JPH0212007B2 - - Google Patents
Info
- Publication number
- JPH0212007B2 JPH0212007B2 JP22488683A JP22488683A JPH0212007B2 JP H0212007 B2 JPH0212007 B2 JP H0212007B2 JP 22488683 A JP22488683 A JP 22488683A JP 22488683 A JP22488683 A JP 22488683A JP H0212007 B2 JPH0212007 B2 JP H0212007B2
- Authority
- JP
- Japan
- Prior art keywords
- winding
- tap
- transformer
- shunt
- series
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004804 winding Methods 0.000 claims description 209
- 230000005284 excitation Effects 0.000 claims description 40
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 21
- 230000007935 neutral effect Effects 0.000 claims description 13
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F30/00—Fixed transformers not covered by group H01F19/00
- H01F30/02—Auto-transformers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/02—Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は一次巻線と二次巻線とが単巻結線され
た直接切換方式の負荷時タツプ切換変圧器の巻線
の配置および結線に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to the winding arrangement and connection of a direct switching type on-load tap-change transformer in which a primary winding and a secondary winding are connected by a single turn. .
この種の変圧器は超高圧大容量の送電線に接続
して使用されるために、単器輸送可能容量の増大
と小形化、軽量化が求められている。
Since this type of transformer is used by connecting to an ultra-high voltage, large capacity power transmission line, there is a need for an increase in the transportable capacity of the unit as well as a reduction in size and weight.
第1図は従来の負荷時タツプ切換単巻変圧器の
巻線配置図で、単相器として製作され据着場所に
おいて三相バンク結線されて三相変圧器として使
用されるものである。図において、鉄心9の主脚
部9Aには同心状に内側から順次三次巻線3、タ
ツプ巻線5、分路巻線2、直列巻線1がそれぞれ
所定の絶縁間隙を保つよう巻装されており、直列
巻線1と分路巻線2とは単巻結線されるととも
に、タツプ巻線5は多数のタツプリード5A,5
Bと図示しない負荷時タツプ切換器等の切換回路
を介してたとえば分路巻線に縦続接続され、単相
単巻負荷時タツプ切換変圧器が構成される。とこ
ろが図のように一つの鉄心脚に多数の巻線を同心
状に重ねて配置する構造では、巻線の最大外径
D1が大きくなり、その結果変圧器の輸送幅寸法
が増大して単器輸送可能容量が制約される欠点が
あり、またタツプ巻線5から引出されるリード線
5A,5Bが高圧の直列巻線1および分路巻線2
の上下端部を横切るため、リード線5A,5Bの
配置と絶縁構造が複雑化するという問題がある。 FIG. 1 is a winding layout diagram of a conventional on-load tap switching autotransformer, which is manufactured as a single-phase transformer, connected in a three-phase bank at the installation site, and used as a three-phase transformer. In the figure, a tertiary winding 3, a tap winding 5, a shunt winding 2, and a series winding 1 are wound concentrically around the main leg portion 9A of the iron core 9 in order from the inside so as to maintain a predetermined insulation gap. The series winding 1 and the shunt winding 2 are connected by a single turn, and the tap winding 5 has a large number of tap leads 5A, 5.
B is connected in cascade to, for example, a shunt winding via a switching circuit such as an on-load tap changer (not shown), thereby forming a single-phase single-turn on-load tap changer transformer. However, in a structure where many windings are arranged concentrically on one core leg as shown in the figure, the maximum outer diameter of the windings is
D 1 increases, resulting in an increase in the transportation width dimension of the transformer, which limits the transportable capacity of the single unit.In addition, the lead wires 5A and 5B drawn out from the tap winding 5 are high-voltage series windings. line 1 and shunt winding 2
Since the lead wires 5A and 5B cross the upper and lower ends of the lead wires, the arrangement and insulation structure of the lead wires 5A and 5B become complicated.
