[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02121932A - Hemoglobin-containing liposome, preparation thereof and raw solution for same preparation - Google Patents

Hemoglobin-containing liposome, preparation thereof and raw solution for same preparation

Info

Publication number
JPH02121932A
JPH02121932A JP63275663A JP27566388A JPH02121932A JP H02121932 A JPH02121932 A JP H02121932A JP 63275663 A JP63275663 A JP 63275663A JP 27566388 A JP27566388 A JP 27566388A JP H02121932 A JPH02121932 A JP H02121932A
Authority
JP
Japan
Prior art keywords
hemoglobin
capsule
amount
lipids
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63275663A
Other languages
Japanese (ja)
Inventor
Hidetoshi Tsuchida
英俊 土田
Hiroyuki Ono
弘幸 大野
Shinji Takeoka
真司 武岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Production Development
Original Assignee
Research Institute for Production Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Production Development filed Critical Research Institute for Production Development
Priority to JP63275663A priority Critical patent/JPH02121932A/en
Publication of JPH02121932A publication Critical patent/JPH02121932A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
    • A61K9/1277Preparation processes; Proliposomes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

PURPOSE:To provide a liposome capsuled with a single-layered two molecular membrane, obtained from a lipid comprising mainly a phospholipid and hemoglobin in predetermined amounts, respectively, having a thin membrane thickness and an uniform particle size and capable of being utilized as an artificial erythrocyte having a high oxygen-carrying ability and high safety. CONSTITUTION:A lipid comprising mainly a phospholipid in an amount W(mol/l) obtained by a calculation equation of formula I [r is the radius (Angstrom ) of a capsule; d is the membrane thickness (Angstrom ) of the capsule; N is the concentration (capsule/l) of the capsule; NA is Avogadro number; S is the average value (Angstrom <2>) of the molecular occupying area of the phospholipid] is homogeneously dispersed in and mixed with hemoglobin in an amount determined by a calculation equation of formula II {[Hb]i is the concentration (g/l) of Hb (hemoglobin) charge on the preparation of the capsule; [Hb]f is the final concentration of the Hb} to give an initial capsule, which is subjected to processes comprising a capsulation process by an extrusion method, a process for improving the packaging efficiency of the capsule by a freezing melting method and a process for controlling the size of the capsule by an extrusion method to provide a hemoglobin-containing liposome capsuled with a single layered two molecular membrane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヘモグロビン含有リポソーム、その製造方法
および該製造方法用の原液に関するもので、その目的と
するところはリポソームの膜厚が薄く、リポソームの粒
径が均一なヘモグロビン含をリポソームを工業的に提供
する点にある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a hemoglobin-containing liposome, a method for producing the same, and a stock solution for the production method. The object of the present invention is to industrially provide hemoglobin-containing liposomes having a uniform particle size.

本発明に係るヘモグロビン含有リポソームは、酸素運搬
機能および安全性の高い人工赤血球として利用しうるち
のである。
The hemoglobin-containing liposome according to the present invention can be used as an artificial red blood cell with high oxygen transport function and high safety.

〔従来の技術] タンパク質などの生体高分子をカプセル化する技術は、
医薬、薬学、工学、食品科学、細胞工学などの各分野に
おいてきわめて重要な役割を果たしている。すでに多(
の技術が開発されており、体内投与にも利用されている
が、いずれも未解決の技術的な問題点を有している。近
年、リン脂質を主成分とする脂質類をカプセル構築材料
とじて利用することにより安全で、生体投与に利用でき
るものが作られるようになってきた。ヘモグロビン含有
リポソームがその一つである。
[Conventional technology] The technology for encapsulating biopolymers such as proteins is
It plays an extremely important role in various fields such as medicine, pharmacy, engineering, food science, and cell engineering. There are already many (
Although these technologies have been developed and are also used for intracorporeal administration, they all have unresolved technical problems. In recent years, by using lipids mainly composed of phospholipids as capsule construction materials, capsules that are safe and can be administered to living organisms have been made. One of them is hemoglobin-containing liposomes.

ヘモグロビン含有リポソーム製造技術の中心をなす従来
法はいわゆる薄膜法と呼ばれる。即ち、リポソーム形成
脂質をクロロホルム等の適当な有機溶媒に溶解し、得ら
れた溶液から溶媒を留去して脂質の薄膜をつくり、この
薄膜に溶血ヘモグロビン水溶液を加え、激しく攪拌して
多重層リポソームを形成し、次にこれを超音波処理する
という方法である(米国特許筒4,133.874号)
。この薄膜法によって製造されたヘモグロビン含有リポ
ソームが保存中に、リポソーム中のヘモグロビンのヘム
鉄が徐々に酸化されてメトヘモグロビンに変質して酸素
の運搬機能を失うおそれがあるので、これを防止するた
めに、リポソーム膜が水素添加率50%以上の水素添加
リン脂質を主成分とするものも提案されている(特公昭
63−211230号)。
The conventional method that forms the core of the technology for producing hemoglobin-containing liposomes is called the so-called thin film method. That is, liposome-forming lipids are dissolved in a suitable organic solvent such as chloroform, the solvent is distilled off from the resulting solution to form a thin lipid film, and an aqueous solution of hemolyzed hemoglobin is added to this thin film, followed by vigorous stirring to form multilamellar liposomes. This is a method of forming and then subjecting it to ultrasonic treatment (U.S. Patent No. 4,133.874).
. During storage of hemoglobin-containing liposomes produced by this thin film method, the heme iron of the hemoglobin in the liposomes may gradually oxidize and transform into methemoglobin, which may lose its oxygen transport function. Furthermore, a liposome membrane in which the main component is a hydrogenated phospholipid with a hydrogenation rate of 50% or more has been proposed (Japanese Patent Publication No. 211230/1983).

尚、ヘモグロビン含有リポソームを製造する過程で(1
)物理刺激による初期カプセル化工程〔ポルテックス(
+ガラスピーズ) B、P、Gaber、  P、Ya
ger、  J、P、5heridan、  and 
 E、L、Chang  FEBSLett153、2
85 (1983)) 、(2)エクストルージョン法
によるカプセル化工程(B、P、Gaber、  an
d  M、C,Farmer Prog、 Cl1n、
 Biol、 Res、 165.179 (1984
))及び(3)エクストルージョン法による粒径制御工
程(M、J、Hope、  M、B、Ba1ly、  
G、Webb  and  P、R,Cu11is  
Biochin、    Biophys、  Acむ
a  812. 55  (1985)〕が用いられる
ことは公知である。
In addition, in the process of producing hemoglobin-containing liposomes (1
) Initial encapsulation process by physical stimulation [Portex (
+Glass Peas) B, P, Gaber, P, Ya
ger, J, P, 5heridan, and
E, L, Chang FEBSLett153, 2
85 (1983)), (2) Encapsulation process by extrusion method (B, P, Gaber, an
d M, C, Farmer Prog, Cl1n,
Biol, Res, 165.179 (1984
)) and (3) particle size control step by extrusion method (M, J, Hope, M, B, Bally,
G, Webb and P, R, Cu11is.
Biochin, Biophys, Acmua 812. 55 (1985)] is known to be used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

いずれにせよ、従来の薄膜法の欠点は製造されたリポソ
ームが多重層であり、ヘモグロビン含有リポソームの粘
性が高く、血流循環動態が不良となり、更にはリポソー
ムを形成する脂質類が多いということは毒性になって表
われるという点にある。そこで、このリポソームを単層
2分子膜で形成するための研究がなされているが、未だ
工業的に使える技術は確立されていない。
In any case, the disadvantages of the conventional thin film method are that the produced liposomes are multilayered, the viscosity of the hemoglobin-containing liposomes is high, the blood circulation dynamics are poor, and furthermore, there are many lipids that form the liposomes. The point is that it becomes toxic. Therefore, research has been conducted to form liposomes with a single bilayer membrane, but an industrially usable technology has not yet been established.

