[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02120688A - Method for detecting electron beam of electron accumulation ring - Google Patents

Method for detecting electron beam of electron accumulation ring

Info

Publication number
JPH02120688A
JPH02120688A JP63273796A JP27379688A JPH02120688A JP H02120688 A JPH02120688 A JP H02120688A JP 63273796 A JP63273796 A JP 63273796A JP 27379688 A JP27379688 A JP 27379688A JP H02120688 A JPH02120688 A JP H02120688A
Authority
JP
Japan
Prior art keywords
electron beam
electron
vacuum duct
incident
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63273796A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
浩 田中
Toshihiko Osada
俊彦 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63273796A priority Critical patent/JPH02120688A/en
Publication of JPH02120688A publication Critical patent/JPH02120688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To certainly detect electron beam by providing a notch part to a vacuum duct wherein electron beam goes around and hermetically closing said notch part by an airtight chamber having an observation window. CONSTITUTION:A drive shaft 26b is moved downwardly and a fluorescent plate 25 is positioned so as to cross an electron beam track in a notch part 22. Electron is incident to an accumulation ring from an incident part. Whereupon, the electron beam goes around at a predetermined angle in the ring to be incident to the fluorescent plate 25 and makes the electron incident position on the fluorescent plate bright. By observing this position from an observation window 23 by a monitor device such as television camera, the passing position of electron beam in the cross-section of the vacuum duct can be directly observed. A deflection electromagnet or converging electromagnet is adjusted so that electron passes through a predetermined track in a predetermined beam diameter while the electron beam is confirmed by said observation. Since this adjustment is performed while the cross-sectional shape or position of the electron beam is directly observed, said adjustment can be easily performed within a short time.

Description

【発明の詳細な説明】 〔概 要〕 X線リングラフィのX線源とし゛ζ使用するシンクロト
ロン軌道放射光(Synchrotron Radia
toin、以下SRと略称)を放射する電子蓄積リング
において、真空ダクト内での電子ビームの位置を検出す
る検出方法に関し、 蓄積リング内に蛍光板検出器を設置し、電子ビーム像を
直接検出することにより軌道調整を容易にしてビーム立
ち上げ時間を短縮し、蓄積リングの稼働率の向上をはか
ることを目的とし、電子ビームが内部を周回する真空ダ
クトに切欠部を設け、該切欠部を観測窓を有する気密室
で密閉し、該気密室内に電子ビームで発光する蛍光板と
真空ダクトの内壁と同一断面の空洞を有する蓋部材とを
移動可能に設け、電子ビームの立ち上げ時には、前記蛍
光板を前記切欠部内に電子ビームと交差するように挿入
して前記観測窓から電子ビームの位置を観測し、稼動時
には前記空洞が真空ダクトの内壁に連続するように前記
蓋部材を移動して前記切欠部を覆う構成である。
[Detailed description of the invention] [Summary] Synchrotron orbital synchrotron radiation (Synchrotron radiation) used as an X-ray source in X-ray phosphorography
Regarding the detection method for detecting the position of the electron beam in a vacuum duct in an electron storage ring that emits a In order to facilitate orbit adjustment, shorten the beam launch time, and improve the operation rate of the storage ring, a cutout is provided in the vacuum duct in which the electron beam circulates, and the cutout is used as an observation window. A fluorescent plate that emits light with an electron beam and a lid member having a cavity having the same cross section as the inner wall of the vacuum duct are movably provided in the airtight chamber, and when the electron beam is started, the fluorescent plate is The lid member is inserted into the notch so as to intersect with the electron beam, and the position of the electron beam is observed through the observation window, and during operation, the lid member is moved so that the cavity is continuous with the inner wall of the vacuum duct, and the notch is closed. It has a covering structure.

