[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02127987A - Quality control method for friction welded zone - Google Patents

Quality control method for friction welded zone

Info

Publication number
JPH02127987A
JPH02127987A JP28185888A JP28185888A JPH02127987A JP H02127987 A JPH02127987 A JP H02127987A JP 28185888 A JP28185888 A JP 28185888A JP 28185888 A JP28185888 A JP 28185888A JP H02127987 A JPH02127987 A JP H02127987A
Authority
JP
Japan
Prior art keywords
friction
welding
pressure
time
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28185888A
Other languages
Japanese (ja)
Inventor
Kozo Kaji
剛三 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP28185888A priority Critical patent/JPH02127987A/en
Publication of JPH02127987A publication Critical patent/JPH02127987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To facilitate discrimination of mixing of foreign material and to eliminate the need to inspect a succeeding process by obtaining the approaching quantity speed from an approaching quantity detected during friction welding and the measured welding time and comparing a value corrected by welding pressure with a reference value to control it. CONSTITUTION:The approaching quantity speed V=U3/T3 is calculated from the approaching quantity U3 and the friction time T3. It is then corrected by using a calculating expression by the approaching quantity speed V and the frictional pressure P1 to obtain a control value. The reference value X3 calculated by the calculating expression from the approaching quantity speed V and the frictional pressure P1 is then inputted and this reference value X3 is compared with the control valve X to discriminate the difference between both values. When this difference is out of the predetermined control range, it is then decided that the foreign material is mixed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は摩擦溶接によって形成された溶接部の品質管理
方法に係り、特に異材の混入を判別するに好適な摩擦溶
接部の品質管理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a quality control method for a welded part formed by friction welding, and particularly to a quality control method for a friction welded part suitable for determining the presence of foreign materials. .

〔従来の技術〕[Conventional technology]

一対の被溶接部材を突き合わせ、加圧回転させて接合す
る摩擦溶接において、その摩擦溶接部の品質を管理する
方法としては、コロナ社発行摩擦圧接研究会著「摩擦圧
接」第129頁に記載されたような方法が知られている
6すなわち、−殻内に採用されている方式である摩擦発
熱期間をタイマを用いずに摩擦寄り代で設定する摩擦寄
り代方式における監視項目としては、主として素材長検
知、製品長検知、摩擦圧力検知及びアプセット圧力検知
の4項目があり、時には摩擦時間の検知を加えることが
ある。
In friction welding, in which a pair of welded parts are butted together and rotated under pressure, the quality of the friction weld is controlled as described in "Friction Welding", page 129, by the Friction Welding Study Group, published by Corona Publishing. 6 In other words, the monitoring items in the friction approach method, which is the method adopted inside the shell and which sets the friction heat generation period by the friction approach distance without using a timer, are mainly the material There are four items: length detection, product length detection, friction pressure detection, and upset pressure detection, and sometimes friction time detection is also added.

第3図に摩擦溶接におけるサイクル線図を示す。Figure 3 shows a cycle diagram for friction welding.

図において、縦軸のPは加圧力であり、P□は摩擦圧力
、P2はアプセット圧力を示している。またNはチャッ
ク側スピンドルの回転数、Uは寄り代であり、ULは摩
擦寄り代、U2はアプセット寄り代である。また横軸は
時間を示しており、T、は摩擦時間、T2はアプセット
時間を示している。
In the figure, P on the vertical axis is the pressing force, P□ is the friction pressure, and P2 is the upset pressure. Further, N is the rotational speed of the chuck side spindle, U is the offset amount, UL is the friction offset amount, and U2 is the upset offset amount. Further, the horizontal axis indicates time, T indicates friction time, and T2 indicates upset time.

ところで、!!擦溶接作業中作業者の誤まりにより同形
状で材質の異なるワークが混入することがあるが、従来
はこの異材混入を監視する手段はなかった。
by the way,! ! During friction welding, workpieces of the same shape but of different materials may get mixed in due to operator error, but conventionally there was no means to monitor this mixing of different materials.