本発明の技術的課題は、リポソームの膜をリン脂質を主
成分とする脂質類の単層2分子膜とするための技術を工
業的に確立することにあり、リポソームの粘性が低く、
血流循環動態が良好で、毒性の極めて少ない安全性の高
いヘモグロビン含有リポソームを安価に提供せんとする
ものである。
The technical problem of the present invention is to industrially establish a technology for forming a liposome membrane into a monolayer bimolecular membrane of lipids mainly composed of phospholipids.
The purpose of the present invention is to provide a highly safe hemoglobin-containing liposome with good blood circulation dynamics and extremely low toxicity at a low cost.

〔課題を解決するための手段〕と〔作用〕即ち、本発明
は次の三発明である。
[Means for Solving the Problems] and [Operations] That is, the present invention consists of the following three inventions.

(1)リン脂質を主成分とする脂質類の単層2分子膜を
形成するに必要な量を 計算式1 〔ただし、Wは必要なリン脂質を主成分とする脂質類の
t (mol/l)、rはカプセル半径(入)、Δdは
カプセル膜厚(人)、Nはカプセル濃度(個/1)、N
Aはアボガドロ数(6,02XIO”) 、Sはリン脂
質を主成分とする脂質類の分子占有面積の平均値(人2
)〕 で求め、 前記リン脂質を主成分とする脂質類の単層2分子膜を形
成するに必要な世で形成されるリポソーム内に含有させ
ることのできるヘモグロビンの量を 計算式2 %式%) 〔ただし、(Hb)えはカプセル調整時に仕込むHb(
ヘモグロビン)の濃度(g/l)、〔Hba Fは最終
Hb1度(g/l)、rはカプセル半径(人)、Nはカ
プセル濃度(個/l)〕で求め、 前記計算式1で求めた量のリン脂質を主成分とする脂質
類を前記計算式2で求めた世のヘモグロビンに均一分散
混合して物理刺激による初期カプセル化されたヘモグロ
ビン含有リポソーム製造用の原液を使用して製造された
リン脂質を主成分とする脂質類の単層2分子膜でカプセ
ル化されたヘモグロビン含有リポソーム。
(1) Calculate the amount required to form a monolayer bimolecular membrane of lipids whose main component is phospholipid using formula 1 [where W is t (mol/mol/ l), r is capsule radius (in), Δd is capsule membrane thickness (person), N is capsule concentration (pieces/1), N
A is Avogadro's number (6,02
)] Calculate the amount of hemoglobin that can be contained in the liposomes formed by the process necessary to form a monolayer bilayer membrane of lipids containing phospholipids as the main component. ) [However, (Hb) is added to the Hb (
Hemoglobin) concentration (g/l), [Hba F is the final Hb 1 degree (g/l), r is the capsule radius (person), N is the capsule concentration (units/l)], and is calculated using the above formula 1. It is manufactured using a stock solution for producing hemoglobin-containing liposomes that is initially encapsulated by physical stimulation by uniformly dispersing and mixing a certain amount of lipids whose main component is phospholipid into the hemoglobin obtained using the above calculation formula 2. A hemoglobin-containing liposome encapsulated in a monolayer bilayer membrane of lipids whose main component is phospholipid.

(2)リン脂質を主成分とする脂質類の単層2分子膜を
形成するに必要な量を 計算式1 NA−3 〔ただし、Wは必要なリン脂質を主成分とする脂質類の
量(mol/1)、rはカプセル半径(λ)、Δdはカ
プセル膜厚(人)、Nはカプセル濃度(個/l)、NA
はアボガドロ数(6,02X1023) 、Sはリン脂
質を主成分とする脂質類の分子占有面積の平均値(入2
)〕 で求め、 前記リン脂質を主成分とする脂質類の単層2分子膜を形
成するに必要な量で形成されるリポソーム内に含有させ
ることのできるヘモグロビンの量を 計算式2 %式%) 〔ただし、(Hb)iはカプセル調整時に仕込むHb(
ヘモグロビン)の濃度(g/l)、〔Hb)Fは最終H
b、il1度(g/l)、rはカプセル半径(人)、N
はカプセル濃度(個/l)〕で求め、 前記計算式lで求めた量のリン脂質を主成分とする脂質
類を前記計算式2で求めた量のヘモグロビンに均一分散
混合して物理刺激による初期カプセル化されたヘモグロ
ビン含有リポソーム製造用の原液をエクストルージョン
法によるカプセル化工程、凍結融解法による内包効率の
向上化工程及びエクストルージョン法による粒径制御工
程にかけることからなるリン脂質を主成分とする脂質類
の単層2分子膜でカプセル化されたヘモグロビン含有リ
ポソームの製造方法。
(2) Calculate the amount necessary to form a monolayer bimolecular membrane of lipids whose main component is phospholipid using formula 1 NA-3 [where W is the amount of lipids whose main component is phospholipid] (mol/1), r is capsule radius (λ), Δd is capsule membrane thickness (people), N is capsule concentration (pieces/l), NA
is Avogadro's number (6,02X1023), S is the average value of the molecular occupied area of lipids whose main component is phospholipid (input 2
)] Calculate the amount of hemoglobin that can be contained in a liposome formed in an amount necessary to form a monolayer bilayer membrane of lipids containing phospholipids as the main component using the formula 2% Formula % ) [However, (Hb)i is Hb (
(hemoglobin) concentration (g/l), [Hb)F is the final H
b, il1 degree (g/l), r is capsule radius (person), N
is determined by the capsule concentration (capsules/l)], and the amount of lipids mainly composed of phospholipids determined by the above calculation formula 1 is uniformly dispersed and mixed with the amount of hemoglobin determined by the above calculation formula 2, and the mixture is subjected to physical stimulation. The main ingredient is phospholipid, which is made by subjecting the stock solution for producing initially encapsulated hemoglobin-containing liposomes to an encapsulation process using an extrusion method, an encapsulation efficiency improvement process using a freeze-thaw method, and a particle size control process using an extrusion method. A method for producing a hemoglobin-containing liposome encapsulated in a monolayer bilayer membrane of lipids.

(3)リン脂質を主成分とする脂質類の単層2分子膜を
形成するに必要な量を 計算式1 〔ただし、Wは必要なリン脂質を主成分とする脂質類の
量(mol/I)、rはカプセル半径(入)、Δdはカ
プセル膜厚(人)、Nはカプセル濃度(個/l)、NA
はアボガドロ数(6,02X1023) 、Sはリン脂
質を主成分とする脂質類の分子占有面積の平均値(人2
)〕 で求め、 前記リン脂質を主成分とする脂質類の単層2分子膜を形
成するに必要な量で形成されるリポソーム内に含有させ
ることのできるヘモグロビンの量を 計算式2 %式%) (ただし、(Hb)iはカプセル調整時に仕込むHb(
ヘモグロビン)の濃度(g/l)、(Hb)rは最終H
b1度(g/l)、rはカプセル半径(人)、Nはカプ
セル濃度(個/l)〕で求め、 前記計算式1で求めた量のリン脂質を主成分とする脂質
類を前記計算式2で求めた量のヘモグロビンに均一分散
混合して物理刺激による初期カプセル化されたヘモグロ
ビン含有リポソーム製造用の原液。
(3) Calculate the amount required to form a monolayer bimolecular membrane of lipids whose main component is phospholipid using formula 1 [where W is the amount of lipids whose main component is phospholipid (mol/ I), r is capsule radius (in), Δd is capsule membrane thickness (person), N is capsule concentration (pieces/l), NA
is Avogadro's number (6,02X1023), and S is the average molecular area occupied by lipids whose main component is phospholipid (2 people).
)] Calculate the amount of hemoglobin that can be contained in a liposome formed in an amount necessary to form a monolayer bilayer membrane of lipids containing phospholipids as the main component using the formula 2% Formula % ) (However, (Hb)i is Hb (
Hemoglobin) concentration (g/l), (Hb)r is the final H
b1 degree (g/l), r is the capsule radius (person), N is the capsule concentration (capsules/l)], and the amount of lipids mainly composed of phospholipids determined by the above calculation formula 1 is calculated using the above calculation. A stock solution for producing hemoglobin-containing liposomes that is homogeneously dispersed and mixed with the amount of hemoglobin determined by Formula 2 and subjected to initial encapsulation by physical stimulation.