(産業上の利用分野〕 本発明は、X線リソグラフィのX&%源として使用する
シンクロトロン軌道放射光(SynchrotronR
adiation 、以下SRと略称)を放射する電子
蓄積リングにおいて、真空ダクト内での電子ビームの位
置を検出する検出方法に関する。
(Industrial Application Field) The present invention relates to synchrotron orbital synchrotron radiation (SynchrotronR) used as an X&% source in X-ray lithography.
The present invention relates to a detection method for detecting the position of an electron beam within a vacuum duct in an electron storage ring that emits radiation (hereinafter abbreviated as SR).

近年、半導体集積回路の高密度化に伴い、パタニングの
微細化がサブミクロンの領域に入ってきており、X線を
光源としたX線転写法が脚光を浴びている。すなわちX
線は従来の紫外線に比べて桁違いに短波長でありまた基
板中やレジスト膜内での散乱が小さいのでより微細で高
精度のパターンを形成できるからである。
In recent years, as the density of semiconductor integrated circuits has increased, patterning has become finer in the submicron range, and X-ray transfer methods using X-rays as a light source have been in the spotlight. That is, X
This is because the wavelength of the rays is orders of magnitude shorter than that of conventional ultraviolet rays, and scattering within the substrate or resist film is small, making it possible to form finer, more precise patterns.

SORはビームが強力で広がりが極めて小さいことから
このためのX線源として最適であるため、SOR光源と
して電子蓄積リングの開発が種々行われている。
Since SOR has a powerful beam and extremely small spread, it is ideal as an X-ray source for this purpose, and various electron storage rings have been developed as SOR light sources.

〔従来の技術] 電子蓄積リングは、電子ビームを制御する各種の電磁石
や加速空洞を軌道内に配置した超高真空の環状ダクトで
ある。そしてこの蓄積リング内を電子ビームが周回する
間に加速され、リングに設けられた偏向電磁石の位置で
電子ビームが偏向される時にX線波長を含むSRが放射
される。
[Prior Art] An electron storage ring is an ultra-high vacuum annular duct in which various electromagnets and acceleration cavities for controlling electron beams are arranged in orbit. The electron beam is accelerated while circulating within this storage ring, and when the electron beam is deflected at the position of a deflection electromagnet provided in the ring, an SR containing an X-ray wavelength is emitted.

第3図により、電子蓄積リングの概要を説明する。The outline of the electron storage ring will be explained with reference to FIG.

直線加速器などで構成された入射加速器11で予備的に
加速された電子が入射部12から、蓄積リング13内に
入射される。
Electrons that have been preliminarily accelerated by an input accelerator 11 configured with a linear accelerator or the like are input into a storage ring 13 from an input section 12 .

蓄積リング13は、導電体の中空パイプを環状となした
超高真空のダクトや、その周りに複数個の偏向電磁石1
4、高周波加速空洞15およびビームライン16などが
配置されてなっている。
The storage ring 13 includes an ultra-high vacuum duct made of an annular hollow pipe of a conductor, and a plurality of bending electromagnets 1 around it.
4, a high frequency acceleration cavity 15, a beam line 16, etc. are arranged.

入射部12から入射した電子は、複数個の偏向電磁石1
4でその軌道を曲げられながら、蓄積リング13内を周
回し、電子の一周期に周波数が同期した高周波加速空洞
15によって所定の工ぶルギに維持されるように加速さ
れる。
The electrons incident from the incidence part 12 are transmitted to a plurality of bending electromagnets 1.
4, the electron orbits within the storage ring 13, and is accelerated to a predetermined level by the high-frequency acceleration cavity 15, whose frequency is synchronized with one cycle of the electrons.

電子が蓄積リング13内を数十万回周回し、所定のエネ
ルギに達して電子ビームが立ち上がると、蓄積リング1
3に配置されたビームライン16から放射光17が引き
出される。
When the electrons orbit within the storage ring 13 hundreds of thousands of times and reach a predetermined energy and the electron beam rises, the storage ring 1
Radiant light 17 is extracted from a beam line 16 located at 3.