異材の混入に対しては材料の高温強度の違いにより一定
時間での寄り代が異なり、一定の寄り代を得るためには
摩擦時間が変わる。従ってこの摩擦時間を測定すること
によって異材混入を検出することができる。
When foreign materials are mixed in, the amount of friction in a given time varies depending on the high-temperature strength of the materials, and the friction time changes in order to obtain a constant amount of material. Therefore, by measuring this friction time, contamination of foreign materials can be detected.

この方法について第4図を参照して説明する。This method will be explained with reference to FIG.

第4図は第5図に示す形状のワークを摩擦溶接したとき
の摩擦圧力P工と摩擦時間T工との関係を示した図であ
る。
FIG. 4 is a diagram showing the relationship between friction pressure P and friction time T when the workpiece having the shape shown in FIG. 5 is friction welded.

第5図に示すワークは溶接機のチャック1に取り付けた
スリーブ2と、クランプ3側に固定されたチューブ4と
であり、スリーブ2を回転させながらチューブ4に圧接
して摩擦溶接を行なう。またチューブ4の材質としてS
TKM20とSTKM13の2種類を用い、摩擦圧力P
□と摩擦時間T工との関係を測定した結果を示すグラフ
が第4図である。
The workpieces shown in FIG. 5 are a sleeve 2 attached to a chuck 1 of a welding machine and a tube 4 fixed to a clamp 3 side.The sleeve 2 is rotated and pressed against the tube 4 to perform friction welding. Also, the material of the tube 4 is S.
Using two types, TKM20 and STKM13, the friction pressure P
FIG. 4 is a graph showing the results of measuring the relationship between □ and friction time T.

第4図においてAはSTKM20、BはSTKM13の
チューブ4を用いた場合であり。
In FIG. 4, A shows the case where STKM20 tube 4 is used, and B shows the case where STKM13 tube 4 is used.

スリーブ2及びチューブ4の素材長の合計のばらつきを
±0.4mmとした。この素材長のばらつきにより図に
2本の線で囲まれる範囲のばらつきが発生する。このと
き通常使用される摩擦圧力P工は約4kg/mm2であ
り、実際の作業ではP工=4.0±0.5kg/圃2程
度で管理されているため、摩擦時間T□はSTKM20
で図中「イ」で示す範囲内が、またSTKM13では「
口」で示す範囲内が所定の寄り代が得られる範囲となる
The total variation in the material lengths of the sleeve 2 and tube 4 was set to ±0.4 mm. This variation in material length causes variation in the range surrounded by two lines in the figure. The friction pressure P that is normally used at this time is approximately 4 kg/mm2, and in actual work it is controlled at approximately 4.0±0.5 kg/field 2, so the friction time T□ is STKM20.
In STKM13, the range indicated by "A" in the figure is "A".
The range indicated by "mouth" is the range in which a predetermined offset margin can be obtained.

従って材質がSTKM20のチューブ4の溶接中に材質
がSTKM13のチューブ13が混入した場合、「イ」
と1口」が重なっていない範囲「ハ」がモニターされた
ときにのみ異材混入が判明する。なお、この範囲「ハ」
は例えば圧接面のばらつきなどのその他の要因によって
も変化し、さらに狭い範囲となる場合が多い。
Therefore, if tube 13 whose material is STKM13 gets mixed in while welding tube 4 whose material is STKM20,
Contamination with foreign materials is determined only when the range ``C'' is monitored, where ``1 mouth'' and ``1 mouth'' do not overlap. In addition, this range “ha”
varies depending on other factors, such as variations in the pressure contact surface, and often becomes an even narrower range.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように作業者の誤まりなどにより異材混入が発
生した場合、ワークの外観からは判別できないため、後
工程における検査が重要となり、多大の工数を必要とし
ていた。このため異材混入を摩擦溶接工程で判別するこ
とが望まれていたが、従来はこの判別することのできる
監視方法がなかった。また摩擦時間T工のモニターは異
材混入を目的としたものではなく、実際の作業では素材
長のばらつき、摩擦圧力の変動及び圧接面のばらつきな
どにより摩擦時間T工はばらつきが大きい。
As mentioned above, when foreign materials are mixed in due to operator error, it cannot be determined from the appearance of the workpiece, so inspection in the post-process is important and requires a large amount of man-hours. For this reason, it has been desired to detect the presence of foreign materials in the friction welding process, but conventionally there has been no monitoring method that can detect this. Furthermore, the monitoring of the friction time T-work is not intended to detect the mixing of foreign materials; in actual work, the friction time T-work varies widely due to variations in material length, fluctuations in friction pressure, and variations in the pressure welding surface.