次に、本発明の構成をより詳細に作用とともに説明すれ
ば次の通りである。
Next, the structure of the present invention will be explained in more detail along with its operation as follows.

カプセルとして使用するリン脂質を主成分とする脂質類
は水中で集合して2分子膜と呼ばれる超薄膜を形成する
。条件によって、これらは3次元的に閉じた中空球(カ
プセル)を形成するが、使用するリン脂質を主成分とす
る脂質類の量はリン脂質を主成分とする脂質類の層数(
n)、カプセル半径(r)、カプセル濃度(個/I)(
N)によって規定される。カプセルの半径を決定した場
合、最も影響のあるのがカプセルを形成している脂質膜
の数(層数)である、即ち、最小の2分子膜(単層)で
カプセルを形成できれば、最も効率的な内包が可能とな
る。しかも人間の血液中のヘモグロビンは単層2分子膜
で被覆されていることから、効率的内包もさることなが
ら生理的にも理想的である。この場合のリン脂質を主成
分とする脂質類の使用量は幾何学的に算出可能である。
Lipids mainly composed of phospholipids used as capsules aggregate in water to form an ultra-thin film called a bilayer membrane. Depending on the conditions, they form a three-dimensionally closed hollow sphere (capsule), but the amount of lipids mainly composed of phospholipids used depends on the number of layers of lipids mainly composed of phospholipids (
n), capsule radius (r), capsule concentration (pieces/I) (
N). When determining the radius of a capsule, the most influential factor is the number of lipid membranes forming the capsule (number of layers). Connotation becomes possible. Furthermore, since hemoglobin in human blood is coated with a single-layer bimolecular membrane, it is ideal not only for efficient encapsulation but also physiologically. In this case, the amount of lipids whose main component is phospholipid can be calculated geometrically.

即ち、リン脂質を主成分とする脂X類の物理化学諸定数
(リン脂質を主成分とする脂質類の分子占有面積の平均
値(S)、カプセル膜厚(Δd)など)が明らかであれ
ば、使用最小リン脂質を主成分とする脂質類の量は、リ
ン脂質を主成分とする脂質類の分子量及び上述の諸定数
から算出され、nとNの関数となる。こうして決定され
たリン脂質を主成分とする脂¥を類の量を内包ヘモグロ
ビン(Hb)溶液に対して混合すればよい訳である。
That is, if the physicochemical constants of lipids For example, the amount of lipids whose main component is the minimum phospholipid used is calculated from the molecular weight of the lipids whose main component is phospholipid and the above-mentioned constants, and becomes a function of n and N. It is sufficient to mix the thus determined amount of fat whose main component is phospholipid into the encapsulated hemoglobin (Hb) solution.

内包ヘモグロビン溶液の量はカプセルに内包できる量で
あるから、これも算出できる。
Since the amount of encapsulated hemoglobin solution is the amount that can be included in the capsule, this can also be calculated.

カプセルの高均質化は、特に体内投与に供する時に重要
である。例えば、血中投与の場合、粒径の不揃いは、毛
細血管での血栓形成につながり、致命的な欠陥となるこ
とがある0本発明では前記計算式lで求めた量のリン脂
質を主成分とする脂質類を前記計算式2で求めた量のヘ
モグロビンに均一分散混合して物理刺激による初期カプ
セル化されたヘモグロビン含有リポソーム製造用の原液
をエクストルージョン法によるカプセル化工程、凍結融
解法による内包効率の向上化工程にかけ、更にエクスト
ルージョン法による粒径制御工程にかけ、即ち、メンブ
ランフィルタ−を利用し、せん断力でカプセル化を促進
させるとともに、生成カプセルの粒径選択を行うもので
ある。この操作により、使用フィルターの孔径外以上の
カプセルは系外へ除くことができる。当然ながら、孔径
以下の粒径を持つカプセルは系内に残ることになるが、
これは上述の凍結融解法の採用により解決できる。即ち
、リン脂質を主成分とする脂質類から成るカプセルは粒
径が小さいほど不安定で融合し易いという特徴を持って
いる。そこで、凍結融解操作を繰り返すことにより、カ
プセルの粒径は大きくなり揃ってくることになる。当然
ながら、部のカプセルは設定粒径以上になるので、これ
を、再度フィルターにかけ、粒径揃えを完了させ、これ
も完成品に加える。
High homogenization of capsules is important, especially when they are intended for internal administration. For example, in the case of blood administration, uneven particle size may lead to thrombus formation in capillaries, resulting in a fatal defect. A stock solution for producing hemoglobin-containing liposomes is obtained by uniformly dispersing and mixing the lipids in the amount of hemoglobin determined by the above calculation formula 2, and is initially encapsulated by physical stimulation. In addition to the efficiency improvement step, the product is subjected to a particle size control step using an extrusion method, that is, a membrane filter is used to promote encapsulation with shear force, and the particle size of the produced capsules is selected. By this operation, capsules larger than the pore size of the filter used can be removed from the system. Naturally, capsules with a particle size smaller than the pore size will remain in the system, but
This can be solved by employing the freeze-thaw method described above. That is, capsules made of lipids mainly composed of phospholipids have the characteristic that the smaller the particle size, the more unstable they are and the easier they are to fuse. Therefore, by repeating the freeze-thaw operation, the particle size of the capsules increases and becomes uniform. Naturally, the capsules in the first part are larger than the set particle size, so they are filtered again to complete the particle size adjustment and added to the finished product.

ヘモグロビンを内包するときに問題とされるのは、出発
ヘモグロビン溶液が高濃度であっても、内包段階で希釈
されることである。それを回避するために、高濃度ヘモ
グロビン溶液とリン脂質を主成分とする脂質類とを直接
混合し、高濃度状態でカプセル化を行うと共に、内包を
完了させることが好ましい。内包効率を高めるために凍
結融解法を利用し、カプセル内外のヘモグロビン濃度の
差を極力無くすようにする。
A problem when encapsulating hemoglobin is that even if the starting hemoglobin solution is highly concentrated, it is diluted during the encapsulation stage. In order to avoid this, it is preferable to directly mix a high-concentration hemoglobin solution and lipids mainly composed of phospholipids, perform encapsulation in a high-concentration state, and complete the encapsulation. In order to increase the encapsulation efficiency, a freeze-thaw method is used to minimize the difference in hemoglobin concentration inside and outside the capsule.

内包するヘモグロビン溶液の濃度は自由に調整できる。The concentration of the contained hemoglobin solution can be adjusted freely.

濃い溶液を使用すればそれだけ内包するヘモグロビン溶
液も濃くなる。しかし、50wt%以上では粘度が高く
取扱いが不便である。
The more concentrated the solution is, the more concentrated the hemoglobin solution will be. However, if it exceeds 50 wt%, the viscosity is high and handling is inconvenient.