リングに入射された電子が電磁石や加速器で制御されて
数十万回の周回を繰り返すためには、まず−回目の周回
時に真空ダクト内で正しい軌道を走る必要がある。
In order for the electrons injected into the ring to be controlled by electromagnets and accelerators and repeat several hundred thousand orbits, they must first travel the correct trajectory within the vacuum duct during the -th orbit.

よ 〔発明が解決し会うとする課題] 従来は蓄積リング内での電子ビーム位置の観測は、電子
ビーム立ち上がり後(すなわち電子が周回を繰り返して
所定のエネルギに加速された後)に、放射光などにより
間接的に行っていたが、ビームの立ち上げの一回目目の
周回時に、真空ダクト内の正規の位置を通過したかどう
かを検出することはできなかった。
[Problem to be solved by the invention] Conventionally, the observation of the electron beam position within the storage ring was performed by observing the synchrotron radiation after the electron beam rises (that is, after the electrons repeat orbits and are accelerated to a predetermined energy). However, it was not possible to detect whether the beam had passed through the correct position in the vacuum duct during its first orbit.

従って、修理・保守・改造等で装置の分解・再組立を行
った後の初回のビームの立ち上げには、偏向電磁石や加
速空洞を微調整しながら試行錯誤でビームを立ち上げて
いた。
Therefore, when starting up the beam for the first time after disassembling and reassembling the device for repair, maintenance, modification, etc., the beam was started up by trial and error while making fine adjustments to the deflection magnets and acceleration cavities.

このためビームの立ち上げに長時間を必要とし、蓄積リ
ングの稼働率が低下するという問題点があった。
For this reason, there was a problem in that it took a long time to start up the beam, and the operating rate of the storage ring decreased.

本発明は上記問題点に鑑み創出されたもので、蓄積リン
グ内に蛍光板検出器を設置し、電子ビーム像を直接検出
することにより軌道調整を容易にしてビーム立ち上げ時
間を短縮し、蓄積リングの稼働率の向上を図ることを目
的とする。
The present invention was created in view of the above problems, and by installing a fluorescent plate detector inside the storage ring and directly detecting the electron beam image, it is possible to easily adjust the trajectory and shorten the beam startup time. The purpose is to improve the operating rate of

〔課題を解決するための手段] 第1図は、本発明の検出方法の原理を説明するための、
電子蓄積リングのビーム検出部を上方から視た模式断面
図で、図の(a)は電子ビームの検出時を、また図の(
b)は蓄積リングの稼動時を示す。
[Means for Solving the Problems] FIG. 1 shows a diagram for explaining the principle of the detection method of the present invention.
This is a schematic cross-sectional view of the beam detection section of the electron storage ring viewed from above.
b) shows when the storage ring is in operation.

上記従来の問題点を解決するため本発明による電子蓄積
リングの電子ビーム検出方法は、第1図に示す如く、 電子ビームが内部を周回する真空ダク)21a、21b
に切欠部22を設け、該切欠部22を観測窓23を有す
る気密室24で密閉し、該気密室24内に電子ビームで
発光する蛍光板25と真空ダク) 21a、 21bの
内壁と同一断面の空洞26aを有する蓋部材26とを移
動可能に設け、電子ビームの立ち上げ時には、前記蛍光
板25を該切欠部22に電子ビームと交差するように挿
入して前記観測窓23から電子ビームの位置を観測し、
稼動時には前記空洞26aが真空ダク)21a、21b
の内壁と連続するように前記蓋部材26を移動して前記
切欠部22を覆う方法である。
In order to solve the above-mentioned conventional problems, the electron beam detection method for an electron storage ring according to the present invention, as shown in FIG.
A notch 22 is provided in the holder, and the notch 22 is sealed with an airtight chamber 24 having an observation window 23. Inside the airtight chamber 24, a fluorescent screen 25 that emits light with an electron beam and a vacuum duct (21a, 21b) having the same cross-section as the inner walls of 21a and 21b are provided. A cover member 26 having a cavity 26a is movably provided, and when starting up the electron beam, the fluorescent plate 25 is inserted into the notch 22 so as to intersect with the electron beam, and the position of the electron beam is monitored through the observation window 23. observe,
During operation, the cavity 26a becomes a vacuum duct) 21a, 21b.
In this method, the lid member 26 is moved so as to be continuous with the inner wall of the notch 22.