第2図は改良された従来の単相単巻負荷時タツ
プ切換変圧器の巻線配置図、第3図は展開した巻
線配置接続図である。図において、鉄心9の主脚
部9Aには内側から順次主脚側励磁巻線4、分路
巻線2、直列巻線1が互いに同心状に巻装されて
おり、鉄心9の帰路脚9Bの一方側には内側から
順次帰路脚側励磁巻線6、三次巻線3、タツプ巻
線5が互いに同心状に巻装されている。また巻線
相互の接続は第3図に示すように、直列巻線1と
分路巻線2は単巻結線(直列接続)されて高圧線
路端子Uと中圧(分路)端子uが引き出されると
ともに、分路巻線2の中性点側にはタツプ巻線5
が縦続接続され、極性切換器7Aとタツプ切換器
7Bからなるタツプ切換回路7のタツプ切換器7
Bを介して中性点端子Oが引き出されている。ま
た分路巻線2と磁気的に結合した主脚側励磁巻線
4と帰路脚側励磁巻線6とは変圧器内部で並列接
続され、分路巻線2側から供給される電力を励磁
巻線4を介して励磁巻線6で受け、受けた電力を
三次巻線3に流れる負荷電流およびタツプ巻線5
に流れる負荷電流に対応して供給するよう構成さ
れている。このように構成された単相単巻変圧器
3台は、据着場所において中性点端子Oが相互に
接続されかつ接地されて、星形結線された三相単
巻変圧器バンクが形成され、線路端U側および分
路端u側の一方は三相電源に他方は三相負荷に接
続される。上述のように鉄心の帰路脚部9Bを利
用してタツプ巻線5および三次巻線3を主脚9A
側から分離することにより、新たに必要になる励
磁巻線4を加えても主脚側の巻線数が第1図の4
巻線から3巻線に減少するので、最大巻線外径
D2を第1図のD1に比べて縮小できる。またタツ
プ巻線5の帰路脚の巻線の外側に配設できるの
で、リード線5A,5Bの引出しが容易になり、
かつタツプ切換器7をタツプ巻線5の側方に配置
すれば、リード線の構造配置を簡素化できる利点
がある。ところが、巻線を主脚側と帰路脚側の両
方に巻装したことにより鉄心の輸送長さ方向の寸
法が増大する欠点がある。ことに輸送容量をさら
に増すために、主脚側巻線や帰路脚側巻線を分割
して複数の主脚または帰路脚を巻装するような場
合、輸送長さ方向の寸法がますます大きくなつて
輸送容量の増大に阻害するという問題がある。 FIG. 2 is a winding layout diagram of an improved conventional single-phase single-turn load tap switching transformer, and FIG. 3 is an expanded winding layout and connection diagram. In the figure, the main leg side excitation winding 4, the shunt winding 2, and the series winding 1 are wound concentrically with each other in order from the inside on the main leg portion 9A of the iron core 9, and the return leg 9B of the iron core 9 A return leg side excitation winding 6, a tertiary winding 3, and a tap winding 5 are wound concentrically with each other on one side of the winding, in order from the inside. In addition, as shown in Figure 3, the windings are connected to each other by connecting the series winding 1 and the shunt winding 2 in a single-turn connection (series connection), with the high-voltage line terminal U and medium-voltage (shunt) terminal U drawn out. At the same time, a tap winding 5 is connected to the neutral point side of the shunt winding 2.
are connected in cascade, and the tap changer 7 of the tap changer circuit 7 consists of the polarity changer 7A and the tap changer 7B.
A neutral point terminal O is drawn out through B. In addition, the main leg side excitation winding 4 and the return leg side excitation winding 6, which are magnetically coupled to the shunt winding 2, are connected in parallel inside the transformer to excite the power supplied from the shunt winding 2. The load current is received by the excitation winding 6 via the winding 4, and the received power flows into the tertiary winding 3 and the tap winding 5.
The circuit is configured to supply the load current corresponding to the load current flowing through the circuit. The three single-phase autotransformers configured in this way have their neutral terminals O connected to each other and grounded at the installation site, forming a star-connected three-phase autotransformer bank. , one of the line end U side and the shunt end U side is connected to a three-phase power supply and the other to a three-phase load. As mentioned above, the tap winding 5 and the tertiary winding 3 are connected to the main leg 9A using the return leg 9B of the iron core.
By separating it from the side, even if we add the newly required excitation winding 4, the number of windings on the main landing gear side is reduced to 4 as shown in Figure 1.
Since the winding is reduced to 3 windings, the maximum winding outer diameter
D2 can be reduced compared to D1 in FIG. In addition, since it can be arranged outside the winding of the return leg of the tap winding 5, the lead wires 5A and 5B can be easily drawn out.
Moreover, if the tap changer 7 is arranged on the side of the tap winding 5, there is an advantage that the structural arrangement of the lead wires can be simplified. However, since the windings are wound on both the main leg side and the return leg side, there is a drawback that the dimension of the iron core in the transportation length direction increases. In particular, in order to further increase the transport capacity, when the main landing gear side winding or the return leg side winding is divided to wind multiple main landing gears or return legs, the length of the transport becomes larger. This poses a problem in that it hinders the increase in transport capacity.