リン脂質はレシチン、大豆レシチン、コーンレシチン、
綿実油レシチン、ナタネレシチン、等の天然リン脂質、
水素添加された前記天然リン脂質が好適であるが天然リ
ン脂質に限定されるものではない。
Phospholipids include lecithin, soybean lecithin, corn lecithin,
Natural phospholipids such as cottonseed oil lecithin, rapeseed lecithin, etc.
Hydrogenated natural phospholipids are preferred, but the invention is not limited to natural phospholipids.

カプセルの安定化は多くの方法が提出されているが、中
でも成分の重合による膜の高分子化が有効である。もち
ろん、重合前後での成分の分子充填状態に変化がないこ
とが要件であるが、これは、本発明の実施例で使用する
重合性リン脂質(D。
Many methods have been proposed for stabilizing capsules, among which polymerization of membranes through polymerization of components is effective. Of course, it is a requirement that there be no change in the molecular packing state of the components before and after polymerization, but this is due to the polymerizable phospholipid (D) used in the examples of the present invention.

DPC)に於いては問題が無いことが既に物理化学的に
証明されている。また、重合操作そのものが内包高分子
の変性を引き起こすことが懸念されるが、これも毒性の
少ないラジカル重合開始剤を紫外光にて間然(活性化)
させる低温光開始重合法を利用するか、あらかじめ選択
重合した高分子化リン脂質を用いカプセル化後に架橋さ
せることにより安定高分子カプセルを得ることにより回
避できる。
It has already been physicochemically proven that there is no problem with DPC). Additionally, there is a concern that the polymerization process itself may cause denaturation of the encapsulated polymer, but this is also possible due to the activation of the less toxic radical polymerization initiator with ultraviolet light.
This can be avoided by obtaining a stable polymer capsule by using a low-temperature photoinitiated polymerization method or by crosslinking after encapsulation using polymerized phospholipids that have been selectively polymerized in advance.

なお、カプセルの強度を高めるためにコレステロール等
の脂質類を、カプセルの凝集を防止するためにホスファ
チジン酸等を添加することは公知であるが、本発明にも
もちろん採用できる。
It is known that lipids such as cholesterol are added to increase the strength of the capsule, and phosphatidic acid and the like are added to prevent capsule aggregation, but these can of course be adopted in the present invention.

〔実施例〕〔Example〕

以下に本発明を実施例によって説明する。 The present invention will be explained below by way of examples.

実施例1 保持容量 130nmで7.2  (1/mol)(L
ipid  (脂質類))r=6.2wt%(Hb)ム
=15wt% (Hb)F=8.5社% (r=1300人、Δd=37人、5=58人、N= 
3.0X10”個/l) 卵黄レシチン30gを、ヘモグロビン45gを含む生理
食塩水溶液300cc (15wt%)と混合し、無酸
素下においてホモジェナイザーにて4°Cで3時間処理
して均一に分散混合して物理刺激による初期カプセル化
されたヘモグロビン含有リポソーム製造用の原液を得た
Example 1 Retention capacity 7.2 (1/mol) (L) at 130 nm
ipid (lipid)) r = 6.2 wt% (Hb) M = 15 wt% (Hb) F = 8.5 company% (r = 1300 people, Δd = 37 people, 5 = 58 people, N =
3.0 x 10" pieces/l) 30 g of egg yolk lecithin was mixed with 300 cc (15 wt%) of a physiological saline solution containing 45 g of hemoglobin, and treated with a homogenizer at 4°C for 3 hours under anoxic conditions to uniformly disperse the mixture. By mixing, a stock solution for producing initially encapsulated hemoglobin-containing liposomes by physical stimulation was obtained.

実施例2 実施例1で得た物理刺激による初期カプセル化されたヘ
モグロビン含有リポソーム製造用の原液を孔径8μmの
ヌクレボアメンプランフィルターを装着したシリンジに
入れ、ガス圧(10kg/d)をかけて、2回通過させ
た。この分散液を6pm、4 pm、2pm、1 pm
、0.8μm%0.45μm、0.2μmの孔径を有す
るフィルターに順次同様にして通過させエクストルージ
ョン法によるカプセル化を行った。(得られた分散液の
一部を希釈して半弾性光散乱法にて測定し、平均粒径6
5nm±20nmの単層2分子膜リポソームが得られて
いることを確認した。)得られた分散液をドライアイス
・メタノール中で凍結させた後、40℃の湯浴中で融解
し、凍結融解法による内包効率の向上化を行った。この
分散液を5 kg/cdの圧力で孔径0.4μmのフィ
ルターを通過させ、エクストルージョン法による粒径制
御を行った。この段階で平均半径7Tnm±28nmの
リポソームを得た。上記の凍結融解法による内包効率の
向上化工程及びエクストルージョン法による粒径制御工
程を更に5回繰り返した。この繰り返しで、平均半径L
15nm±15nmの単N2分子膜リポソーム系を得た
。次いで0.2μmの孔径をもつフォロファイバーから
なる透析チューブを利用し、減圧にすることにより、僅
かに残る未内包ヘモグロビンと粒径の小さなフラクショ
ンを除くと共に溶液の濃縮を行った。最終的には、ヘモ
グロビン含有リポソームの平均半径は130nm±12
nmで、シアノメト法により定量したヘモグロビン最終
濃度5,1wt%、モリブデンリン酸法にて定量した脂
質濃度6.2wt%のヘモグロビン含有リポソームを得
た。
Example 2 The stock solution for producing initially encapsulated hemoglobin-containing liposomes by physical stimulation obtained in Example 1 was put into a syringe equipped with a nucleobor membrane filter with a pore size of 8 μm, and gas pressure (10 kg/d) was applied. , passed twice. This dispersion was added at 6 pm, 4 pm, 2 pm, and 1 pm.
, 0.8 μm%, 0.45 μm, and 0.2 μm in the same manner, and encapsulation was performed by extrusion method. (A part of the obtained dispersion was diluted and measured by semi-elastic light scattering method, and the average particle size was 6.
It was confirmed that a monolayer bilayer liposome of 5 nm±20 nm was obtained. ) The resulting dispersion was frozen in dry ice/methanol, then thawed in a 40°C water bath, and the encapsulation efficiency was improved by a freeze-thaw method. This dispersion was passed through a filter with a pore size of 0.4 μm at a pressure of 5 kg/cd, and the particle size was controlled by an extrusion method. At this stage, liposomes with an average radius of 7 Tnm±28 nm were obtained. The step of improving encapsulation efficiency using the freeze-thaw method and the particle size control step using the extrusion method were repeated five more times. By repeating this, the average radius L
A single N2 molecular membrane liposome system of 15 nm±15 nm was obtained. Next, by applying reduced pressure using a dialysis tube made of follower fiber with a pore size of 0.2 μm, the remaining unencapsulated hemoglobin and fractions with small particle sizes were removed and the solution was concentrated. Finally, the average radius of hemoglobin-containing liposomes was 130 nm ± 12
A hemoglobin-containing liposome was obtained with a final hemoglobin concentration of 5.1 wt% as determined by the cyanomet method and a lipid concentration of 6.2 wt% as determined by the molybdenum phosphate method.

