[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0212043A - Method for continuously radiographing x-ray diffraction image - Google Patents

Method for continuously radiographing x-ray diffraction image

Info

Publication number
JPH0212043A
JPH0212043A JP16295388A JP16295388A JPH0212043A JP H0212043 A JPH0212043 A JP H0212043A JP 16295388 A JP16295388 A JP 16295388A JP 16295388 A JP16295388 A JP 16295388A JP H0212043 A JPH0212043 A JP H0212043A
Authority
JP
Japan
Prior art keywords
measurement
imaging plate
reading
exposure
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16295388A
Other languages
Japanese (ja)
Inventor
Koichi Kawasaki
川崎 宏一
Soji Matsuo
松尾 宗次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16295388A priority Critical patent/JPH0212043A/en
Publication of JPH0212043A publication Critical patent/JPH0212043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To continuously radiographing X-ray diffracted images by setting plural measuring areas on the photosensitive surface of an imaging plate and successively exposing, reading, and erasing the X-ray diffracted images at each area while the imaging plate is rotated. CONSTITUTION:X-rays 4 radiated from an X-ray source 1 are made incident on a sample 6 after the rays are passed through a filter 3 and collimated into a parallel beam by means of a collimator 5. The X-rays 4 transmitted by the sample 6 form a diffracted image in a measuring area on an imaging plate 10 limited by a mask 9 for exposure and a beam stopper 12. The image plate 10 is stopped at every 60 deg. and exposure, reading, and erasing are performed once at each stoppage of the plate 10. Therefore, the diffracted images can be radiographed continuously in an on-line state and, as a result, the measuring time can be reduced and the efficiency of the measurement can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、X線回折を用いて金属や非金属の構造を解析
する撮影法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an imaging method for analyzing the structure of metals and non-metals using X-ray diffraction.

(従来の技術) 本分野においては、当初X線写真法が使用されてきた。(Conventional technology) Initially, radiographic methods were used in this field.

X線写真法は二次元検出器として面情報が得られるため
、結晶組織についての知見が得られるという特徴を有す
る。例えば粒の寸法や形、サブダレインなどの内部組織
、単結晶内部の歪分布についての重要な情報が得られる
。また二次元検出器としての特性を生かし、写真法正極
点図法が可能である。この手法によれば少数粒(100
0個以下)の正極点図を得ることができるので、粗大粒
組織や微小域の結晶方位分布を知るためには必須の手法
である。
Since X-ray photography is a two-dimensional detector that can obtain surface information, it has the characteristic of providing knowledge about crystal structures. For example, important information can be obtained about grain size and shape, internal structures such as subdalein, and strain distribution inside a single crystal. Also, taking advantage of its characteristics as a two-dimensional detector, it is possible to perform photographic positive pole mapping. According to this method, a small number of grains (100
Since it is possible to obtain positive pole figures of 0 or less, it is an essential method for understanding coarse grain structures and crystal orientation distributions in minute regions.

しかし一般的であるX線フィルムを用いたX線写真法は
、定量性、能率の面で劣るためこれらの点で優れた計数
管法が発達し、現在主流を占めている。しかし計数管法
は結晶組織に関する情報が極めて不十分である点や、粗
大粒組織や微小域の結晶方位分布に関する知見が得られ
ないという欠点を有し、定量性、能率の面で優れた二次
元検出器の開発が待たれていた。
However, the general X-ray photography method using X-ray film is inferior in terms of quantitative performance and efficiency, so the counter method, which is superior in these respects, has been developed and is currently the mainstream method. However, the counting tube method has the drawbacks of extremely insufficient information on the crystal structure and the inability to obtain knowledge about the coarse grain structure and crystal orientation distribution in minute regions, and it is a second method that is superior in terms of quantitative performance and efficiency. The development of a dimensional detector was awaited.

要約すると、X線写真法として一般的であるX線フィル
ムを用いた写真法の問題点として、以下の諸点が挙げら
れる。
In summary, the following points are listed as problems with the photographic method using an X-ray film, which is a common method of X-ray photography.

1)定量性に欠ける。即ち強度データへの変換後の直線
性が劣る。
1) Lack of quantitativeness. That is, the linearity after conversion to intensity data is poor.

2)検出強度域が狭い。2) Detection intensity range is narrow.

3)検出下限が高く長時間の露光が必要である。3) The detection limit is high and long exposure is required.

従って微小域では特に長時間を要す。Therefore, it takes a particularly long time in a small area.

4) 非能率である。即ち水溶液中でのフィルムの現像
処理、強度データへの変換に長い時間が必要である。
4) It is inefficient. That is, it takes a long time to develop the film in an aqueous solution and convert it into strength data.

これらの欠点を克服したX線写真法を開発することが課
題である。
The challenge is to develop a radiographic method that overcomes these drawbacks.