〔作用〕[Effect]

ビーム立ち上げ時には、蛍光板25を電子ビーム軌道に
交差するように位置させて入射部からリングに加速電子
を入射する。すると電子ヒームは一回目の周回時に蛍光
板に矢印Aの如く入射して、蛍光板25上の電子入射値
iPを光らせる。この位置を観測窓23を介して矢印B
の如くテレビカメラなどのモニター装置で観測すること
により、X空ダクトの断面内における電子ビームの位置
を直接観測することができる。この観測で確認しながら
電子が所定の軌道に位置するように偏向電磁石や集束電
磁石を調節することは極めて容易で、調整時間を短縮す
ることができる。
At the time of beam startup, the fluorescent screen 25 is positioned so as to intersect the electron beam trajectory, and accelerated electrons are incident on the ring from the incidence section. Then, during the first rotation, the electron beam enters the fluorescent screen as shown by arrow A, causing the electron incident value iP on the fluorescent screen 25 to shine. This position is indicated by arrow B through the observation window 23.
By observing with a monitor device such as a television camera, it is possible to directly observe the position of the electron beam within the cross section of the X-air duct. It is extremely easy to adjust the deflecting electromagnets and focusing electromagnets so that the electrons are positioned in a predetermined orbit while confirming this observation, and the adjustment time can be shortened.

ところで電子ビームが安定に周回を続けるためには、真
空ダクトの全周にわたってその断面が均一で連続してい
ることが必要である。すなわち真空ダクトの壁面に不連
続があると、先行する電子ビームにより真空ダクト内壁
に誘起される電磁場(ウェーク場)が後続のビームに力
を及ぼし、ビームの軌道が次第に正規位置からずれて制
御不能や電子蓄積寿命が短くなるという問題がある。
Incidentally, in order for the electron beam to continue circulating stably, it is necessary that the cross section of the vacuum duct be uniform and continuous over the entire circumference of the vacuum duct. In other words, if there is a discontinuity on the wall of the vacuum duct, the electromagnetic field (wake field) induced on the inner wall of the vacuum duct by the preceding electron beam will exert a force on the subsequent beam, causing the beam's trajectory to gradually deviate from its normal position and become uncontrollable. There is a problem that the electron storage life is shortened.

上記の観測状態では検出部において、観測窓や蛍光板保
持機構等により、真空ダクトの内壁が他の部分と不連続
となりウェーク場が発生するが、これによる−周回あた
りの軌道ずれは極めて小さいので観測値に対する影響は
無視できる。
In the above observation state, the inner wall of the vacuum duct becomes discontinuous with other parts in the detection unit due to the observation window, fluorescent screen holding mechanism, etc., and a wake field is generated, but the orbit deviation per orbit due to this is extremely small, so the observation The effect on the value is negligible.

そして上記の調整が完了した後の稼動時においては、蛍
光板25を電子軌道から退避させるとともに蓋部材26
を真空ダクトの切欠部22に移動して、その空洞26a
で真空ダクトを接続する。これにより真空ダクトは検出
部において断面が連続となり、ウェーク場が発生するこ
とはない。そこで正規に電子を入射すると検出部を矢印
Cの如く正常に通過し、偏向系が正規に調整されている
ので入射電子は正しく周回を繰り返し高速電子ビームが
立ち上がり稼動状態となる。
During operation after the above adjustment is completed, the fluorescent screen 25 is retracted from the electron orbit and the lid member 26
into the notch 22 of the vacuum duct and fill the cavity 26a.
Connect the vacuum duct with. As a result, the cross section of the vacuum duct becomes continuous at the detection part, and no wake field is generated. Therefore, when electrons are properly injected, they normally pass through the detection section as shown by arrow C, and since the deflection system is properly adjusted, the incident electrons repeat the circuits correctly and a high-speed electron beam is raised and the device is in operation.