従って摩擦時間T1によっては異材混入を確実に判別す
ることができないという問題があった。
Therefore, depending on the friction time T1, there is a problem in that it is not possible to reliably determine the presence of foreign materials.

本発明は上記事情に鑑みてなされたものであり、摩擦溶
接における異材混入などの異常発生を確実に判別するこ
とができる摩擦溶接部の品質管理方法を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a quality control method for friction welds that can reliably determine the occurrence of abnormalities such as foreign material contamination during friction welding.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、一対の被溶接部材
を突き合わせ、加圧回転させて接合する摩擦溶接により
形成された摩擦溶接部の品質管理方法において、前記摩
擦溶接中の寄り代及び加圧力を検出するとともに溶接時
間を計測し、前記寄り代と溶接時間とから演算された寄
り代速度を前記加圧力で補正して管理値を求め、該管理
値を基準値と比較して品質を管理することを特徴として
いる。
In order to achieve the above object, the present invention provides a quality control method for a friction weld formed by friction welding in which a pair of welded members are abutted against each other and joined by rotation under pressure. The pressure is detected and the welding time is measured, the offset speed calculated from the offset margin and the welding time is corrected by the pressurizing force to obtain a control value, and the control value is compared with a reference value to evaluate the quality. It is characterized by management.

〔作用〕[Effect]

上記の方法によると、摩擦溶接中に検出した寄り代と計
測した溶接時間とから寄り代速度を求め。
According to the above method, the offset speed is determined from the offset detected during friction welding and the measured welding time.

加圧力で補正した値を基拳値と比較して管理することに
より、高温強度の差から異材混入を判別することができ
る。
By comparing and managing the value corrected by the pressing force with the basic value, it is possible to determine whether foreign materials are mixed in from the difference in high temperature strength.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の基本構成を示すブロック図
である。ブロック5,6でそれぞれ摩擦溶接中の寄り代
U3及び摩擦圧力P工を検知し、ブロック7でそのとき
の摩擦時間T3 を計測する。
FIG. 1 is a block diagram showing the basic configuration of an embodiment of the present invention. Blocks 5 and 6 detect the approach margin U3 and friction pressure P during friction welding, and block 7 measures the friction time T3 at that time.

次にブロック8で溶接機制御盤9を用いて下記の演算を
行なう。
Next, in block 8, the following calculations are performed using the welding machine control panel 9.

まず、寄り代U、と摩擦時間T、とから寄り代速度V=
U3 /T3 を算出する。なおこの寄り代速度Vの算
出はT1期間全域ではなく、第3図に示すスロープ期間
T4経過後の一定期間、例えば約0.5秒間について求
めてもよい。次に寄り代速度V及び摩擦圧力P工により
下記に示す計算式(1)を用いて補正し、管理値工を求
める。
First, from the deviation U and friction time T, the deviation speed V=
Calculate U3 /T3. Note that the computation of the approach margin speed V may be performed not for the entire period T1, but for a certain period after the elapse of the slope period T4 shown in FIG. 3, for example, about 0.5 seconds. Next, correction is made using the calculation formula (1) shown below using the approaching speed V and the friction pressure P to obtain the control value.