イメージングプレートは最近日本で発明された最小画素
が0.1 aiXo、1 mの積分型の二次元検出器で
ある。イメージングプレートについて以下に沈明する。
The imaging plate is an integral two-dimensional detector with a minimum pixel of 0.1 aiXo and 1 m, which was recently invented in Japan. The imaging plate will be explained below.

イメージングプレートは有機フィルムの上にEu (ヨ
ーロビウム)を含む特殊な蛍光物質を塗布したものであ
る。X線を露光するとその露光量に対応した数のEu原
子が励起され、X線像が記憶される。その後特定波長の
細いレーザー光線で露光された面を走査する。このレー
ザー光線が励起されたEuを発光させ、この発光強度を
各画素毎に読み取り記録する。読み取り後のイメージン
グプレーi−に可視光線を照射して励起されたEu原子
を基底状態に戻し、X線像情報を消去する。消去された
イメージングプレートはまた露光に供される。このよう
にイメージングプレートは繰り返し使用する事ができる
The imaging plate is an organic film coated with a special fluorescent material containing Eu (Eurobium). When exposed to X-rays, a number of Eu atoms corresponding to the exposure amount are excited, and an X-ray image is stored. The exposed surface is then scanned with a narrow laser beam of a specific wavelength. This laser beam causes the excited Eu to emit light, and the intensity of this emitted light is read and recorded for each pixel. After reading, the imaging plate i- is irradiated with visible light to return the excited Eu atoms to the ground state and erase the X-ray image information. The erased imaging plate is also subjected to exposure. In this way, the imaging plate can be used repeatedly.

このイメージングプレートは、前述した4項目のX線用
フィルムを用いた写真法の問題点を全て解決した優れた
特徴を有している。Nuclear Inst−rum
ents and Methods in Physi
cs Re5earch A246(1986) 57
2−578頂に示されているように、106におよぶ広
い検出感度域において優れた定量性が得られている。ま
た検出下限が低く、最小画素あたり10カウントでも検
出しうる。この値はX線用フィルムの約1710であり
、従ってイメージングプレートではX線用フィルムに比
べ露光時間を約1/10に短縮しうる。またレーザー光
線による高速の読み取り、可視光線による高速の消去が
可能であり、極めて能率的である。また積分型検出器な
ので計数管のような不惑時間(検出器が検出を行わない
時間ρ摂在せず、高速現象を測定することができる。
This imaging plate has the excellent feature of solving all of the above-mentioned four problems of photography using X-ray film. Nuclear Inst-rum
ents and Methods in Physi
cs Research A246 (1986) 57
As shown at the top of 2-578, excellent quantitative performance was obtained in a wide detection sensitivity range of 106. In addition, the lower limit of detection is low, and detection is possible even with a minimum of 10 counts per pixel. This value is approximately 1710 times that of an X-ray film, and therefore, the exposure time of an imaging plate can be reduced to approximately 1/10 compared to an X-ray film. Furthermore, high-speed reading using laser beams and high-speed erasing using visible light are possible, making them extremely efficient. Furthermore, since it is an integral type detector, there is no dead time (time ρ during which the detector does not perform detection) like in a counter tube, and high-speed phenomena can be measured.

(発明が解決しようとする課題) しかし従来のイメージングプレートの使用法は、はなは
だ不十分なものであった。例えば露光に際しては、イメ
ージングプレートを固定したままで、。
(Problems to be Solved by the Invention) However, conventional methods of using imaging plates have been extremely unsatisfactory. For example, during exposure, the imaging plate remains fixed.

かつイメージングプレート面全体を一体として使用して
いる。また読み取り・消去装置が露光装置とは分離した
装置となっており、イメージングプレートを一枚毎に露
光装置から読み取り・消去装置へ手作業によりセットし
なければならない、このようなオフライン形式の使用方
式では、多数の撮影枚数を要するX線写真法正極点図測
定などに使用するには繁雑で能率が極めて悪く、実際に
使用することはできない。
Moreover, the entire imaging plate surface is used as one piece. In addition, the reading/erasing device is a separate device from the exposure device, and each imaging plate must be manually set from the exposure device to the reading/erasing device, which is an offline method of use. However, this method is complicated and extremely inefficient for use in X-ray photography positive pole figure measurements that require a large number of images, and cannot be used in practice.

本発明は上記問題点に鑑みなされたもので、連続的にオ
ンラインでX線回折像を撮影する撮影法を提供する。
The present invention has been made in view of the above-mentioned problems, and provides a photography method for continuously photographing X-ray diffraction images online.