〔実施例] 以下添付図により本発明の詳細な説明する。〔Example] The present invention will be explained in detail below with reference to the accompanying drawings.

第十図は本発明の検出方法の実施例を示す図である。FIG. 10 is a diagram showing an embodiment of the detection method of the present invention.

図は電子ビーム検出部を示すもので、第3図に示した電
子蓄積リングの環状の真空ダクトの円周の一部に設置さ
れている。
The figure shows an electron beam detection section, which is installed on a part of the circumference of the annular vacuum duct of the electron storage ring shown in FIG.

図において、21a、21bは金属材料よりなる真空ダ
クトでその内部を電子ビームe−が走行する。
In the figure, 21a and 21b are vacuum ducts made of metal materials, through which the electron beam e- travels.

真空ダク)21a、21bには蛍光板25を電子ビーム
軌道内に挿入するための切欠部22が設けられている。
The vacuum ducts 21a and 21b are provided with a notch 22 for inserting a fluorescent screen 25 into the electron beam orbit.

24は気密室で、真空ダクトの切欠部22を包囲して配
設され、真空ダクトと同一真空度に維持されている。そ
してガラス等の観測窓23が設けられて外部から切欠部
22を観測できるようになっている。
Reference numeral 24 denotes an airtight chamber, which is arranged to surround the notch 22 of the vacuum duct, and is maintained at the same degree of vacuum as the vacuum duct. An observation window 23 made of glass or the like is provided so that the notch 22 can be observed from the outside.

25は電子ビームの衝突により発光する蛍光板で、真空
ダクh21a、21bの軸方向に対して45°の傾きで
軸25aにより蓋部材26上と結合している。蓋部材2
6は真空ダクトの切欠部22と同じ長さの導電材料より
なり、真空ダクトの内壁と同一断面の空洞26aを有し
、気密室24のベローズ部24bを真空シールされて貫
通する駆動軸26bにより上下移動可能に気密室24内
に配設されている。
Reference numeral 25 denotes a fluorescent plate that emits light upon collision with an electron beam, and is connected to the top of the lid member 26 by a shaft 25a at an angle of 45 degrees with respect to the axial direction of the vacuum ducts h21a and 21b. Lid member 2
6 is made of a conductive material with the same length as the notch 22 of the vacuum duct, has a cavity 26a with the same cross section as the inner wall of the vacuum duct, and is driven by a drive shaft 26b passing through the bellows part 24b of the airtight chamber 24 in a vacuum-sealed manner. It is disposed within the airtight chamber 24 so as to be movable up and down.

上記構成になる検出部を用いて電子ビームの検出は以下
の如く行われる。
Detection of an electron beam is performed as follows using the detection section having the above configuration.

まず、駆動軸26bを下方に移動して、蛍光板25が真
空ダクトの切欠部22内で電子ビーム軌道に交差するよ
うに位置させる。(図はこの状態を示している。) そして図示しない入射部から蓄積リング内に電子を入射
する。すると電子ビームはリング内を所定角度周回した
のち蛍光板25に入射して、蛍光板上の電子入射位置を
光らせる。この位置を観測窓23からテレビカメラなど
のモニター装置で観測することにより、真空ダクトの断
面内における電子ビームの通過位置を直接観測すること
ができる。
First, the drive shaft 26b is moved downward to position the fluorescent screen 25 within the notch 22 of the vacuum duct so as to intersect the electron beam trajectory. (The figure shows this state.) Electrons are then injected into the storage ring from an input section (not shown). The electron beam then travels around the ring at a predetermined angle and then enters the fluorescent screen 25, illuminating the electron incident position on the fluorescent screen. By observing this position through the observation window 23 with a monitor device such as a television camera, it is possible to directly observe the passage position of the electron beam within the cross section of the vacuum duct.