第4図から第6図は第2図および第3図の従来
構造における電流の流れを示す回路図で、第4図
は最高タツプ時、第5図は中間タツプ時、第6図
は最低タツプ時の電流の流れをそれぞれ実線矢印
で示している。第4図において、最高タツプ時に
はタツプ切換器7Bはタツプ巻線5の最高タツプ
aに接続され、極性切換器7Aはタツプ巻線5の
最低タツプC側に接続されることにより、分路側
出力端子uを介して負荷に供給される負荷電流は
三相バンク結線された他相の変圧器を介して中性
点O側からタツプa、タツプ巻線5、極性切換器
7A、分路巻線2を介して実線矢印のように分路
端子uに還流し、その結果分路巻線2とタツプ巻
線5の電圧の和がu端子に発生する。ところがタ
ツプ巻線5が帰路脚側に巻装されているために、
タツプ巻線5に負荷電流が流れることによつてタ
ツプ巻線に生ずる起磁力を平衡するための電流が
二つの励磁巻線4および6にも流れるので、結局
これらの電流によつて生ずる損失がタツプ巻線5
および励磁巻線4および6にそれぞれ発生して変
圧器の発生損損失が増加するという問題がある。
第5図の中間タツプ時においても、極性切換器7
Aがaタツプに、タツプ切換器がたとえばbタツ
プに接続されることにより、タツプ巻線5のa、
bタツプ間に負荷電流が流れるので、この負荷電
流による損失が上述の最高タツプ時と同様に巻線
4,5,6にそれぞれ発生する。さらに第6図の
最低タツプ時には、第4図の最高タツプ時と電流
の方向が異なるのみで、タツプ巻線5、励磁巻線
4および6には第4図の場合と同様な損失が発生
する。 Figures 4 to 6 are circuit diagrams showing the current flow in the conventional structures shown in Figures 2 and 3, with Figure 4 at the highest tap, Figure 5 at the intermediate tap, and Figure 6 at the lowest tap. The flow of current at each time is indicated by a solid arrow. In FIG. 4, at the highest tap, the tap changer 7B is connected to the highest tap a of the tap winding 5, and the polarity changer 7A is connected to the lowest tap C side of the tap winding 5, so that the shunt side output terminal The load current supplied to the load via u is passed from the neutral point O side to tap a, tap winding 5, polarity switch 7A, and shunt winding 2 via transformers of other phases connected in a three-phase bank. As a result, the sum of the voltages of the shunt winding 2 and the tap winding 5 is generated at the u terminal. However, since the tap winding 5 is wound on the return leg side,
When the load current flows through the tap winding 5, a current for balancing the magnetomotive force generated in the tap winding also flows in the two excitation windings 4 and 6, so that the losses caused by these currents are reduced. Tap winding 5
There is also a problem that the loss occurs in the excitation windings 4 and 6, respectively, and the loss generated in the transformer increases.
Even at the intermediate tap in Fig. 5, the polarity switch 7
A is connected to the a tap, and a tap changer is connected to the b tap, for example, so that the a,
Since the load current flows between the b taps, losses due to this load current occur in the windings 4, 5, and 6, as in the case of the maximum tap described above. Furthermore, at the lowest tap in Figure 6, the same loss occurs in tap winding 5 and excitation windings 4 and 6 as in Figure 4, only the direction of the current is different from that at the highest tap in Figure 4. .
本発明は前述の状況に鑑みてなされたもので、
小形軽量でかつ発生損損失の少ない単相または三
相の負荷時タツプ切換単巻変圧器を提供すること
を目的とする。
The present invention was made in view of the above-mentioned situation, and
The object of the present invention is to provide a single-phase or three-phase tap-change autotransformer on load that is small and lightweight and generates little loss.
本発明の変圧器は、励磁巻線を兼ねたタツプ巻
線を単相器にあつては主変圧器の帰路脚側に三相
器にあつては主変圧器の鉄心とは磁路が異なる鉄
心の主脚側に設け、直列巻線および分路巻線と同
心状に主変圧器の主脚に巻装された励磁巻線と前
記タツプ巻線とを並列接続するとともに、直列巻
線と分路巻線およびタツプ巻線を単巻結線するよ
う構成することにより、励磁巻線を一つ省略しか
つ発生損失を低減したものである。
In the transformer of the present invention, the tap winding that also serves as the excitation winding is placed on the return leg side of the main transformer in the case of a single-phase transformer, and the magnetic path is different from that of the iron core of the main transformer in the case of a three-phase transformer. The tap winding is connected in parallel to the excitation winding, which is provided on the main leg side of the iron core and is wound on the main leg of the main transformer concentrically with the series winding and the shunt winding. By configuring the shunt winding and the tap winding to be connected in a single turn, one excitation winding is omitted and the generated loss is reduced.