(課題を解決するための手段) 本発明は、イメージングプレートの感光面に複数の測定
領域を設定し、該イメージングプレートを回転させなが
ら各領域においてX線回折像を順次露光、読み取り、消
去することにより連続的にX線回折像を邊影する方法で
ある。
(Means for Solving the Problem) The present invention sets a plurality of measurement areas on the photosensitive surface of an imaging plate, and sequentially exposes, reads, and erases an X-ray diffraction image in each area while rotating the imaging plate. This is a method of continuously projecting X-ray diffraction images.

本発明においては、 (1)  露光においては、当該測定領域だけにX線を
露光し、他の測定領域にはX線が露光されないように遮
へいを行うこと。
In the present invention, (1) During exposure, only the relevant measurement area is exposed to X-rays, and other measurement areas are shielded from exposure to X-rays.

(2)読み取りにおいては、当該測定領域だけをレーザ
ー光線の走査により読み取り、他の測定領域にはレーザ
ー光線が照射されないように遮へいを行うこと。
(2) During reading, only the relevant measurement area should be scanned with a laser beam, and other measurement areas should be shielded from being irradiated with the laser beam.

(3)読み取りにおいて、斜め入射による測定精度の低
下を防止するため、レーザー光線をイメージングプレー
トに垂直に入射させること。
(3) During reading, in order to prevent a decrease in measurement accuracy due to oblique incidence, the laser beam is made perpendicular to the imaging plate.

(4)読み取りにおいて、読み取り時間を短縮するため
にレーザー光線の走査を短時間で終了させること。
(4) In reading, the scanning of the laser beam should be completed in a short time in order to shorten the reading time.

(5)消去においては、読み取り済かつ未露光領域だけ
に可視光線を照射し、他の領域には可視光線が照射され
ないように遮へいを行うこと。
(5) During erasing, visible light is irradiated only to the read and unexposed area, and other areas are shielded so that visible light is not irradiated.

(6)上記(1)〜(5)において、イメージングプレ
ート表面を傷つけることなく行うこと。
(6) In (1) to (5) above, perform without damaging the surface of the imaging plate.

等を考慮してイメージングプレートを分割使用するとと
もに回転させ、連続的にオンラインでX線回折像を撮影
することを可能にするものである。
Taking these factors into consideration, the imaging plate is divided into parts and rotated, making it possible to continuously take X-ray diffraction images online.

(作 用) 次に本発明をその作用とともに詳世に説明する。(for production) Next, the present invention will be explained in detail along with its operation.

イメージングプレートの感光面に複数の測定領域を設定
する。測定領域の数は多い方が一定時間での測定回数が
多く能率の点で優れているが、測定領域の面積が小さく
なるために一回の測定で得られる情報量は少なくなる。
Multiple measurement areas are set on the photosensitive surface of the imaging plate. The larger the number of measurement regions, the more measurements can be made in a given period of time, which is better in terms of efficiency, but the smaller the area of the measurement regions, the less information can be obtained in one measurement.

必要な情報量と測定効率を勘案し目的に応じて測定領域
の数を決める。
The number of measurement areas is determined according to the purpose, taking into account the amount of information required and measurement efficiency.

各領域においてX線回折像を順次露光、読み取り。Sequentially expose and read the X-ray diffraction images in each region.

消去することにより連続的にX線回折像を撮影するため
には回転が必要となる。イメージングプレートを固定し
大きくかつ重い各処理装置を回転することは実際上困難
である。従って露光、読み取り、消去の各処理装置を固
定しイメージングプレートを回転させることにより測定
領域が露光、読み取り、消去の3つの処理を順次受ける
のが望ましい。そのためには、露光、読み取り、消去を
行う位置をあらかじめ定め、各位置にX線照射装置、読
み取り装置、消去装置を取り付は同期させて作動させる
必要がある。また上記の処理を行う場合は、イメージン
グプレートの回転を停止し一斉に3つの処理を行うこと
が能率上有利である。3つの処理の完了後イメージング
プレートを一定角度回転させ、後続の測定領域の処理を
行う。このようにイメージングプレートの回転と停止を
繰り返す事により、連続的にX線回折像が撮影される。
Rotation is required in order to continuously take X-ray diffraction images by erasing. It is practically difficult to fix the imaging plate and rotate each large and heavy processing device. Therefore, it is desirable that the exposure, reading, and erasing processing devices are fixed and the imaging plate is rotated so that the measurement area is sequentially subjected to the three processes of exposure, reading, and erasing. To do this, it is necessary to determine in advance the positions for exposure, reading, and erasing, and to install an X-ray irradiation device, a reading device, and an erasing device at each location and operate them in synchronization. Furthermore, when performing the above processing, it is advantageous in terms of efficiency to stop the rotation of the imaging plate and perform the three processing at once. After completing the three processes, the imaging plate is rotated by a certain angle and the subsequent measurement area is processed. By repeating the rotation and stopping of the imaging plate in this manner, X-ray diffraction images are continuously taken.

