic copper plating 4 is performed. After flashing and drying, photoresists are laminated and irradiated with ultraviolet rays; developing fluid is sprayed and developed; resist patterns 5 are formed; then non- electrocopperplating (copper sulfate plating) is performed to form copper patter 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、印刷配線板の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing printed wiring boards.

(従来の技術) 印刷配線板の製造法としては、銅張り積層板をエツチン
グして回路加工を行うエツチドフォイル法、絶縁基板に
無電解めっきによって導電性金属を所望の厚さまでめっ
きし配線パターンを形成するアディティブ法、更には絶
縁基板に薄い下地金属層を形成し、めっきレジスト形成
−パターンめっき−めっきレジスト除去−クイックエツ
チングによる回路加工を行うアンクラ7ド法等が提案さ
れている。
(Prior technology) The methods for manufacturing printed wiring boards include the etched foil method, in which circuits are processed by etching a copper-clad laminate, and the etched foil method, in which a conductive metal is plated to a desired thickness on an insulating substrate by electroless plating to form a wiring pattern. Further, there has been proposed an additive method for forming a thin base metal layer on an insulating substrate, and an unclad method for performing circuit processing by forming a plating resist, pattern plating, removing the plating resist, and quick etching.

(発明が解決しようとする課題) エツチドフォイル法に於いては、サイドエツチングの問
題があり高密度配線板の製造は困難である。アディティ
ブ法では、接触剤層付基板表面を粗化液で処理しなけれ
ばならなく、この場合使用できる粗化液のほとんどは酸
化剤を含むものであり、毒性が強い、そのために作業環
境が悪いこと、及び特別な廃液処理が必要である。また
、粗化液に可溶な成分は一般に電気絶縁性が悪い。例え
ば、耐湿絶縁特性、高温絶縁特性の劣化がある。また、
接着剤層の耐熱性が低く、寸法変化率も高いので、高度
な寸法精度やスルーホール接続信頼性が要求される多層
プリント配線板への適用には限界がある。
(Problems to be Solved by the Invention) In the etched foil method, there is a problem of side etching, making it difficult to manufacture high-density wiring boards. In the additive method, the surface of the substrate with the contact agent layer must be treated with a roughening liquid, and most of the roughening liquids that can be used in this case contain oxidizing agents and are highly toxic, resulting in a poor working environment. and special waste liquid treatment is required. In addition, components soluble in the roughening solution generally have poor electrical insulation properties. For example, there is deterioration in moisture-resistant insulation properties and high-temperature insulation properties. Also,
Since the adhesive layer has low heat resistance and a high dimensional change rate, there are limits to its application to multilayer printed wiring boards that require high dimensional accuracy and through-hole connection reliability.

アンクラッド法に於ける配線板の微細・高密度化は下地
金属層の厚さに依存している。
The fineness and high density of wiring boards in the uncladding method depend on the thickness of the underlying metal layer.

すなわち、エツチングする下地金属層の厚さが薄い程エ
ツチング精度が高くなる。そこで高密度配線板を形成す
る場合は5〜9μmと薄い銅箔を用いた銅張り積層板を
ベースとしているが、銅箔のキャリアーであるアルミ箔
(厚さ約50μm)を!1層後動理的あるいは化学的に
除去する必要があることなど欠点がある。
That is, the thinner the underlying metal layer to be etched, the higher the etching accuracy. Therefore, when forming a high-density wiring board, the base is a copper-clad laminate using copper foil as thin as 5 to 9 μm, but aluminum foil (approximately 50 μm thick), which is the carrier of the copper foil, is used as the base! There are disadvantages such as the need to dynamically or chemically remove the first layer.

なお、粗面を有する基板を使ったレプリカ法により形成
した接着性のよい粗面上に無電解めっきを適用して回路
加工する方法もあるが、原版となる粗面を形成する工程
が必要である。
There is also a method of processing circuits by applying electroless plating on a rough surface with good adhesiveness formed by a replica method using a substrate with a rough surface, but this requires a step to form a rough surface as an original. be.