以下本発明の実施例を添付図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
第7図は本発明の実施例を示す変圧器の巻線配
置接続図で単相器の例を示したものである。図に
おいて、9Aおよび9Bは主変圧器の鉄心9の主
脚部および帰路脚部をそれぞれ示しており、主脚
部9Aには同心状に励磁巻線4、分路巻線2、中
央引出し構造の直列巻線1が巻装されている。ま
た鉄心9の帰路脚9Bには励磁巻線を兼ねたタツ
プ巻線15と必要に応じて設けられる三次巻線3
とが同心状に巻装されている。また巻線相互の接
続は、直列巻線1と分路巻線2は単巻結線されて
高圧線路端子Uおよび中圧(分路)線路端子uが
それぞれ引き出され、分路巻線2の中性点側は直
接タツプ切換回路7の極性切換器7Aを介してタ
ツプ巻線15に接続され、タツプ巻線15は直接
タツプ切換回路7のタツプ切換器7Bを介して中
性点端子Oに接続されている。また励磁巻線4と
タツプ巻線15とは互いに並列接続されている。
このように構成された変圧器は据着場所において
3台の変圧器の中性点端子Oが並列接続されて縦
続接続された直列巻線1、分路巻線2、タツプ巻
線3からなる主巻線回路が星形結線される。また
三相バンク結線する際励磁巻線4をデルタ結線す
るよう構成すれば、第3高調波電圧を誘起する零
相磁束を吸収できるので、安定巻線としてデルタ
結線された三次巻線を設ける必要はない。上述の
実施例によれば、タツプ巻線15を第2図または
第3図の従来構造における帰路脚側励磁巻線6の
役割を兼ねるよう構成したことによつて、励磁巻
線6を省略することができ、その結果帰路脚側の
巻線最大外径を第2図の寸法D2より縮小するこ
とができ、したがつて変圧器の輸送長さ方向の寸
法を縮小できるとともに、変圧器を軽量化するこ
とができる。 FIG. 7 is a winding arrangement and connection diagram of a transformer showing an embodiment of the present invention, and shows an example of a single-phase transformer. In the figure, 9A and 9B indicate the main leg and return leg of the core 9 of the main transformer, respectively. A series winding 1 is wound thereon. Further, the return leg 9B of the iron core 9 includes a tap winding 15 that also serves as an excitation winding, and a tertiary winding 3 provided as necessary.
are wrapped concentrically. In addition, the connection between the windings is such that the series winding 1 and the shunt winding 2 are connected as single windings, and the high voltage line terminal U and medium voltage (shunt) line terminal U are respectively drawn out, and the shunt winding 2 is connected with a single winding. The neutral point side is connected to the tap winding 15 via the polarity switch 7A of the direct tap switching circuit 7, and the tap winding 15 is connected to the neutral point terminal O via the tap switching device 7B of the direct tap switching circuit 7. has been done. Further, the excitation winding 4 and the tap winding 15 are connected in parallel to each other.
A transformer constructed in this manner consists of a series winding 1, a shunt winding 2, and a tap winding 3, which are connected in series by connecting the neutral terminals O of three transformers in parallel at the installation site. The main winding circuit is star-wired. Furthermore, if the excitation winding 4 is configured to be connected in delta when three-phase bank connection is made, the zero-sequence magnetic flux that induces the third harmonic voltage can be absorbed, so it is necessary to provide a tertiary winding connected in delta as a stable winding. There isn't. According to the embodiment described above, the excitation winding 6 is omitted by configuring the tap winding 15 to also serve as the excitation winding 6 on the return leg side in the conventional structure shown in FIG. 2 or 3. As a result, the maximum outer diameter of the winding on the return leg side can be reduced from the dimension D2 in Figure 2, and therefore the dimension in the transport length direction of the transformer can be reduced, and the transformer can be made lighter. can be converted into
第8図から第10図は第7図の実施例における
電流の流れを説明するための回路図で、第8図は
最高タツプ時、第9図は中間タツプ時、第10図
は最低タツプ時における負荷電流の方向と径路を
破線矢印で示している。まず第4図において破線
矢印で示す負荷電流は、分路側線路端子uから図
示しない負荷を通つて中性点端子Oを介してタツ
プ巻線15側に還流するが、最高タツプ時には極
性切換器7Aが最低タツプ位置C側に、タツプ切
換器7Bが最高タツプ位置a側に接続されてお
り、a−C間にはタツプ巻線15と並列に主脚側
励磁巻線4が接続されているために、負荷電流は
中性点端子Oからタツプ切換器7B、励磁巻線
4、極性切換器7Aを介して分路巻線2に流入す
る。したがつてタツプ巻線15には負荷電流が流
れないために損失が発生せず、第4図に比べて発
生損失を低減することができる。また第10図の
最低タツプ時についても同様である。一方第9図
に示すようにタツプ切換器7Bがタツプ巻線15
の中間タツプ位置bに接続され、極性切換器7A
が最高タツプ位置a側に接続された中間タツプ時
においては、タツプ巻線15の両端a−Cに並列
に励磁巻線4が接続されて第5図のタツプb−C
間のような遊びコイルが生じないために、励磁巻
線4を介してタツプ巻線15のa−C間に流入す
る電流と中性点Oからタツプ巻線のb−C間を通
つて分路巻線に流入する電流とはタツプ巻線15
のb−C間で互いに逆向きになり、タツプ巻線1
5のb−C間に流れる負荷電流が減少する。すな
わちタツプ巻線15は、a−b間を直列巻線、b
−′C間を共通巻線とする単巻変圧器巻線と等価
になり、共通巻線となるタツプ巻線のb−C間に
流れる電流を低減することができ、したがつてタ
ツプ巻線の発生損失を低減できる。 Figures 8 to 10 are circuit diagrams for explaining the current flow in the embodiment shown in Figure 7, with Figure 8 at the highest tap, Figure 9 at the intermediate tap, and Figure 10 at the lowest tap. The direction and path of the load current in is indicated by the dashed arrow. First, the load current shown by the broken line arrow in FIG. 4 flows from the shunt side line terminal U through the load (not shown) to the tap winding 15 side via the neutral point terminal O, but at the maximum tap, the polarity switch 7A is connected to the lowest tap position C side, the tap changer 7B is connected to the highest tap position a side, and the main landing gear side excitation winding 4 is connected between a and C in parallel with the tap winding 15. Then, the load current flows from the neutral terminal O to the shunt winding 2 via the tap switch 7B, the excitation winding 4, and the polarity switch 7A. Therefore, since no load current flows through the tap winding 15, no loss occurs, and the generated loss can be reduced compared to FIG. 4. The same applies to the lowest tap in FIG. On the other hand, as shown in FIG.