このように3つの処理を一斉に行うため、測定領域の数
は最小3となる。ただし測定領域の間に廣へいのための
間隔が必要である。上限は特に設けないが実用的には1
20程度である。
Since the three processes are performed simultaneously in this way, the number of measurement areas is at least three. However, a wide space is required between the measurement areas. There is no particular upper limit, but for practical purposes it is 1.
It is about 20.

各測定領域間はX線及び可視光線が相互に完全に遮へい
されていなければならず、このために遮へいに鉛板を用
いる場合は、測定領域の間にtau以上の間隔をあけね
ばならない。遮へいに銅板を使用する場合は望ましくは
3II111以上の間隔を設けることが必要である。測
定領域の形状は円形、矩形、多角形等任意の形状が可能
である。
X-rays and visible light must be completely shielded from each other between each measurement area, and for this reason, if a lead plate is used for shielding, an interval of tau or more must be provided between the measurement areas. If a copper plate is used for shielding, it is desirable to provide a spacing of 3II111 or more. The shape of the measurement area can be any shape such as a circle, a rectangle, or a polygon.

露光2読み取り、消去の各処理を希望の形状寸法の測定
領域で行うためには露光装置に例えば第2図および第3
図に示す露光用マスク9を、また読み取り装置に第2図
に示す読み取り用マスク15を取り付ける。消去装置に
も同様なマスクを取り付ける。マスクは測定領域の部分
を空白にした金属製の枠であり、各装置のマスク取り付
は具に取り付ける。3個のマスクをイメージングプレー
トの停止後イメージングプレートに押し付けてX線や光
線の漏洩を防ぐ。イメージングプレートの裏側にX線や
光線を透過させないブロックを置き、押し付けによるイ
メージングプレートの歪および透過によるX線や光線の
漏洩を防ぐ。またマスクおよびマスク取り付は具の材質
は遮へいに適した鉛板、または種板などの金属が望まし
い。イメージングプレート表面を傷つけることを防止す
るためイメージングプレートに接触するマスクの表面に
有機被覆を行う。例えばテフロン被覆などが望ましい。
Exposure 2 In order to perform each reading and erasing process in the measurement area of the desired shape and size, the exposure device must be
The exposure mask 9 shown in the figure and the reading mask 15 shown in FIG. 2 are attached to the reading device. A similar mask is also attached to the erasing device. The mask is a metal frame with the measurement area blank, and each device is attached to the mask. After the imaging plate has stopped, three masks are pressed against the imaging plate to prevent leakage of X-rays and light rays. A block that does not transmit X-rays or light rays is placed on the back side of the imaging plate to prevent distortion of the imaging plate due to pressing and leakage of X-rays or light rays due to transmission. In addition, the material of the mask and mask mounting tools is preferably a lead plate or a metal such as a seed plate suitable for shielding. An organic coating is applied to the surface of the mask that contacts the imaging plate to prevent damage to the imaging plate surface. For example, Teflon coating is desirable.

またイメージングプレート、読み取り装置、消去装置は
可視光線を透過させない測定用箱の中に設置する。
Furthermore, the imaging plate, reading device, and erasing device are installed in a measurement box that does not transmit visible light.

読み取り処理を行う場合は、イメージングプレートの回
転を停止しレーザー光線反射鏡(以下ミラー)を走査す
る方法を行う。イメージングプレートの回転を停止しな
い方法も考えられるが、露光、消去の画処理と同時に処
理できず能率上古る。
When performing reading processing, a method is used in which the rotation of the imaging plate is stopped and a laser beam reflecting mirror (hereinafter referred to as mirror) is scanned. A method that does not stop the rotation of the imaging plate is conceivable, but it would be inefficient in terms of efficiency as it would not be possible to process the exposure and erasing images at the same time.

ミラーの走査により測定領域全面の読み取りを行う。斜
め入射による測定精度の低下を防止するた走査用ミラー
をイメージングプレートの曲率中心に位置させることも
できる。また読み取りデータは試料の記号および測定条
件(傾き角度、傾き方向1位置、温度、雰囲気など)と
対応させて電子計算機の記憶装置に記憶させる。
The entire measurement area is read by scanning the mirror. A scanning mirror may be positioned at the center of curvature of the imaging plate to prevent a decrease in measurement accuracy due to oblique incidence. Further, the read data is stored in the storage device of the electronic computer in association with the symbol of the sample and measurement conditions (tilt angle, one position in the tilt direction, temperature, atmosphere, etc.).