本発明は、回路と絶縁基板間の接着力が優れると共に、
高密度な印刷配線板を簡単な工程で製造する方法を提供
するものである。
The present invention has excellent adhesive strength between the circuit and the insulating substrate, and
The present invention provides a method for manufacturing a high-density printed wiring board through simple steps.

(問題点を解決するための手段) 本発明は、まず、仮の保持基材上に真空蒸着法、スパン
タリング法などで金属酸化物から成る薄層を形成する。
(Means for Solving the Problems) In the present invention, first, a thin layer made of a metal oxide is formed on a temporary holding base material by a vacuum evaporation method, a sputtering method, or the like.

形成する酸化物層の厚さは0.05〜2.0μm程度で
ある。次に絶縁性有機材料を積層し、保持基材を除去す
る。
The thickness of the oxide layer to be formed is approximately 0.05 to 2.0 μm. Next, an insulating organic material is laminated, and the holding base material is removed.

次いで絶縁性有機材料表面にある薄層に還元処理を施し
金属および/または導電性亜酸化物にする0次に無電解
めっき法あるいは無電解銅と電気銅めっきの併用によっ
て金属銅層を所望の厚さまでめっき回路パターンを形成
するようにしたものである。
Next, the thin layer on the surface of the insulating organic material is subjected to a reduction treatment to form a metal and/or conductive suboxide. The desired metallic copper layer is then applied by zero-order electroless plating or a combination of electroless copper and electrolytic copper plating. The plating circuit pattern is formed to the full thickness.

第1図(al〜te+は本発明の一実施例を示すもので
ある。
FIG. 1 (al-te+ shows one embodiment of the present invention.

テフロンテープにチアス側社製商品名、中1501)l
上に真空蒸着装置EBV−6DA(日本真空技術社製)
を用いて、電子ビーム蒸着法により厚さ1.0μmの酸
化銅薄層2を形成する(第り図(al、 (bl) 。
Teflon tape with product name manufactured by Chias, medium 1501)l
Above is a vacuum evaporation device EBV-6DA (manufactured by Nippon Vacuum Technology Co., Ltd.)
A copper oxide thin layer 2 with a thickness of 1.0 μm is formed by electron beam evaporation using a copper oxide thin layer 2 (see Figs. (al, (bl)).

蒸着源    酸化銅 加速電圧   6KV ビーム電流  0.8A 圧力     1. OX 10−’Torr加熱温度
   100℃ 酸素ガス   33CCM 酸化物としては酸化銅だけでなく、亜酸化銅や酸化ニッ
ケル等の適用も可能である。
Vapor deposition source Copper oxide acceleration voltage 6KV Beam current 0.8A Pressure 1. OX 10-'Torr heating temperature 100°C oxygen gas 33CCM As the oxide, not only copper oxide but also cuprous oxide, nickel oxide, etc. can be used.

この場合使用可能な仮の保持基材としてはフッ素系樹脂
フィルムの他に、ポリエチレンテレフタレートフィルム
、ポリイミドフィルム、接着用粗化処理を施した金属板
にフッ素系あるいはポリイミド系樹脂をコーティングし
たもの、ガラス板、鏡面仕上げされたステンレス板等が
挙げられる。
In addition to fluororesin films, the temporary holding base materials that can be used in this case include polyethylene terephthalate films, polyimide films, metal plates coated with fluorine or polyimide resins that have been roughened for adhesion, and glass. Examples include plates, mirror-finished stainless steel plates, and the like.

次に、絶縁性有機ガラス布−エポキシプリプレグ3と酸
化w42面とを加圧接着する(第1図(C1)、積層条
件は成形圧力35kg/aJ、170℃で60分間であ
る。酸化M42を形成した後積層する絶縁性有機基材料
としては他に、変性ポリイミド、ポリイミド、フェノー
ルなど一般の銅張り積層板に用いられる熱硬化性樹脂を
含浸させたガラス布、樹脂シート等を用いることができ
る。また、ポリエチレン、ポリエーテルサルホン、ポリ
エーテルイミドなどの熱可塑性材料も用いることができ
る。
Next, the insulating organic glass cloth-epoxy prepreg 3 and the oxidized W42 surface are bonded together under pressure (Fig. 1 (C1). The lamination conditions are a molding pressure of 35 kg/aJ and a temperature of 170°C for 60 minutes. The oxidized M42 Other examples of the insulating organic base material to be laminated after formation include glass cloth, resin sheets, etc. impregnated with thermosetting resins used in general copper-clad laminates, such as modified polyimide, polyimide, and phenol. Thermoplastic materials such as polyethylene, polyethersulfone, polyetherimide, etc. can also be used.