is connected to the intermediate tap position b of the polarity switch 7A.
At the intermediate tap when the tap is connected to the highest tap position a, the excitation winding 4 is connected in parallel to both ends a-C of the tap winding 15, and the tap b-C in FIG.
In order to avoid the generation of idle coils, the current flowing between a and C of the tap winding 15 via the excitation winding 4 is divided from the neutral point O through b and C of the tap winding. The current flowing into the tap winding 15
The directions between b and C are opposite to each other, and the tap winding 1
5, the load current flowing between b and C decreases. That is, the tap winding 15 is a series winding between a and b, and a series winding between a and b.
The current flowing between b and C of the tap winding, which is the common winding, can be reduced, and therefore the tap winding It is possible to reduce the generated loss.
上述のように第7図の実施例における発生損失
は、第2図または第3図の従来構造に比べて、帰
路脚側励磁巻線6が除去されたことによる発生損
失の低減と、タツプ巻線15と励磁巻線4とを並
列接続したことにより、タツプ巻線が単巻結線さ
れた巻線として機能することによつて得られる損
失の低減との二重の低減効果によつて低減され
る。 As mentioned above, the loss generated in the embodiment shown in FIG. 7 is reduced due to the removal of the return leg side excitation winding 6 and the tap winding compared to the conventional structure shown in FIG. 2 or 3. By connecting the wire 15 and the excitation winding 4 in parallel, the loss is reduced by the double reduction effect of the tap winding functioning as a single-turn connected winding. Ru.
第11図は本発明の異なる実施例を示す接続図
である。図において、鉄心の主脚9A側には直列
巻線1と分路巻線2と励磁巻線4とが同心状に巻
装され、帰路脚9B側には励磁巻線25と三次巻
線3とが同心状に巻装されている点は第7図の実
施例と同様であるが、タツプ巻線25は極性切換
器27Aとタツプ切換器27Bとからなる直接タ
ツプ切換回路27を介して直列巻線1と分路巻線
2との間に縦続接続されており、中圧(分路)側
線路端uの対地電圧を一定として、高圧(直列)
側線路端Uの電圧を調整するよう構成した点が異
なつている。この実施例においてはタツプ巻線2
5および直接タツプ切換回路の対地絶縁を中圧
(分路)側線路端uの対地電圧に耐えるようにす
る必要があるが、帰路脚側励磁巻線6が不要にな
ることと、それにともなう損失の低減効果とを第
7図の実施例と同様に得ることができる。 FIG. 11 is a connection diagram showing a different embodiment of the present invention. In the figure, a series winding 1, a shunt winding 2, and an excitation winding 4 are concentrically wound on the main leg 9A side of the iron core, and an excitation winding 25 and a tertiary winding 3 on the return leg 9B side. The tap windings 25 are wound concentrically in the same manner as in the embodiment shown in FIG. The winding 1 and the shunt winding 2 are connected in cascade, and the high voltage (series)
The difference is that the voltage at the side line end U is configured to be adjusted. In this embodiment, tap winding 2
5 and the ground insulation of the direct tap switching circuit must be able to withstand the ground voltage of the medium voltage (shunt) side line end u, but the excitation winding 6 on the return leg side is no longer required and the loss associated with it is The same reduction effect as in the embodiment shown in FIG. 7 can be obtained.
第12図は本発明のさらに異なる実施例を示す
接続図で、第7図および第11図の実施例と異な
る点は、タツプ巻線25を極性切換器27Aおよ
びタツプ切換器27Bを介して中圧(分路)側の
線路端子uと直列巻線1および分路巻線2の接続
点Mとの間に接続したことで、中圧(分路)側線
路端子uの出力電圧を調整することができる。 FIG. 12 is a connection diagram showing still another embodiment of the present invention, and the difference from the embodiments of FIGS. 7 and 11 is that the tap winding 25 is connected via a polarity switch 27A and a tap switch 27B. By connecting between the line terminal u on the voltage (shunt) side and the connection point M of the series winding 1 and the shunt winding 2, the output voltage of the line terminal u on the medium voltage (shunt) side is adjusted. be able to.