前述したようにイメージングプレートの回転動作は、回
転と停止を操り返すがその回転角度および回転時間間隔
を適切に保つための回転用モータX線シャッター、読み
取り装置および消去装置の制御を制御装置を介して電子
計算機により行う。従って各種の実験に必要な形状2寸
法および間隔の測定領域を1枚のイメージングプレート
上で実現できる。回転中は露光、読み取り、消去が行え
ないので回転速度は速い方が望ましい。
As mentioned above, the rotation operation of the imaging plate is controlled by rotating and stopping the rotation motor, X-ray shutter, reading device, and erasing device through a control device to maintain appropriate rotation angle and rotation time interval. This is done using an electronic computer. Therefore, measurement regions of two shapes and spaces required for various experiments can be realized on one imaging plate. Exposure, reading, and erasing cannot be performed during rotation, so a faster rotation speed is desirable.

超高速現象の測定のためにはドーナツ状のイメージング
プレートの全周を一つの測定領域としで使用することも
できる。この場合は全周について露光、読み取り、消去
を順次行う。
For the measurement of ultrahigh-speed phenomena, the entire circumference of the donut-shaped imaging plate can be used as one measurement area. In this case, exposure, reading, and erasing are performed sequentially for the entire circumference.

(実施例) 本発明法により以下の測定を実施した。(Example) The following measurements were carried out using the method of the present invention.

■) 正極点図測定 2)応力測定 3)相変態、再結晶及び析出現象の動的測定4) 結晶
構造の試料位置側マツピング5) デバイ像測定 6) ラウェ像測定 1)正極点図測定 実施例 1: 第1図に示すように円形のイメージングプレート10上
に6個の正六角形の測定領域を設定した。
■) Positive pole figure measurement 2) Stress measurement 3) Dynamic measurement of phase transformation, recrystallization and precipitation phenomena 4) Mapping of the crystal structure on the sample position side 5) Debye image measurement 6) Laue image measurement 1) Positive pole figure measurement implementation Example 1: As shown in FIG. 1, six regular hexagonal measurement areas were set on a circular imaging plate 10.

Aの測定領域で露光処理を行う場合はB、Cの測定領域
が各々読み取り、消去の各処理に対応する。
When the exposure process is performed in the measurement area A, the measurement areas B and C correspond to the reading and erasing processes, respectively.

第2図は装置の平面図である。右半分は第1図のo−a
断面に設置された露光装置を、左半分は第1図の0−b
断面に設置された読み取り装置を示す。なお第1図のo
−c断面には消去装置が設置を通し、コリメーター5に
より直径Innの平行ビームおして鋼板試料6に入射さ
せた。試料6を透過したX線は、霧光用マスク9とビー
ムストッパー12で制限されたイメージングプレート1
0上の測定領域に回折像を生じる。霧光用マスク9の詳
細を第3図に示す、イメージングプレート10は60度
毎に停止する。60度の回転に2秒を要する。停止時に
一斉に露光、読み取り、消去を行う。露光での鋼板製の
シャッター2の開放時間は120秒必要であった。読み
取りは30秒を要した。消去は10秒で行った。従って
停止時間は120秒で行った。鋼板試料6の傾き角度の
変更とイメージングプレート10の停止(この場合は6
0度毎)を同期させて行いながら次々と露光させた。入
射X線ビームに試料6を垂直にして一回測定後試料の傾
きを板面に平行で互いに直交する4方向へ5.10.1
5.20.25.30度傾け、合計25回の測定データ
を得た。
FIG. 2 is a plan view of the device. The right half is o-a in Figure 1.
The left half of the exposure device installed in the cross section is 0-b in Figure 1.
The reader is shown installed in the cross section. Note that o in Figure 1
An eraser was installed on the -c cross section, and a parallel beam of diameter Inn was made incident on the steel plate sample 6 using a collimator 5. The X-rays transmitted through the sample 6 pass through the imaging plate 1, which is restricted by a fog light mask 9 and a beam stopper 12.
A diffraction image is generated in the measurement area above 0. Details of the fog light mask 9 are shown in FIG. 3, and the imaging plate 10 stops every 60 degrees. It takes 2 seconds to rotate 60 degrees. Exposure, reading, and erasing are performed all at once when stopped. The opening time of the steel plate shutter 2 during exposure was required to be 120 seconds. Reading took 30 seconds. Erasing was performed in 10 seconds. Therefore, the stopping time was 120 seconds. Changing the inclination angle of the steel plate sample 6 and stopping the imaging plate 10 (in this case, changing the inclination angle of the steel plate sample 6
Exposures were carried out one after another while synchronizing each other (every 0 degrees). After one measurement with the sample 6 perpendicular to the incident X-ray beam, tilt the sample in four directions parallel to the plate surface and orthogonal to each other.5.10.1
It was tilted at 5, 20, 25, and 30 degrees, and a total of 25 measurement data were obtained.