次に、テフロンフィルムlを剥離除去し、還元剤水溶液
(水素化ホウ素ナトリウム2g/L NaOHL 2.
5 g/、ilI!温55℃)に10分間浸漬して酸化
銅層を還元する。
Next, the Teflon film 1 was peeled off, and a reducing agent aqueous solution (sodium borohydride 2 g/L NaOHL 2.
5 g/, ilI! The copper oxide layer is reduced by immersing it in a temperature of 55° C. for 10 minutes.

2°は還元された銅および/または亜酸化銅である。こ
の場合、還元剤水溶液としてホルマリン、次亜リン酸、
次亜リン酸ナトリウム、抱水ヒドラジン、硫酸ヒドラジ
ン、N、N’トリメチルボラザン、N、N’  −ジメ
チリボラゼンなどの一種又は二種以上を溶解させたもの
でもよい。
2° is reduced copper and/or cuprous oxide. In this case, formalin, hypophosphorous acid,
One or more of sodium hypophosphite, hydrazine hydrate, hydrazine sulfate, N,N'trimethylborazane, N,N'-dimethyliborazane, etc. may be dissolved therein.

次に下記組成及び条件の無電解銅めっき4を行う。Next, electroless copper plating 4 is performed with the following composition and conditions.

Cu5O−・5Hz O=10g/I EDTA・4Na  =40g/l pH=12.3 37%HCHO=3ml/1 めっき液添加量  =少量 めっき液温度   =70℃ めっき膜厚    =3μm なお、酸化銅の代りに亜酸化銅を蒸着した場合は、上記
還元処理工程を経ずに無電解めっきを行うことができる
Cu5O-・5Hz O=10g/I EDTA・4Na=40g/l pH=12.3 37%HCHO=3ml/1 Plating solution addition amount = small amount Plating solution temperature = 70℃ Plating film thickness = 3μm Note that copper oxide If cuprous oxide is deposited instead, electroless plating can be performed without going through the reduction treatment step.

水洗乾燥後、フォトレジストをロールラミネーターによ
りラミネートし、ポジマスクを当て紫外線を照射した後
、現像液スプレーし現像した。形成したレジストパター
ン5のライン/スペースは50μm750μmである(
第1図fdl)、次いで電気銅めっき(硫酸銅めっきを
施し所望する部分に厚さ30μmの銅パターン6を形成
した。
After washing with water and drying, the photoresist was laminated using a roll laminator, a positive mask was applied, and ultraviolet rays were irradiated, followed by spraying a developer and developing. The lines/spaces of the formed resist pattern 5 are 50 μm and 750 μm (
fdl in FIG. 1), and then electrolytic copper plating (copper sulfate plating) was applied to form a copper pattern 6 with a thickness of 30 μm at a desired portion.

レジストパターン5を塩化メチレンで剥離し過硫酸アン
モニウム溶液(濃度:50g/l液度=45℃)で無電
解めっき層5及び還元生成した銅および/また酸化銅層
2°の一部分をエツチングしく第1図cd))、所望す
る配線パターン6を得た。この場合のエツチング液とし
て、過硫酸アンモニウムの銅、鉄塩等の酸素系及び前記
のアルカリ系エッチャント(多過アンモニウム塩系)等
が使用し得る。
First, remove the resist pattern 5 with methylene chloride and etch part of the electroless plating layer 5 and the copper and/or copper oxide layer 2° formed by reduction with an ammonium persulfate solution (concentration: 50 g/l liquid level = 45°C). Figure cd)), a desired wiring pattern 6 was obtained. As the etching solution in this case, oxygen-based etchants such as copper and iron salts of ammonium persulfate, and the above-mentioned alkaline-based etchants (polyammonium persulfate-based) can be used.