第13図は本発明の他の実施例を示す巻線配置
接続図で、三相単巻変圧器の例を示したものであ
る。図において10は三相単巻主変圧器で、鉄心
の三つの主脚にはそれぞれ三相分の直列巻線3
1、分路巻線32、励磁巻線34が各相ごとに同
心状に巻装され、直列巻線31と分路巻線32は
単巻結線されて高圧側線路端子U,V,Wおよび
中圧側線路端子u,v,wが引き出されている。
また20は別置形の直列変圧器で、鉄心の三つの
脚部にはそれぞれタツプ巻線35が巻着されてい
る。そして主変圧器10側に設けられた励磁巻線
34と直列変圧器側に設けられたタツプ巻線35
とは各相ごとに並列接続され、分路巻線32とタ
ツプ巻線35とは極性切換器37Aを介して縦続
接続されるとともに、タツプ巻線はタツプ切換器
37Bを介して星形結線され、中性点端子Oが引
き出されている。上述のようにタツプ巻線35
を、主変圧器10の鉄心とは磁路が異なる直列変
圧器20の鉄心に巻装した場合においても、直列
変圧器20側の励磁巻線を省略することができる
ので、直列変圧器20を小形軽量に構成すること
ができ、かつ直列変圧器の発生損失を低減するこ
とができる。 FIG. 13 is a winding arrangement and connection diagram showing another embodiment of the present invention, and shows an example of a three-phase autotransformer. In the figure, 10 is a three-phase single-winding main transformer, and each of the three main legs of the iron core has three series windings for three phases.
1. The shunt winding 32 and the excitation winding 34 are wound concentrically for each phase, and the series winding 31 and the shunt winding 32 are connected in a single turn to the high voltage side line terminals U, V, W and Medium-voltage side line terminals u, v, and w are drawn out.
Further, 20 is a separately installed series transformer, and tap windings 35 are wound around each of the three legs of the iron core. An excitation winding 34 provided on the main transformer 10 side and a tap winding 35 provided on the series transformer side.
are connected in parallel for each phase, the shunt winding 32 and the tap winding 35 are connected in cascade through a polarity switch 37A, and the tap winding is connected in a star shape through a tap switch 37B. , the neutral point terminal O is pulled out. Tap winding 35 as described above
is wound around the core of the series transformer 20 whose magnetic path is different from that of the core of the main transformer 10, the excitation winding on the series transformer 20 side can be omitted. It can be configured to be small and lightweight, and the loss generated by the series transformer can be reduced.
なお第13図には単巻結線された変圧器の例を
示したが、高圧巻線と中圧巻線とが分離された変
圧器においても本発明を適用できることは自明の
ことである。 Although FIG. 13 shows an example of a transformer with a single winding connection, it is obvious that the present invention can also be applied to a transformer in which a high voltage winding and an intermediate voltage winding are separated.
本発明は前述のように、単相器にあつては鉄心
の帰路脚を利用して、また三相器にあつては直列
変圧器を設けてタツプ巻線を前記帰路脚または直
列変圧器の鉄心に巻装するとともに、主変圧器の
鉄心の主脚に直列巻線および分路巻線と同心状に
巻装された励磁巻線と前記タツプ巻線とを並列接
続することにより、タツプ巻線に励磁巻線の役割
を兼ねさせるよう構成した。その結果従来帰路脚
側または直列変圧器に設けられていた励磁巻線が
不要になり、励磁巻線を省略することにより巻線
重量が軽くなるとともに、タツプ巻線外径や鉄心
窓面積(磁路長)を縮小できるので変圧器を一層
小形軽量化できる。また鉄心窓面積が縮小される
ことにより、変圧器の輸送長さを短縮できる。こ
のように従来構造に比べて小形軽量化されたタツ
プ切換単巻変圧器を提供できるとともに、必要に
応じて単器輸送可能容量を増大できるので、送変
電系統の高電圧化、大容量化を経済的に有利に進
展させることに貢献できる。
As described above, the present invention utilizes the return leg of the iron core in the case of a single-phase converter, or by providing a series transformer in the case of a three-phase converter to connect the tap winding to the return leg or the series transformer. Tap winding is achieved by connecting the tap winding in parallel with the excitation winding, which is wound around the iron core and is also wound concentrically with the series winding and the shunt winding around the main legs of the main transformer iron core. The structure is such that the wire also serves as an excitation winding. As a result, the excitation winding that was conventionally installed on the return leg side or the series transformer is no longer necessary, and by omitting the excitation winding, the weight of the winding is reduced, and the outer diameter of the tap winding and the core window area (magnetic Since the path length can be reduced, the transformer can be made even smaller and lighter. Furthermore, by reducing the core window area, the transportation length of the transformer can be shortened. In this way, it is possible to provide a tap-switching autotransformer that is smaller and lighter than conventional structures, and the transportable capacity of single units can be increased as needed, making it possible to increase the voltage and capacity of transmission and substation systems. It can contribute to economically advantageous development.