実施例 2: 放射光(2,5GeV、 200+sA)をモノクロメ
ータニより単色化したのち光源として用いたところ、露
光時間は10秒で+−分であった。停止時間は読み取り
に必要な30秒となり能率は読み取り時間の律速となっ
た。
Example 2: When synchrotron radiation (2.5 GeV, 200+sA) was converted into a monochromatic light source and used as a light source, the exposure time was 10 seconds and +- minutes. The stop time was 30 seconds, which was necessary for reading, and efficiency was determined by the reading time.

従来法 1; X線フィルム法では露光に10分×25回、現像(乾燥
まで)に120分、ミクロフォトメータによる読み取り
に20分×25回という長時間を要した。
Conventional method 1; The X-ray film method required a long time of 10 minutes x 25 times for exposure, 120 minutes for development (until drying), and 20 minutes x 25 times for reading with a microphotometer.

従来法 2: イメージングプレート法では露光に2分、読み取り〜消
去に5分でイメージングプレート10の取り外し、取り
付けなどの手作業の時間を加えて1回の測定で10分を
要した。
Conventional method 2: In the imaging plate method, it took 2 minutes for exposure, 5 minutes for reading and erasing, and 10 minutes for one measurement, including manual labor such as removing and attaching the imaging plate 10.

以上の実施結果を第1表にまとめて示す。The above implementation results are summarized in Table 1.

第1表 正極点図測定の効果 粗大粒組織の場合は試料を面内で板面に平行で互いに直
交する2方向へ走査させることにより、十分な結晶粒数
を測定し解析可能なデータを得ることができる。
Table 1 Effects of positive pole figure measurement In the case of a coarse grain structure, by scanning the sample in two directions parallel to the plate surface and perpendicular to each other, a sufficient number of crystal grains can be measured and analyzable data can be obtained. be able to.

2)応力測定 実施例1: 第4図に示すように、円形のイメージングプレート10
上に幅20龍の矩形の12個の測定領域を設定する。A
の測定領域で露光処理を行う場合はB。
2) Stress measurement example 1: As shown in FIG. 4, a circular imaging plate 10
Twelve rectangular measurement areas with a width of 20 mm are set on the top. A
B when performing exposure processing in the measurement area.

Cの測定領域が各々読み取り、消去の各処理に対応する
。第2図に示す方法により実験室においてCr管球(4
0kv 、 30mA)より発生した特性X線4をフィ
ルター3を通した後、コリメータ5により直径1鶴の平
行ビームとして鋼板試料6に入射させた。試料を反射し
たX線は露光用マスク9で制限された測定頭域に回折像
を生じる。イメージングプレート10は30度毎に停止
する。30度の回転に1秒を要する。停止時に一斉に露
光、読み取り、消去を行う。イメージングプレート10
の露光時の鋼板製のシャッター2の開放時間は120秒
必要であった。読み取りには6秒を要した。消去は2秒
で行った。従って停止時間は120秒で行った。鋼板試
料の傾き角度の変更とイメージングプレート10の停止
を同期させて変えながら次々と露光させた。3軸応力測
定のため入射X線ビームに試料を垂直にした後、試料の
傾きを板面に平行で互いに直交する2方向およびその2
方向を2等分する方向へ0.5.10.15.20.2
5.30.35.40.45度傾け、合計30回の測定
データを得た。
The measurement areas C correspond to reading and erasing processes, respectively. Cr tubes (4
After passing through a filter 3, characteristic X-rays 4 generated from a source (0 kV, 30 mA) were made incident on a steel plate sample 6 by a collimator 5 as a parallel beam with a diameter of 1 square. The X-rays reflected from the sample produce a diffraction image in the measurement head area limited by the exposure mask 9. Imaging plate 10 stops every 30 degrees. It takes 1 second to rotate 30 degrees. Exposure, reading, and erasing are performed all at once when stopped. Imaging plate 10
The opening time of the steel plate shutter 2 during exposure was required to be 120 seconds. It took 6 seconds to read. Erasing was performed in 2 seconds. Therefore, the stopping time was 120 seconds. Exposure was performed one after another while changing the inclination angle of the steel plate sample and stopping the imaging plate 10 in synchronization. After making the sample perpendicular to the incident X-ray beam for triaxial stress measurement, the sample is tilted in two directions parallel to the plate surface and orthogonal to each other, and
0.5.10.15.20.2 in the direction that bisects the direction
It was tilted at 5, 30, 35, 40, and 45 degrees, and a total of 30 measurement data were obtained.

実施例 2: 放射光(2,5GeV、 200m^)をモノクロメー
タにより単色化したのち光源として用いたところ、露光
時間は9秒、読み取り時間は6秒で停止時間は露光に必
要な9秒となり能率は露光時間の律速となった。
Example 2: Synchrotron radiation (2.5 GeV, 200 m^) was made monochromatic using a monochromator and then used as a light source; the exposure time was 9 seconds, the reading time was 6 seconds, and the stop time was 9 seconds, which is the time required for exposure. Efficiency was determined by exposure time.