上記の工程においてテフロンフィルムlを剥離した後、
次のような種々の工程により配線パターンを得ることも
出来る。
After peeling off the Teflon film l in the above process,
The wiring pattern can also be obtained by various processes such as those described below.

A、レジストパターンを形成し、レジストパターン部以
外に露出している酸化銅を還元し無電解めっき法により
所望する厚さのパターン6を形成し、レジストパターン
を剥離し、レジストパターン下部にあった酸化銅をタイ
ツエツチング除去する方法。
A. Form a resist pattern, reduce the copper oxide exposed outside the resist pattern area, form a pattern 6 with the desired thickness by electroless plating, peel off the resist pattern, and remove the copper oxide exposed at the bottom of the resist pattern. How to remove copper oxide by tight etching.

B、レジストパターンを形成し、レジストパターン部以
外に露出している酸化銅を還元し無電解めっき法と電気
めっき法を併用して所望する厚さのパターンを形成し、
レジストパターンを剥離し、レジストパターン下部にあ
った酸化銅をクイックエツチング除去する方法。
B. Forming a resist pattern, reducing copper oxide exposed outside the resist pattern area, and forming a pattern with a desired thickness using a combination of electroless plating and electroplating;
A method of peeling off the resist pattern and using quick etching to remove the copper oxide located at the bottom of the resist pattern.

C,レジストパターンを形成し、レジストパターン部以
外に露出している酸化銅をクイックエツチング除去し、
レジストパターンを剥離した後、残存している酸化銅を
還元し無電解めっきを施す方法。
C. Form a resist pattern and remove copper oxide exposed outside the resist pattern area by quick etching.
A method in which after the resist pattern is removed, the remaining copper oxide is reduced and electroless plating is applied.

D、酸化銅2を還元処理し、レジストパターン形成後無
電解めっき法あるいは無電解めっき法と電気めっき法を
併用して所望する厚さのパターン6を形成し、レジスト
パターンを剥離した後、還元生成した銅あるいは亜酸化
銅をクイックエツチング除去する方法。
D. Copper oxide 2 is reduced, and after forming a resist pattern, electroless plating or a combination of electroless plating and electroplating is used to form a pattern 6 of desired thickness, and after peeling off the resist pattern, reduction. A quick etching method to remove generated copper or cuprous oxide.

本発明において、還元処理により櫂脂基板に生成する金
属および/または亜酸化物の厚さ及び形状は、保持基材
上に形成される金属酸化物層厚さ、あるいは、還元処理
工程での条件を適宜変更することにより調整できる。
In the present invention, the thickness and shape of the metal and/or suboxide produced on the persimmon substrate by the reduction treatment are determined by the thickness of the metal oxide layer formed on the holding substrate or the conditions in the reduction treatment step. It can be adjusted by changing as appropriate.

還元生成する亜酸化物および/または金属の樹脂基板に
対する接着力は酸化物の樹脂基板に対する接着力に依存
しており、蒸着条件により酸化物形状を変えることで調
整できる。
The adhesion force of the suboxide and/or metal produced by reduction to the resin substrate depends on the adhesion force of the oxide to the resin substrate, and can be adjusted by changing the shape of the oxide depending on the vapor deposition conditions.

(発明の効果) 本発明により、以下の効果を得ることができた。(Effect of the invention) According to the present invention, the following effects could be obtained.

(1)  エツチングによるライン中精度及び絶縁特性
に優れ、かつ配線金属との接着力が高い高密度印刷配線
板を製造できた。
(1) It was possible to produce a high-density printed wiring board with excellent in-line precision and insulation properties by etching, and high adhesive strength with wiring metal.

(2)  還元生成した金属あるいは亜酸化物表面には
微細な凹凸があるため、レジストパターン形成用の粗化
処理が不要であること、更に、無電解めっき用の触媒処
理工程も不要であるため、スループットが著しく向上し
た。
(2) Since the surface of the metal or suboxide produced by reduction has fine irregularities, roughening treatment for resist pattern formation is not necessary, and furthermore, a catalyst treatment process for electroless plating is not necessary. , throughput was significantly improved.