また、変圧器の発生損失の低減の面からは、励
磁巻線を省略することにより発生損失を低減で
き、かつタツプ巻線と励磁巻線とを並列接続する
ことによりタツプ巻線を負荷電流に対して単巻変
圧器として機能させることができるので、タツプ
巻線の発生損失も低減できる。したがつて従来構
造に比べて発生損失の少ない負荷時タツプ切換単
巻変圧器を提供することができる。 In addition, from the perspective of reducing the loss generated by the transformer, it is possible to reduce the generated loss by omitting the excitation winding, and by connecting the tap winding and the excitation winding in parallel, the tap winding can be connected to the load current. On the other hand, since it can function as an autotransformer, the loss generated by the tap winding can also be reduced. Therefore, it is possible to provide an on-load tap switching autotransformer that generates less loss than the conventional structure.
第1図は従来の負荷時タツプ切換変圧器の巻線
配置図、第2図は改良された従来の変圧器の巻線
配置図、第3図は第2図の変圧器における巻線配
置接続図、第4図から第6図は第2図の変圧器に
おける負荷電流の流れを示す回路図、第7図は本
発明の実施例を示す単相負荷時タツプ切換単巻変
圧器の巻線配置接続図、第8図から第10図は第
7図の実施例における負荷電流の流れを示す回路
図、第11図は本発明の異なる実施例を示す変圧
器の結線図、第12図はさらに異なる実施例を示
す変圧器の結線図、第13図は本発明の他の実施
例を示す三相負荷時タツプ切換単巻変圧器の巻線
配置接続図である。
1,31……直列巻線、2,32……分路巻
線、3……三次巻線、4,34……主脚側励磁巻
線、5……タツプ巻線、6……帰路脚側励磁巻
線、5A,5B……タツプ引出しリード、7……
直接タツプ切換回路、7A,27A,37A……
極性切換器、7B,27B,37B……タツプ切
換器、9……鉄心、9A……主脚部、9B……帰
路脚部、15,25,35……励磁巻線を兼ねた
タツプ巻線、10……主変圧器、20……直列変
圧器。
Figure 1 is a winding layout diagram of a conventional on-load tap-changing transformer, Figure 2 is a winding layout diagram of an improved conventional transformer, and Figure 3 is a winding layout and connection of the transformer shown in Figure 2. 4 to 6 are circuit diagrams showing the flow of load current in the transformer of FIG. 2, and FIG. 7 is a winding of a single-phase load tap-change autotransformer showing an embodiment of the present invention. 8 to 10 are circuit diagrams showing the flow of load current in the embodiment of FIG. 7, FIG. 11 is a transformer connection diagram showing a different embodiment of the present invention, and FIG. 12 is a circuit diagram showing the flow of load current in the embodiment of FIG. FIG. 13 is a wiring diagram of a transformer showing another embodiment of the present invention. FIG. 13 is a winding arrangement and connection diagram of a three-phase load tap switching autotransformer showing another embodiment of the present invention. 1, 31... Series winding, 2, 32... Shunt winding, 3... Tertiary winding, 4, 34... Main leg side excitation winding, 5... Tap winding, 6... Return leg Side excitation winding, 5A, 5B...Tap pullout lead, 7...
Direct tap switching circuit, 7A, 27A, 37A...
Polarity switch, 7B, 27B, 37B...Tap switch, 9...Iron core, 9A...Main leg, 9B...Return leg, 15, 25, 35...Tap winding that also serves as excitation winding , 10...main transformer, 20... series transformer.