従来法1と2はl)正極点図測定の場合と同様に行った
0以上の結果を第2表に示す。
Conventional methods 1 and 2 were carried out in the same manner as in the case of l) positive pole figure measurement, and the results of 0 or more are shown in Table 2.

第2表 応力測定の効果 1軸応力測定の場合は試料の傾動を一方向に行えばよい
Table 2 Effects of stress measurement In the case of uniaxial stress measurement, it is sufficient to tilt the sample in one direction.

3)相変態、再結晶及び析出現象の動的測定1)項と同
一の方法においてイメージングプレーNO上に幅2鶴の
矩形の120個の測定領域を設定し79回転対陰極Mo
特性X線源(60kv、 300mA)を使用した。露
光時間を2.5秒、読み取り時間を1秒とすることによ
り3秒毎の動的測定を行った。
3) Dynamic measurement of phase transformation, recrystallization, and precipitation phenomena Using the same method as in section 1), 120 rectangular measurement areas with a width of 2 squares were set on the imaging plate NO, and the anticathode Mo was rotated 79 times.
A characteristic X-ray source (60 kv, 300 mA) was used. Dynamic measurements were performed every 3 seconds using an exposure time of 2.5 seconds and a reading time of 1 second.

またこの方法において超高速現象の測定のために、ドー
ナツ状のイメージングプレート10の全周を一つの測定
領域として使用した。イメージングプレート10を毎秒
1回転で回転させておきシャッター2を1秒開放し、イ
メージングプレート10を露光させたのち、イメージン
グプレート10全面の読み取り、消去を行った。この方
法により超高速現象の測定が行えた。
Furthermore, in this method, the entire circumference of the donut-shaped imaging plate 10 was used as one measurement area for the measurement of ultrahigh-speed phenomena. The imaging plate 10 was rotated at one revolution per second, the shutter 2 was opened for one second, and the imaging plate 10 was exposed to light, and then the entire surface of the imaging plate 10 was read and erased. Using this method, we were able to measure ultrafast phenomena.

4)結晶構造の試料位置別マツピング 2)項と同一の方法ににおいて試料を傾けることなく、
板面に平行で互いに直交する2方向ステツプ走査させる
ことにより行った。
4) Mapping of crystal structure by sample position In the same method as in section 2), without tilting the sample,
This was carried out by step scanning in two directions parallel to the plate surface and perpendicular to each other.

5)デバイ像測定 1)項と同一の方法において試料を傾けることなく、板
面に平行で互いに直交する2方向へ走査させる機構を用
い、目的の複数位置の測定を行った。
5) Debye image measurement In the same method as in section 1), without tilting the sample, measurements were performed at multiple target positions using a mechanism that scans in two directions parallel to the plate surface and orthogonal to each other.

6)ラウェ像測定 ■)項と同一の方法において、白色XvA源を用い測定
試料を傾けることなく、板面に平行で互いに直交する2
方向へ走査させる機構を用い、目的の複数位置の測定を
行った。
6) Lawe image measurement In the same method as in section ■), using a white XvA source and without tilting the measurement sample, two images parallel to the plate surface and perpendicular to each other are
Using a mechanism that scans in various directions, measurements were taken at multiple target positions.

(発明の効果) 本発明法は、従来法に比べ測定時間が短く、能率の点で
優れているのみならず、手作業を要せず省力化の点でも
優れている。また計数値の定量的強度域が広く、定量性
において優れている。さらに結晶組織についての情報も
得られる。
(Effects of the Invention) Compared to the conventional method, the method of the present invention not only has a shorter measurement time and is superior in terms of efficiency, but also is superior in terms of labor saving as it does not require manual labor. In addition, the quantitative intensity range of the counted values is wide, and the quantitativeness is excellent. Furthermore, information on crystal structure can also be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は正極点図測定時のイメージングプレート上測定
領域設定状況の説明図、第2図はX線回折像測定方法の
説明図、第3図は正極点図測定時の露光用マスクの正面
図、第4図は応力測定時のイメージングプレート上測定
領域設定状況の説明図である。 1・・・X線源、2・・・シャッター 3・・・フィル
ター4・・・X線、5・・・コリメータ、6・・・試料
、7・・・測定用箱、8・・・露光用マスク取り付は具
、9・・・露光用マスク、10・・・イメージングプレ
ート、11・・・イメージングプレート支持ブロック、
12・・・ビームストッパー・、13・・・パルスモー
タ、14・・・イメージングブ[/−ト支持ブロック(
読み取り用)、15・・・読み取り用マスク、16・・
・読み取り用マスク取り付は具、17・・・ミラー、1
8・・・読み取り用光線検出器、19・・・制御装置、
20・・・電子計算機 代理人 弁理士  秋 沢 政 光 性1名 片2図 第1図 第3図 7i4図
Figure 1 is an explanatory diagram of the measurement area setting situation on the imaging plate during positive pole figure measurement, Figure 2 is an explanatory diagram of the X-ray diffraction image measurement method, and Figure 3 is the front view of the exposure mask during positive pole figure measurement. FIG. 4 is an explanatory diagram of the measurement area setting situation on the imaging plate during stress measurement. 1... X-ray source, 2... Shutter 3... Filter 4... X-ray, 5... Collimator, 6... Sample, 7... Measurement box, 8... Exposure 9... Exposure mask, 10... Imaging plate, 11... Imaging plate support block,
12... Beam stopper, 13... Pulse motor, 14... Imaging bracket support block (
for reading), 15...mask for reading, 16...
・To attach the reading mask, use the tool, 17...Mirror, 1
8... Light beam detector for reading, 19... Control device,
20...Electronic Computer Agent Patent Attorney Masaaki Akisawa 1 Name Piece 2 Figure 1 Figure 3 Figure 7i4