(3)  レプリカ法に比べ、接着層(例えば、酸化銅
の形状をもった亜酸化銅あるいは銅層)の形成が容易で
直に配線形成用下地層として使用できるため、コストの
低減、生産性に向上を図ることができた。
(3) Compared to the replica method, it is easier to form an adhesive layer (for example, a cuprous oxide or copper layer in the shape of copper oxide) and it can be used directly as a base layer for wiring formation, reducing costs and increasing productivity. We were able to improve this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(e)は本発明の方法を示す断面図であ
る。 符号の説明 1 保持基材 2 #I化銅 銅および/または亜酸化銅層 プリプレグ 無電解銅めっき レジスト (b) (c) (e) 第 図
Figures 1 (al to e) are cross-sectional views showing the method of the present invention. Explanation of symbols 1 Holding base material 2 #I cupric copper and/or cuprous oxide layer prepreg electroless copper plating resist (b) (c) (e) Figure

Claims (1)

【特許請求の範囲】[Claims] 1.仮の保持基材上に酸化物から成る薄層 を形成し、この薄層面に絶縁性有機材料を積層し、保持
基材を除去し、還元剤溶液を接触後、導電性金属をめっ
きする工程を含む回路加工を行うことを特徴とする印刷
配線板の製造法。
1. A process of forming a thin layer of oxide on a temporary holding base material, layering an insulating organic material on the surface of this thin layer, removing the holding base material, and plating a conductive metal after contacting with a reducing agent solution. A method for manufacturing a printed wiring board characterized by performing circuit processing including.
JP27582288A 1988-10-31 1988-10-31 Manufacture of printed wiring board Pending JPH02122593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27582288A JPH02122593A (en) 1988-10-31 1988-10-31 Manufacture of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27582288A JPH02122593A (en) 1988-10-31 1988-10-31 Manufacture of printed wiring board

Publications (1)

Publication Number Publication Date
JPH02122593A true JPH02122593A (en) 1990-05-10

Family

ID=17560908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27582288A Pending JPH02122593A (en) 1988-10-31 1988-10-31 Manufacture of printed wiring board

Country Status (1)

Country Link
JP (1) JPH02122593A (en)

Similar Documents

Publication Publication Date Title
US6212769B1 (en) Process for manufacturing a printed wiring board
US4868071A (en) Thermally stable dual metal coated laminate products made from textured polyimide film
US4725504A (en) Metal coated laminate products made from textured polyimide film
JP3210675B2 (en) Metal layer deposition method
US4832799A (en) Process for coating at least one surface of a polyimide sheet with copper
US4424095A (en) Radiation stress relieving of polymer articles
JPS62158393A (en) Manufacture of printed circuit
US4806395A (en) Textured polyimide film
JPH0255943B2 (en)
US4894124A (en) Thermally stable dual metal coated laminate products made from textured polyimide film
JPH07297543A (en) Metal-clad glass epoxy resin board for printed wiring board
JPS63168077A (en) Manufacture of printed wiring board
US5015517A (en) Textured polyimide film
JPH05259611A (en) Production of printed wiring board
JPH02122593A (en) Manufacture of printed wiring board
JP3928392B2 (en) Method for manufacturing printed wiring board
JP2624068B2 (en) Manufacturing method of printed wiring board
JPH01124287A (en) Manufacture of printed-circuit board
JPH05320928A (en) Electroless plating liquid and plating method for molded product
JPS6182497A (en) Manufacture of printed circuit board
JPS63280496A (en) Manufacture for multilayer circuit board
JP2003183857A (en) Etchant and method for manufacturing circuit board therewith
JPS63188992A (en) Manufacture of printed wiring board
JPH01124292A (en) Manufacture of insulating substrate having metal thin layer
JPH03203394A (en) Manufacture of insulating substrate with thin metallic layer and manufacture of wiring board using insulating substrate manufactured thereby