(理論的に計算されたヘモグロビン最終濃度、即ち(H
b ) f = 8.5wt%であったが実測値は5゜
1iit%であった。) 実施例3 保持容iL150nmで8.3  (1/mol)(L
ipid  (脂質類))r−5,swt%(Hb )
 l= 15wt% (Hb)F=6.7wt、% 水添卵黄レシチン(H−EYL) 、コレステロール(
Chol) 、ホスファチジン酸(PA)のアルコール
混合溶液を調製した。組成はH−EYL/Chol=O
,T 〜1.5 、H−EYL/PA=T〜10を満足
すれば良い。
(Theoretically calculated hemoglobin final concentration, i.e. (H
b) f = 8.5wt%, but the actual value was 5°1iit%. ) Example 3 Holding volume iL 8.3 (1/mol) (L
ipid (lipids)) r-5, swt% (Hb)
l = 15wt% (Hb) F = 6.7wt, % Hydrogenated egg yolk lecithin (H-EYL), cholesterol (
An alcohol mixed solution of phosphatidic acid (PA) was prepared. The composition is H-EYL/Chol=O
, T ~1.5, and H-EYL/PA=T~10.

上記混合溶液を用いて、その他は実施例1及び2と同様
にしてヘモグロビン含有リポソームを調製した。フィル
ターを通過時に必要な圧力は実施例2の圧力よりも5 
kg/cj程度高く、15kg/ci!を要した。得ら
れたヘモグロビン含有リポソームは、H−EYL/Ch
ol/PA (8: 8 : 1 )の場合、半径15
0nm±23nm、)lb最終濃度6゜3wt%、脂質
濃度5.8wt%であった。
Using the above mixed solution, hemoglobin-containing liposomes were prepared in the same manner as in Examples 1 and 2 except for the above. The pressure required when passing through the filter is 5.5% higher than the pressure in Example 2.
kg/cj is high, 15kg/ci! It cost. The obtained hemoglobin-containing liposome is H-EYL/Ch
For ol/PA (8:8:1), radius 15
0nm±23nm,) lb final concentration was 6.3wt%, and lipid concentration was 5.8wt%.

(理論的に計算されたヘモグロビン最終濃度、即ち(H
b ) F −6,7wt%であったが実測値は6゜3
1%であった。) 実施例4 保持容量 118nmで6.4  (1/mol)(L
ipid  (脂質類))F=5.8%11t%(Hb
)i=15wt% (Hb)F=7.1%IIL% ジエン型重合性脂質1.2・ビス(2,4−オクタデカ
ジェノイル)−sn−グリセロ−3−ホスフォリルコリ
ン(DODPC)30gを用いて、その他は実施例1及
び2と同様にしてヘモグロビン含有リポソームを調製し
た。得られたヘモグロビン含有リポソームは半径118
nm±18nm、Hb最終濃度5.3wt%、脂質濃度
8.5wt%であった。
(Theoretically calculated hemoglobin final concentration, i.e. (H
b) F-6.7wt%, but the actual value was 6°3
It was 1%. ) Example 4 Retention capacity 6.4 (1/mol) (L) at 118 nm
ipid (lipids)) F = 5.8% 11t% (Hb
)i=15wt% (Hb)F=7.1%IIL% Diene type polymerizable lipid 1.2-bis(2,4-octadecajenoyl)-sn-glycero-3-phosphorylcholine (DODPC) 30g Hemoglobin-containing liposomes were prepared in the same manner as in Examples 1 and 2 except for the following. The hemoglobin-containing liposomes obtained had a radius of 118
nm±18 nm, final Hb concentration was 5.3 wt%, and lipid concentration was 8.5 wt%.

(理論的に計算されたヘモグロビン最終濃度、即ち(H
b ) F = 7.1wt%であったが実測値は5゜
3wL%であった。) このヘモグロビン含有リポソーム100ccを石英ガラ
ス反応管に入れ、攪拌した。260nmに最大吸収波長
を有する紫外光を5秒間照射し、−分間暗状態に保った
。これを繰り返し、重合させた0重合掻作を16時間行
い、ヘモグロビン含有高分子化リポソームを得た0粒径
に変化はなかった。
(Theoretically calculated hemoglobin final concentration, i.e. (H
b) F = 7.1wt%, but the actual value was 5°3wL%. ) 100 cc of this hemoglobin-containing liposome was placed in a quartz glass reaction tube and stirred. It was irradiated with ultraviolet light having a maximum absorption wavelength of 260 nm for 5 seconds and kept in the dark for - minutes. This was repeated, and the polymerized hemoglobin-containing polymerized liposome was obtained by scratching for 16 hours. There was no change in the particle size of the hemoglobin-containing polymerized liposome.

実施例5 卵黄レシチン30gを生理食塩水溶液100ccに溶解
し、これをヘモグロビン45gを含む生理食塩水溶液2
00 cc (22,5wL%)と混合すると、実施例
1に示した卵黄レシチンとヘモグロビンの混合比と同じ
ものができる。これを以下実施例1及び実施例2と同様
に処理して、実施例2と同様のヘモグロビン含有リポソ
ームを得た。
Example 5 30 g of egg yolk lecithin was dissolved in 100 cc of physiological saline solution, and this was dissolved in physiological saline solution 2 containing 45 g of hemoglobin.
When mixed with 00 cc (22.5 wL%), the same mixing ratio of egg yolk lecithin and hemoglobin as shown in Example 1 is obtained. This was then treated in the same manner as in Examples 1 and 2 to obtain hemoglobin-containing liposomes similar to those in Example 2.

実施例6 保持容it246nmで14.0 (1/mol)(L
ipid  (脂′X類)IF−5,8wt%(Hb)
s  =22.5wt% (Hb)  F = 17.8wt% 卵黄レシチン30gを、ヘモグロビン67.5 gを含
む生理食塩水溶液300 cc (22,5wt%)と
混合し、無酸素下においてホモジナイザーにて4°Cで
3時間処理して均一に分散混合して物理刺激による初期
カプセル化されたヘモグロビン含有リポソーム製造用の
原液を得た。
Example 6 Retention volume: 14.0 (1/mol) (L) at 246 nm
ipid (fat'X) IF-5, 8wt% (Hb)
s = 22.5 wt% (Hb) F = 17.8 wt% 30 g of egg yolk lecithin was mixed with 300 cc (22.5 wt%) of a physiological saline solution containing 67.5 g of hemoglobin, and the mixture was mixed with a homogenizer under anoxic conditions for 4 hours. The mixture was treated at °C for 3 hours and uniformly dispersed and mixed to obtain a stock solution for producing initially encapsulated hemoglobin-containing liposomes by physical stimulation.