Claims (1)
た直列巻線と分路巻線と励磁巻線と、前記鉄心の
帰路脚または前記鉄心とは磁路が異なる鉄心の脚
部に巻装されたタツプ巻線と、該タツプ巻線に接
続された極性切換器とタツプ切換器とからなる直
接タツプ切換回路とを備え、前記励磁巻線とタツ
プ巻線とが並列接続され、前記直列巻線と分路巻
線とからなる単巻結線回路に前記タツプ巻線が前
記直接タツプ切換回路を介して縦続接続されたこ
とを特徴とする負荷時タツプ切換単巻変圧器。 2 特許請求の範囲第1項記載のものにおいて、
主変圧器が単相器であり、タツプ巻線が主変圧器
の鉄心の帰路脚に巻装されたことを特徴とする負
荷時タツプ切換単巻変圧器。 3 特許請求の範囲第1項記載のものにおいて、
主変圧器が三相器であり、タツプ巻線が直列変圧
器の鉄心の脚部に巻装されたことを特徴とする負
荷時タツプ切換単巻変圧器。 4 特許請求の範囲第1項記載のものにおいて、
タツプ巻線が、極性切換器を介して分路巻線の中
性点側に縦続接続されるとともに、タツプ切換器
を介して中性点端子が引き出されたことを特徴と
する負荷時タツプ切換単巻変圧器。 5 特許請求の範囲第1項記載のものにおいて、
タツプ巻線が、極性切換器およびタツプ切換器を
介して直列巻線と分路巻線との間に縦続接続され
たことを特徴とする負荷時タツプ切換単巻変圧
器。 6 特許請求の範囲第1項記載のものにおいて、
タツプ巻線が、直接タツプ切換回路を介して一方
端は直列巻線と分路巻線との縦続接続部に他方端
は前記分路巻線の線路端端子にそれぞれ接続され
たことを特徴とする負荷時タツプ切換単巻変圧
器。[Claims] 1. A series winding, a shunt winding, and an excitation winding concentrically wound around the main leg of the iron core of the main transformer, and the return leg of the iron core or the iron core are connected to a magnetic path. A direct tap switching circuit consisting of a tap winding wound around the legs of an iron core with different angles, and a polarity switch and a tap switch connected to the tap winding, the excitation winding and the tap winding being are connected in parallel, and the tap winding is connected in cascade via the direct tap switching circuit to the single winding circuit consisting of the series winding and the shunt winding. winding transformer. 2. In what is stated in claim 1,
An on-load tap switching autotransformer characterized in that the main transformer is a single-phase transformer, and the tap winding is wound around the return leg of the iron core of the main transformer. 3 In what is stated in claim 1,
An on-load tap switching autotransformer characterized in that the main transformer is a three-phase transformer, and the tap windings are wound around the legs of the iron core of the series transformer. 4 In what is stated in claim 1,
Tap switching during load, characterized in that the tap winding is cascade-connected to the neutral point side of the shunt winding via a polarity switch, and the neutral terminal is drawn out via the tap switch. Autotransformer. 5 In what is stated in claim 1,
An on-load tap switching autotransformer characterized in that a tap winding is cascade-connected between a series winding and a shunt winding via a polarity switch and a tap switch. 6 In what is stated in claim 1,
The tap winding is characterized in that one end is connected to a cascade connection between the series winding and the shunt winding, and the other end is connected to a line end terminal of the shunt winding through a direct tap switching circuit. Tap-change autotransformer when loaded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22488683A JPS60116116A (en) | 1983-11-29 | 1983-11-29 | On-load tap changing autotransformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22488683A JPS60116116A (en) | 1983-11-29 | 1983-11-29 | On-load tap changing autotransformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60116116A JPS60116116A (en) | 1985-06-22 |
JPH0212007B2 true JPH0212007B2 (en) | 1990-03-16 |
Family
ID=16820702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22488683A Granted JPS60116116A (en) | 1983-11-29 | 1983-11-29 | On-load tap changing autotransformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60116116A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0310002U (en) * | 1989-06-20 | 1991-01-30 | ||
JPH0430207U (en) * | 1990-07-03 | 1992-03-11 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103280303B (en) * | 2013-05-29 | 2016-01-27 | 卧龙电气集团股份有限公司 | Double series-parallel connection conversion wiring device of oil-immersed transformer |
-
1983
- 1983-11-29 JP JP22488683A patent/JPS60116116A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0310002U (en) * | 1989-06-20 | 1991-01-30 | ||
JPH0430207U (en) * | 1990-07-03 | 1992-03-11 |
Also Published As
Publication number | Publication date |
---|---|
JPS60116116A (en) | 1985-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6335872B1 (en) | Nine-phase transformer | |
US6249443B1 (en) | Nine-phase transformer | |
JPH09289125A (en) | Inside-core single-phase autotransformer | |
JPH0212007B2 (en) | ||
JPS6257085B2 (en) | ||
JP3544465B2 (en) | Single-phase autotransformer | |
JPS6240415Y2 (en) | ||
JPS63252408A (en) | Transformer with tap | |
JPH0122972B2 (en) | ||
JPH0777173B2 (en) | Transformer | |
JPH0563006B2 (en) | ||
JPS62205611A (en) | Transformer for three-phase, two-phase conversion | |
JPH05205956A (en) | Transformer of converter | |
JPH0793214B2 (en) | Single phase auto transformer | |
JPH01107507A (en) | Three-phase transformer with tertiary winding | |
JPH0341455Y2 (en) | ||
JPS598053B2 (en) | single phase three winding transformer | |
JPS6037707A (en) | Three-phase autotransformer | |
JPH0260044B2 (en) | ||
JPH0143444B2 (en) | ||
JPH05234782A (en) | Single-phase autotransformer | |
JPH09293620A (en) | Three winding transformer | |
JPS6028370B2 (en) | transformer | |
JPH0320891B2 (en) | ||
JPS60106111A (en) | Single-phase three-winding transformer |