Claims (1)

【特許請求の範囲】[Claims] イメージングプレートの感光面に複数の測定領域を設定
し、該イメージングプレートを回転させながら各領域に
おいてX線回折像を順次露光、読み取り、消去すること
を特徴とする連続的X線回折像撮影法。
A continuous X-ray diffraction imaging method characterized by setting a plurality of measurement regions on the photosensitive surface of an imaging plate, and sequentially exposing, reading, and erasing X-ray diffraction images in each region while rotating the imaging plate.
JP16295388A 1988-06-30 1988-06-30 Method for continuously radiographing x-ray diffraction image Pending JPH0212043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16295388A JPH0212043A (en) 1988-06-30 1988-06-30 Method for continuously radiographing x-ray diffraction image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16295388A JPH0212043A (en) 1988-06-30 1988-06-30 Method for continuously radiographing x-ray diffraction image

Publications (1)

Publication Number Publication Date
JPH0212043A true JPH0212043A (en) 1990-01-17

Family

ID=15764408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16295388A Pending JPH0212043A (en) 1988-06-30 1988-06-30 Method for continuously radiographing x-ray diffraction image

Country Status (1)

Country Link
JP (1) JPH0212043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190899A (en) * 2013-03-28 2014-10-06 Pulstec Industrial Co Ltd X-ray diffraction measurement equipment and x-ray diffraction measurement system
JP2014206506A (en) * 2013-04-15 2014-10-30 パルステック工業株式会社 X-ray diffraction measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190899A (en) * 2013-03-28 2014-10-06 Pulstec Industrial Co Ltd X-ray diffraction measurement equipment and x-ray diffraction measurement system
JP2014206506A (en) * 2013-04-15 2014-10-30 パルステック工業株式会社 X-ray diffraction measurement system

Similar Documents

Publication Publication Date Title
Franks Some developments and applications of microfocus X-ray diffraction techniques
US5430308A (en) 3-dimensional radiation dosimeter
Hammersley et al. Calibration and application of an X-ray image intensifier/charge-coupled device detector for monochromatic macromolecular crystallography
WO2024131089A1 (en) Rapid low-dose x-ray multi-modal ct system and imaging method
JP2821585B2 (en) In-plane distribution measuring method and apparatus
EP0383752B1 (en) Powder diffraction method and apparatus
JPH0212043A (en) Method for continuously radiographing x-ray diffraction image
US5936255A (en) X-ray, neutron or electron diffraction method using an imaging plate and apparatus therefor
JP3027361B2 (en) Imaging plate X-ray diffractometer
JP3088516B2 (en) X-ray diffraction measurement method and apparatus
JP2002250704A (en) X-ray measuring instrument and x-ray measuring method
JP3090780B2 (en) X-ray diffraction image dynamic exposure system
JP2807000B2 (en) X-ray diffractometer
JPH08145916A (en) Small angle scattering x-ray equipment
JP4623879B2 (en) Beam evaluation method and apparatus
JP3626965B2 (en) X-ray apparatus and X-ray measurement method
JPH0642202Y2 (en) Reference point marking device for stimulable phosphor for X-ray diffraction
JP3090801B2 (en) X-ray diffraction arc exposure equipment
US5128976A (en) Oscillation radiography camera and method
JP3742200B2 (en) X-ray, neutron or electron diffraction method
JP2988995B2 (en) Storage phosphor, X-ray diffraction apparatus and X-ray diffraction method
JP2001311706A (en) X-ray diffraction device
SU994967A1 (en) Monocrystal radiographic investigation method
JP2560116B2 (en) Slit device for X-ray diffraction measurement
JPH06265489A (en) X-ray diffractometer