この観測で確認しながら電子が所定のビーム径で所定の
軌道を通るように偏向電磁石や集束電磁石を調整する。
While checking this observation, the deflection electromagnet and focusing electromagnet are adjusted so that the electrons pass through the specified trajectory with the specified beam diameter.

この調整は電子ビームの断面形状や位置を直接観察しな
がら行えるので短時間に容易に行うことができる。
Since this adjustment can be performed while directly observing the cross-sectional shape and position of the electron beam, it can be easily performed in a short time.

そして上記の調整が完了した後の稼動時においては、駆
動軸26bを上方へ移動させると蛍光板25が電子軌道
から退避するとともに蓋部材25が真空ダクトの切欠部
22の位置に移動して、空洞26aにより真空ダク)2
1a、21bの内壁が接続されて、真空ダクトの断面が
連続した状態となる。従って電子蓄積リングは、そのビ
ーム検出部においてつ工−り場が発生することなく、電
子ビームは検出部を安定に通過する。
During operation after the above adjustment is completed, when the drive shaft 26b is moved upward, the fluorescent screen 25 is retracted from the electron orbit and the lid member 25 is moved to the position of the notch 22 of the vacuum duct, thereby opening the cavity. Vacuum duct by 26a) 2
The inner walls of 1a and 21b are connected, and the cross section of the vacuum duct becomes continuous. Therefore, in the electron storage ring, the electron beam stably passes through the detection section without causing a dropout in the beam detection section.

[発明の効果] 以上述べたように本発明のビーム検出方法によれば、電
子ビームに対して悪影響を与えるウェーク場を発生する
ことなく蛍光板により電子ビームを確実に検出できるの
で、電子蓄積リングにおけるビームの立ち上げ調整時間
を短縮でき装置の可動率の向上に寄与することが顕著で
ある。
[Effects of the Invention] As described above, according to the beam detection method of the present invention, an electron beam can be reliably detected by a fluorescent screen without generating a wake field that adversely affects the electron beam. It is remarkable that the beam start-up and adjustment time can be shortened, contributing to an improvement in the operating rate of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の検出方法を示す原理図、第2図は、
本発明の実施例を示す図、 第3図は、電子蓄積リングの構成を示す図、である。 図において、 21a、21b−・真空ダクト、 22−真空ダクトの
切欠部、 23−観測窓、      24−気密室、25−蛍光
板、      26・−蓋部材、26a −蓋部材の
空洞、  26b−駆動軸、である。 (!2)電+畦ム/17侯シ奇           
  (の1瑣ゲンク”−六くtつ!埒A全日月f′I 
木家出オ ヌ去?示す冴、千里図第 図 S 不全08め実比例を才、す図 弄 図 1、)誉ネ債すンク゛e構7仄?示、不図第 図
FIG. 1 is a principle diagram showing the detection method of the present invention, and FIG. 2 is a diagram showing the principle of the detection method of the present invention.
FIG. 3 is a diagram showing an embodiment of the present invention. FIG. 3 is a diagram showing the configuration of an electron storage ring. In the figure, 21a, 21b - Vacuum duct, 22 - Notch of vacuum duct, 23 - Observation window, 24 - Airtight chamber, 25 - Fluorescent screen, 26 - Lid member, 26a - Cavity of lid member, 26b - Drive shaft , is. (!2) Den+Runmu/17 Houshiki
(No. 1) - Six!
Did you leave the house? Is it possible to show a thousand miles diagram S? Shown, not shown

Claims (1)