上記で得た物理刺激による初期カプセル化されたヘモグ
ロビン含有リポソーム製造用の原液を孔径8μmのヌク
レボアメンプランフィルターを装着したシリンジに入れ
、ガス圧(10kg/cd)ヲかけて、2回通過させた
。この分散液を6μm、4μm、2μm、1μm、0.
8μm、 0.45μm10.2μmの孔径を有するフ
ィルターに順次同様にして通過させエクストルージョン
法によるカプセル化を行った。(得られた分散液の一部
を希釈して単作性光散乱法にて測定し、平均粒径65n
m±20nmの単層2分子膜リポソームが得られている
ことを確認した。)得られた分散液をドライアイス・メ
タノール中で凍結させた後、40℃の湯浴中で融解し、
凍結融解法による内包効率の向上化を行った。この分散
液を5 kg/c+!の圧力で孔径0.6μmのフィル
ターを通過させ、エクストルージョン法による粒径制御
を行った。この段階で平均半径203 nm±61nm
のリポソームを得た。上記の凍結融解法による内包効率
の向上化工程及びエクストルージョン法による粒径制御
工程を更に5回繰り返した。この繰り返しで、平均半径
223 nm±41nmの単層2分子膜リポソーム系を
得た1次いで0.2μmの孔径をもつフォロファイバー
からなる透析チューブを利用し、減圧にすることにより
、僅かに残る未内包ヘモグロビンと粒径の小さなフラク
ションを除(と共に溶液の濃縮を行った。最終的には、
ヘモグロビン含有リポソームの平均半径は246nm±
21nmで、シアノメト法により定量したヘモグロビン
最終濃度17.8iIIt%、モリブデンリン酸法にて
定量した脂質濃度5.8wt%のヘモグロビン含有リポ
ソームを得た。
The stock solution obtained above for producing initial encapsulated hemoglobin-containing liposomes by physical stimulation was put into a syringe equipped with a nuclear membrane filter with a pore size of 8 μm, and gas pressure (10 kg/cd) was applied to it, and the mixture was allowed to pass through twice. Ta. This dispersion liquid is 6μm, 4μm, 2μm, 1μm, 0.
The mixture was sequentially passed through filters having pore sizes of 8 μm, 0.45 μm, and 10.2 μm to perform encapsulation by extrusion method. (A part of the obtained dispersion was diluted and measured by a monoculture light scattering method, and the average particle size was 65n.
It was confirmed that monolayer bilayer liposomes with m±20 nm were obtained. ) The resulting dispersion was frozen in dry ice and methanol, then thawed in a 40°C water bath,
We improved the encapsulation efficiency using the freeze-thaw method. 5 kg/c+ of this dispersion! The particles were passed through a filter with a pore size of 0.6 μm at a pressure of 0.6 μm, and the particle size was controlled by an extrusion method. At this stage, the average radius is 203 nm ± 61 nm.
obtained liposomes. The step of improving encapsulation efficiency using the freeze-thaw method and the particle size control step using the extrusion method were repeated five more times. By repeating this process, a monolayer bilayer liposome system with an average radius of 223 nm±41 nm was obtained.Then, by using a dialysis tube made of a follower fiber with a pore size of 0.2 μm and reducing the pressure, the remaining residual material was removed. The encapsulated hemoglobin and the small particle size fraction were removed (and the solution was concentrated.Finally,
The average radius of hemoglobin-containing liposomes is 246 nm±
At 21 nm, hemoglobin-containing liposomes were obtained with a final hemoglobin concentration of 17.8 iIIt% as determined by the cyanomet method and a lipid concentration of 5.8 wt% as determined by the molybdenum phosphate method.

(理論的に計算されたヘモグロビン最終濃度、即ち(H
b ) r =23.4wt%であったが実測値は17
゜8wt%であった。) 実施例7 保持容量 218nmで12.2  (1/mol)(
Lipid  (脂質類))r=6.2wt%(Hb)
i  =20.OwL% (Hbl F=15.4wt% DODPC60gを純水600dに分散させ充分超音波
照射(60wで40分)してリポソーム分散液を得る。
(Theoretically calculated hemoglobin final concentration, i.e. (H
b) r = 23.4 wt%, but the actual value was 17
It was 8 wt%. ) Example 7 Retention capacity 12.2 (1/mol) at 218 nm (
Lipid (lipids) r=6.2wt% (Hb)
i=20. OwL% (Hbl F = 15.4wt%) 60g of DODPC is dispersed in 600d of pure water and sufficiently irradiated with ultrasonic waves (40 minutes at 60w) to obtain a liposome dispersion.

これにAAPD(水溶性ラジカル開始剤:アゾビスアミ
ジノプロパンジハイドロクロライド)を1.04g加え
、充分Nzガスで置換した後、60℃で8時間重合した
。得られたpoly−DODPCは2−アシル頷のジエ
ン基のみが重合されたくし型線状高分子で有機溶媒に可
溶である。
To this, 1.04 g of AAPD (water-soluble radical initiator: azobisamidinopropane dihydrochloride) was added, and after sufficient substitution with Nz gas, polymerization was carried out at 60° C. for 8 hours. The obtained poly-DODPC is a comb-shaped linear polymer in which only 2-acyl diene groups are polymerized and is soluble in organic solvents.

これをアルコールに溶解後、凍結乾燥して粉末とした。This was dissolved in alcohol and then freeze-dried to form a powder.

この粉末リン脂質20gをヘモグロビン40gを含む生
理食塩水溶液200cc (20wt%)と混合し、無
酸素下においてホモジナイザーにて4°Cで3時間処理
して均一に分散混合して物理刺激による初期カプセル化
されたヘモグロビン含有リポソーム製造用の原液を得た
。この原液を孔径8μmのヌクレボアメンプランフィル
ターを装着したシリンジに入れ、ガス圧(10kg/c
d)をかけて、2回通過させた。この分散液を8μm、
6μm、4μm、2μm、1μmおよび0.6μmの孔
径を有するフィルターに順次同様にして通過させエクス
トルージョン法によるカプセル化を行った。得られた分
散液をドライアイス・メタノール中で凍結させた後、4
0°Cの湯浴中で融解し、凍結融解法による内包効率の
向上化を行った。この分散液を5 kg/cdの圧力で
孔径0.6μmのフィルターを通過させ、エクストルー
ジョン法による粒径制御を行った。この段階で平均半径
181nm±68nmのリポソームを得た。上記の凍結
融解法による内包効率の向上化工程及びエクストルージ
ョン法による粒径制御工程を更に5回繰り返した。この
繰り返しで、平均半径の増大と共に、粒径分布は狭くな
り、半径2Qenm±41nmの単層2分子膜リポソー
ム系を得た。次いで0.2μmの孔径をもつフォロファ
イバーからなる透析チューブを利用し、減圧にすること
により、僅かに残る未内包ヘモグロビンと粒径の小さな
フラクションを除くと共に溶液の′a縮を行った。最終
的なヘモグロビン含有リポソームの平均半径は218n
m±36nmで、シアノメト法により定量したHb最終
濃度15.4wt%、モリブデンリン酸法qて定量した
脂質濃度6.2wt%のヘモグロビン含有リポソームを
得た。
20 g of this powdered phospholipid was mixed with 200 cc (20 wt%) of a physiological saline solution containing 40 g of hemoglobin, and treated in an oxygen-free environment with a homogenizer at 4°C for 3 hours to uniformly disperse and mix, resulting in initial encapsulation by physical stimulation. A stock solution for producing hemoglobin-containing liposomes was obtained. This stock solution was put into a syringe equipped with a nuclear membrane filter with a pore size of 8 μm, and the gas pressure (10 kg/c
d) and passed twice. This dispersion liquid is 8 μm thick.
The mixture was sequentially passed through filters having pore sizes of 6 μm, 4 μm, 2 μm, 1 μm, and 0.6 μm to perform encapsulation by extrusion method. After freezing the obtained dispersion in dry ice/methanol,
It was thawed in a 0°C water bath and the encapsulation efficiency was improved by a freeze-thaw method. This dispersion was passed through a filter with a pore size of 0.6 μm at a pressure of 5 kg/cd, and the particle size was controlled by an extrusion method. At this stage, liposomes with an average radius of 181 nm±68 nm were obtained. The step of improving encapsulation efficiency using the freeze-thaw method and the particle size control step using the extrusion method were repeated five more times. By repeating this process, the particle size distribution narrowed as the average radius increased, yielding a monolayer bilayer liposome system with a radius of 2 Qenm±41 nm. Next, by applying reduced pressure using a dialysis tube made of follower fiber with a pore size of 0.2 μm, the remaining unencapsulated hemoglobin and a fraction with a small particle size were removed, and the solution was contracted. The average radius of the final hemoglobin-containing liposomes is 218n.
m±36 nm, a hemoglobin-containing liposome was obtained with a final Hb concentration of 15.4 wt% as determined by the cyanomet method and a lipid concentration of 6.2 wt% as determined by the molybdenum phosphate method.

(理論的に計算されたヘモグロビン最終濃度、即ち(H
b ) F =19.3d%であったが実測値は15゜
4wL%であった。) 得られたリポソームを石英ガラス反応管に入れ、Nz下
で紫外光を5分間照射し、l−アシル鎖ジエン基同士の
架橋反応を起こさせた。こうして力学的に安定なヘモグ
ロビン含有リポソームを得た。
(Theoretically calculated hemoglobin final concentration, i.e. (H
b) F = 19.3d%, but the actual value was 15°4wL%. ) The obtained liposome was placed in a quartz glass reaction tube and irradiated with ultraviolet light for 5 minutes under Nz to cause a crosslinking reaction between l-acyl chain diene groups. In this way, dynamically stable hemoglobin-containing liposomes were obtained.

粒径に変化は無かった。There was no change in particle size.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した通りの構成である。ヘモグロビン
を単層2分子膜で内包するために必要なリン脂質を主成
分とする脂質類の最小量をヘモグロビンに仕込むため効
率的内包が可能となった。
The present invention has the configuration as described above. Efficient encapsulation has become possible because the minimum amount of lipids, mainly composed of phospholipids, necessary for encapsulating hemoglobin in a monolayer bilayer membrane, is incorporated into hemoglobin.

単層2分子膜という超薄膜のためリポソームのリン脂質
を主成分とする脂質類が少量となり粘性も低く血流循環
動態が良好となり、毒性も極めて低い。初期カプセル化
されたヘモグロビン含有リポソーム製造用の原液をエク
ストルージョン法によるカプセル化工程、凍結融解法に
よる内包効率の向上化工程及びエクストルージョン法に
よる粒径制御工程にかけたのでカプセルの高均質化が可
能となった。従って、本発明によれば、本来生体由来の
リン脂質を主成分とする脂xiと類似構造のカプセル化
材料を用いて、しかも、単層2分子膜という超薄膜の理
想的カプセルとしていることから毒性が極めて低く、ま
た粘性も低く、更にカプセルも高均質化されているので
、理想的な人工赤血球となるヘモグロビン含有リポソー
ムを工業的に提供することができる。
Because it is an ultra-thin monolayer bilayer membrane, the liposome contains only a small amount of lipids mainly composed of phospholipids, resulting in low viscosity, good blood circulation dynamics, and extremely low toxicity. The initial encapsulated stock solution for producing hemoglobin-containing liposomes is subjected to an encapsulation process using an extrusion method, a process to improve encapsulation efficiency using a freeze-thaw method, and a particle size control process using an extrusion method, making it possible to make capsules highly homogeneous. It became. Therefore, according to the present invention, an encapsulating material having a structure similar to that of lipid xi, which is primarily composed of phospholipids originally derived from living organisms, is used, and moreover, it is an ideal capsule with an ultra-thin monolayer bilayer membrane. Since the toxicity is extremely low, the viscosity is low, and the capsule is highly homogenized, it is possible to industrially provide hemoglobin-containing liposomes that serve as ideal artificial red blood cells.

Claims (3)

【特許請求の範囲】[Claims] (1)リン脂質を主成分とする脂質類の単層2分子膜を
形成するに必要な量を 計算式1 W=4π〔r^2+(r−Δd)^2〕・N/N_A・
S〔ただし、Wは必要なリン脂質を主成分とする脂質類
の量(mol/l)、rはカプセル半径(Å)、Δdは
カプセル膜厚(Å)、Nはカプセル濃度(個/l)、N
_Aはアボガドロ数(6.02×10^2^3)、Sは
リン脂質を主成分とする脂質類の分子占有面積の平均値
(Å^2)〕 で求め、 前記リン脂質を主成分とする脂質類の単層2分子膜を形
成するに必要な量で形成されるリポソーム内に含有させ
ることのできるヘモグロビンの量を 計算式2 〔Hb〕_i=〔Hb〕_f/{4/3π(r−Δd)
^3N}〔ただし、〔Hb〕_iはカプセル調整時に仕
込むHb(ヘモグロビン)の濃度(g/l)、〔Hb〕
_fは最終Hb濃度(g/l)、rはカプセル半径(Å
)、Nはカプセル濃度(個/l)〕で求め、 前記計算式1で求めた量のリン脂質を主成分とする脂質
類を前記計算式2で求めた量のヘモグロビンに均一分散
混合して物理刺激による初期カプセル化されたヘモグロ
ビン含有リポソーム製造用の原液を使用して製造された
リン脂質を主成分とする脂質類の単層2分子膜でカプセ
ル化されたヘモグロビン含有リポソーム。
(1) Calculate the amount required to form a monolayer bimolecular membrane of lipids whose main component is phospholipid using formula 1: W=4π[r^2+(r-Δd)^2]・N/N_A・
S [where, W is the amount of lipids mainly composed of phospholipids (mol/l), r is the capsule radius (Å), Δd is the capsule membrane thickness (Å), and N is the capsule concentration (mol/l). ), N
_A is Avogadro's number (6.02 x 10^2^3), S is the average value of the molecular occupied area of lipids whose main component is phospholipid (Å^2)], and the phospholipid is the main component. The amount of hemoglobin that can be contained in a liposome formed in the amount necessary to form a monolayer bilayer membrane of lipids is calculated using formula 2 [Hb]_i=[Hb]_f/{4/3π( r−Δd)
^3N} [However, [Hb]_i is the concentration (g/l) of Hb (hemoglobin) charged at the time of capsule preparation, [Hb]
_f is the final Hb concentration (g/l), r is the capsule radius (Å
), N is the capsule concentration (capsules/l)], and the amount of lipids mainly composed of phospholipids determined by the above calculation formula 1 is uniformly dispersed and mixed with the amount of hemoglobin determined by the above calculation formula 2. A hemoglobin-containing liposome encapsulated in a monolayer bilayer membrane of lipids mainly composed of phospholipids, which is produced using a stock solution for producing hemoglobin-containing liposomes that are initially encapsulated by physical stimulation.
(2)リン脂質を主成分とする脂質類の単層2分子膜を
形成するに必要な量を 計算式1 W=4π〔r^2+(r−Δd)^2〕・N/N_A・
S〔ただし、Wは必要なリン脂質を主成分とする脂質類
の量(mol/l)、rはカプセル半径(Å)、Δdは
カプセル膜厚(Å)、Nはカプセル濃度(個/l)、N
_Aはアボガドロ数(6.02×10^2^3)、Sは
リン脂質を主成分とする脂質類の分子占有面積の平均値
(Å^2)〕 で求め、 前記リン脂質を主成分とする脂質類の単層2分子膜を形
成するに必要な量で形成されるリポソーム内に含有させ
ることのできるヘモグロビンの量を 計算式2 〔Hb〕_i=〔Hb〕_f/{4/3π(r−Δd)
^3N}〔ただし、〔Hb〕_iはカプセル調整時に仕
込むHb(ヘモグロビン)の濃度(g/l)、〔Hb〕
_fは最終Hb濃度(g/l)、rはカプセル半径(Å
)、Nはカプセル濃度(個/l)〕で求め、 前記計算式1で求めた量のリン脂質を主成分とする脂質
類を前記計算式2で求めた量のヘモグロビンに均一分散
混合して物理刺激による初期カプセル化されたヘモグロ
ビン含有リポソーム製造用の原液をエクストルージョン
法によるカプセル化工程、凍結融解法による内包効率の
向上化工程及びエクストルージョン法による粒径制御工
程にかけることからなるリン脂質を主成分とする脂質類
の単層2分子膜でカプセル化されたヘモグロビン含有リ
ポソームの製造方法。
(2) Calculate the amount required to form a monolayer bimolecular membrane of lipids whose main component is phospholipid using formula 1: W=4π[r^2+(r-Δd)^2]・N/N_A・
S [where, W is the amount of lipids mainly composed of phospholipids (mol/l), r is the capsule radius (Å), Δd is the capsule membrane thickness (Å), and N is the capsule concentration (mol/l). ), N
_A is Avogadro's number (6.02 x 10^2^3), S is the average value of the molecular occupied area of lipids whose main component is phospholipid (Å^2)], and the phospholipid is the main component. The amount of hemoglobin that can be contained in a liposome formed in the amount necessary to form a monolayer bilayer membrane of lipids is calculated using formula 2 [Hb]_i=[Hb]_f/{4/3π( r−Δd)
^3N} [However, [Hb]_i is the concentration (g/l) of Hb (hemoglobin) charged at the time of capsule preparation, [Hb]
_f is the final Hb concentration (g/l), r is the capsule radius (Å
), N is the capsule concentration (capsules/l)], and the amount of lipids mainly composed of phospholipids determined by the above calculation formula 1 is uniformly dispersed and mixed with the amount of hemoglobin determined by the above calculation formula 2. Phospholipids are produced by subjecting a stock solution for producing hemoglobin-containing liposomes that is initially encapsulated by physical stimulation to an encapsulation process using an extrusion method, an encapsulation efficiency improvement process using a freeze-thaw method, and a particle size control process using an extrusion method. A method for producing a hemoglobin-containing liposome encapsulated in a monolayer bilayer membrane of lipids containing as a main component.
(3)リン脂質を主成分とする脂質類の単層2分子膜を
形成するに必要な量を 計算式1 W=4π〔r^2+(r−Δd)^2〕・N/N_A・
S〔ただし、Wは必要なリン脂質を主成分とする脂質類
の量(mol/l)、rはカプセル半径(Å)、Δdは
カプセル膜厚(Å)、Nはカプセル濃度(個/l)、N
_Aはアボガドロ数(6.02×10^2^3)、Sは
リン脂質を主成分とする脂質類の分子占有面積の平均値
(Å^2)〕 で求め、 前記リン脂質を主成分とする脂質類の単層2分子膜を形
成するに必要な量で形成されるリポソーム内に含有させ
ることのできるヘモグロビンの量を 計算式2 〔Hb〕_i=〔Hb〕_f/{4/3π(r−Δd)
^3N}〔ただし、〔Hb〕_iはカプセル調整時に仕
込むHb(ヘモグロビン)の濃度(g/l)、〔Hb〕
_fは最終Hb濃度(g/l)、rはカプセル半径(Å
)、Nはカプセル濃度(個/l)〕で求め、 前記計算式1で求めた量のリン脂質を主成分とする脂質
類を前記計算式2で求めた量のヘモグロビンに均一分散
混合して物理刺激による初期カプセル化されたヘモグロ
ビン含有リポソーム製造用の原液。
(3) Calculate the amount necessary to form a monolayer bimolecular membrane of lipids whose main component is phospholipid using formula 1: W=4π[r^2+(r-Δd)^2]・N/N_A・
S [where, W is the amount of lipids mainly composed of phospholipids (mol/l), r is the capsule radius (Å), Δd is the capsule membrane thickness (Å), and N is the capsule concentration (mol/l). ), N
_A is Avogadro's number (6.02 x 10^2^3), S is the average value of the molecular occupied area of lipids whose main component is phospholipid (Å^2)], and the phospholipid is the main component. The amount of hemoglobin that can be contained in a liposome formed in the amount necessary to form a monolayer bilayer membrane of lipids is calculated using formula 2 [Hb]_i=[Hb]_f/{4/3π( r−Δd)
^3N} [However, [Hb]_i is the concentration (g/l) of Hb (hemoglobin) charged at the time of capsule preparation, [Hb]
_f is the final Hb concentration (g/l), r is the capsule radius (Å
), N is the capsule concentration (capsules/l)], and the amount of lipids mainly composed of phospholipids determined by the above calculation formula 1 is uniformly dispersed and mixed with the amount of hemoglobin determined by the above calculation formula 2. Stock solution for the production of initially encapsulated hemoglobin-containing liposomes by physical stimulation.
JP63275663A 1988-10-29 1988-10-29 Hemoglobin-containing liposome, preparation thereof and raw solution for same preparation Pending JPH02121932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275663A JPH02121932A (en) 1988-10-29 1988-10-29 Hemoglobin-containing liposome, preparation thereof and raw solution for same preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275663A JPH02121932A (en) 1988-10-29 1988-10-29 Hemoglobin-containing liposome, preparation thereof and raw solution for same preparation