【特許請求の範囲】 電子蓄積リングの真空ダクト内における電子ビームの位
置を検出する方法であって、 電子ビームが内部を周回する真空ダクト(21a、21
b)に切欠部(22)を設け、該切欠部(22)を観測
窓(23)を有する気密室(24)で密閉し、該気密室
(24)内に電子ビームで発光する蛍光板(25)と、
真空ダクト(21a、21b)の内壁と同一断面の空洞
(26a)を有する蓋部材(26)とを移動可能に設け
、電子ビームの立ち上げ時には、前記蛍光板(25)を
前記切欠部(22)内に電子ビームと交差するように挿
入して前記観測窓(23)から電子ビームの位置を観測
し、稼動時には前記空洞(26a)が真空ダクト(21
a、21b)の内壁に連続するように前記蓋部材(26
)を移動して前記切欠部(22)を覆うことを特徴とす
る電子蓄積リングの電子ビーム検出方法。
[Claims] A method for detecting the position of an electron beam in a vacuum duct of an electron storage ring, comprising: a vacuum duct (21a, 21
b) is provided with a cutout (22), the cutout (22) is sealed with an airtight chamber (24) having an observation window (23), and a fluorescent screen (25) that emits light with an electron beam is placed inside the airtight chamber (24). )and,
A lid member (26) having a cavity (26a) having the same cross section as the inner wall of the vacuum duct (21a, 21b) is movably provided, and when starting up the electron beam, the fluorescent plate (25) is inserted into the notch (22). The position of the electron beam is observed through the observation window (23) by inserting the cavity (26a) into the vacuum duct (21) so as to intersect with the electron beam.
a, 21b) so as to be continuous with the inner wall of the lid member (26).
) to cover the notch (22).
JP63273796A 1988-10-28 1988-10-28 Method for detecting electron beam of electron accumulation ring Pending JPH02120688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63273796A JPH02120688A (en) 1988-10-28 1988-10-28 Method for detecting electron beam of electron accumulation ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63273796A JPH02120688A (en) 1988-10-28 1988-10-28 Method for detecting electron beam of electron accumulation ring

Publications (1)

Publication Number Publication Date
JPH02120688A true JPH02120688A (en) 1990-05-08

Family

ID=17532702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63273796A Pending JPH02120688A (en) 1988-10-28 1988-10-28 Method for detecting electron beam of electron accumulation ring

Country Status (1)

Country Link
JP (1) JPH02120688A (en)

Similar Documents

Publication Publication Date Title
US10790110B2 (en) Charged particle beam irradiation apparatus, charged particle beam image acquisition apparatus, and charged particle beam inspection apparatus
US20100006756A1 (en) Charged particle beam apparatus and method for generating charged particle beam image
JPH02120688A (en) Method for detecting electron beam of electron accumulation ring
JP3070085B2 (en) Light extraction line of SOR optical device
JPS61163547A (en) X-ray pickup window
JPH04230000A (en) Exposure of sor beam
JP6920311B2 (en) Electron source for free electron laser
TWI404108B (en) Ion implanter
JP2014235883A (en) Electron beam device
EP1731966A1 (en) Exposure equipment
JP3190923B2 (en) Method and apparatus for adjusting magnet alignment of accelerator
JPH05297148A (en) Screen monitor device for particle accelerator
JPS62171122A (en) X-ray exposure apparatus
JPH0590000A (en) Beam monitor of particle accelerator
JP2002237400A (en) Charged particle beam acceleration device and radiation exposure facility using same
JPH04123799A (en) Ring-type charged particle accelerator
JPH0630336B2 (en) Charged particle device
JPH0754960Y2 (en) Window device for emitting SOR light in SOR light device
JPH0536499A (en) Incident beam energy adjusting apparatus of sor apparatus
JPH04264399A (en) Shielding wall structure of sor light supply part
JPH01243421A (en) X-ray aligner
Tzoganis Investigations into Ion Beam Emittance and Profile Monitoring
JPH0521320A (en) X-ray aligner
WO2018189817A1 (en) Exposure device
JPS62177848A (en) Ion implanting control method