Publications (1)

Publication Number Publication Date
JPH02121932A true JPH02121932A (en) 1990-05-09

Family

ID=17558613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275663A Pending JPH02121932A (en) 1988-10-29 1988-10-29 Hemoglobin-containing liposome, preparation thereof and raw solution for same preparation

Country Status (1)

Country Link
JP (1) JPH02121932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162512A (en) * 2010-02-12 2011-08-25 Nano Career Kk Particulate pharmaceutical composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151718A (en) * 1976-06-10 1977-12-16 Univ Illinois Production of capsulated hemoglobin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151718A (en) * 1976-06-10 1977-12-16 Univ Illinois Production of capsulated hemoglobin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162512A (en) * 2010-02-12 2011-08-25 Nano Career Kk Particulate pharmaceutical composition
US9198860B2 (en) 2010-02-12 2015-12-01 Nanocarrier Co., Ltd. Particulate pharmaceutical composition
US9795563B2 (en) 2010-02-12 2017-10-24 Nanocarrier Co., Ltd. Particulate pharmaceutical composition

Similar Documents

Publication Publication Date Title
EP2560625B1 (en) Biodegradable nanoparticles as novel hemoglobin-based oxygen carriers and methods of using the same
Hunt et al. Synthesis and evaluation of a prototypal artificial red cell
US4776991A (en) Scaled-up production of liposome-encapsulated hemoglobin
Kure et al. Preparation of artificial red blood cells (hemoglobin vesicles) using the rotation–revolution mixer for high encapsulation efficiency
WO1985005029A1 (en) Oral insulin and a method of making the same
WO2008130137A1 (en) Anionic lipid nanosphere and preparation method of the same
US4873089A (en) Proteoliposomes as drug carriers
CN110251663A (en) A kind of exosome-superoxide dismutase nano preparation with anti-aging effect and preparation method thereof
JPS6137735A (en) Hemoglobin-containing liposome and its preparation
DE69006896T2 (en) Macromolecular endoplasmic reticulum.
JPH02121932A (en) Hemoglobin-containing liposome, preparation thereof and raw solution for same preparation
Usuba et al. Study of effect of the newly developed artificial blood “Neo Red Cells (NRC)” on hemodynamics and blood gas transport in canine hemorrhagic shock
WO2013047263A1 (en) Hemoglobin-containing liposome and method for producing same
JPS58502204A (en) Synthetic whole blood and its production method
Vidal-Naquet et al. Ltposome-Encapsulated Hemoglobin as an Artificial Red Blood Cell: Characterization and Scale-Up
JPS59210013A (en) Active substance-containing liposome
JPS63211222A (en) Production of liposome
CN117205138A (en) Cosmetic composition for improving skin containing aloe exosome microcapsule complex as effective component and its preparation method
Zheng et al. Liposome-encapsulated hemoglobin: a red blood cell substitute
Borwanker et al. Formulation and characterization of a multiple emulsion for use as a red blood cell substitute
WO1983000089A1 (en) Preparation of synthetic erythrocytes
JPH075477B2 (en) Hemoglobin-containing liposome and method for producing the same
WO2002038128A1 (en) Method for preparing microsome dispersion
Sakai et al. Functional evaluation of hemoglobin‐and lipidheme‐vesicles as red cell substitutes
CN113081966B (en) Temperature-responsive drug-loaded liposome gel and preparation method thereof