但し V:寄り代速度(=us /T3 )  (an
/秒)b=修正値、  pl :@蒸圧力(kg/mm
2)a:P、の乗数 次にブロック10に予め定められた寄り代速度V及び摩
擦圧力P工から上記計算式(1)により計算された基準
値:lcsを入力しておき、ブロック11でこの基準値
xsと前記管理値工とを比較してその差を判定する。そ
してこの差が予め定められた管理範囲を外れていれば異
材混入があったと判定される。この判定結果はブロック
12で表示される。
However, V: Approaching speed (=us/T3) (an
/sec) b = correction value, pl: @ vapor pressure (kg/mm
2) Multiplier of a: P Next, in block 10, input the reference value: lcs calculated from the predetermined approach speed V and friction pressure P by the above formula (1), and in block 11 This reference value xs is compared with the control value to determine the difference. If this difference is outside a predetermined control range, it is determined that there is foreign material contamination. This determination result is displayed in block 12.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

寄り代速度Vは素材長の影響が全くなく、高温強度の違
いにより差が発生する。また摩擦圧力P工によって寄り
代速度が変るため、正確を期すためにPla によって
除算して管理値工を定めている。
The approach speed V is not affected by the length of the material at all, and the difference occurs due to the difference in high temperature strength. Also, since the approach speed changes depending on the friction pressure P, the control value is determined by dividing it by Pla to ensure accuracy.

また、接合面の清浄度によって寄り代速度が変るが、こ
の影響は初期のスロープ期間T4の間のみであるので、
摩擦期間T3 の間における寄り代速度T□を採用する
ことにより接合面の清浄度の影響を受けることはない6 次に本実施例の具体的実施例について、第2図を参照し
て説明する。
Also, the approach speed changes depending on the cleanliness of the joint surface, but this effect is only during the initial slope period T4, so
By adopting the approach speed T□ during the friction period T3, there is no influence from the cleanliness of the joint surfaces.6 Next, a specific example of this embodiment will be explained with reference to FIG. .

ワークとして第5図に示すようなスリーブ2及びチュー
ブ4を用い、チャック1に把持されたスリーブ2は継手
部寸法が外径60nm、板厚2mであり材質がS30で
形成されている。またクランプ3に固定されたチューブ
4は寸法がスリーブ2と等しい外径60mm、板厚2m
であり材質がSTKM20で形成されている。また、前
記計算式(1)においてa=1.b=−0,83とじた
ときの管理値工を第2図に示す。図中0印はチューブ4
の材質がSTKM20の場合であり、また図中破線で囲
まれた部分は管理値工の管理範囲0.82±O,OSを
示している。
A sleeve 2 and a tube 4 as shown in FIG. 5 are used as workpieces, and the sleeve 2 gripped by the chuck 1 has a joint portion having an outer diameter of 60 nm, a plate thickness of 2 m, and is made of S30 material. In addition, the tube 4 fixed to the clamp 3 has the same dimensions as the sleeve 2, with an outer diameter of 60 mm and a plate thickness of 2 m.
The material is STKM20. Further, in the calculation formula (1), a=1. Figure 2 shows the control value when b=-0,83. Mark 0 in the diagram is tube 4
This is the case where the material is STKM20, and the part surrounded by the broken line in the figure shows the control range of control value 0.82±O, OS.

次、に、STKM13で形成された同寸法のチューブ4
が混入された場合、管理値工は図中Δ印で示すようにな
る0図から判るようにSTKM13で形成されたチュー
ブ4の管理値工はすべて管理範囲外にあり、STKM2
0のチューブ4とは明確に区別される。このことは高温
強度の僅かな差によって管理値工が大きく変化するため
である。
Next, tube 4 of the same size formed of STKM13
If STKM13 is mixed in, the control value will be as indicated by the Δ symbol in the figure.
It is clearly distinguished from the tube 4 of No. 0. This is because the control value changes greatly due to slight differences in high temperature strength.

本実施例によれば、摩擦溶接中に異材が混入したときに
直ちに判別が可能となるので、後工程の検査が不要とな
る。また異材混入がない場合でも摩擦溶接中の異常状態
を監視することができる。
According to this embodiment, when a foreign material gets mixed in during friction welding, it can be immediately determined, so there is no need for post-process inspection. Furthermore, even if there is no foreign material mixed in, abnormal conditions during friction welding can be monitored.

例えば工場電源の変動で電圧が降下し、チャック1を回
転するスピンドル回転数が変動した場合には、摩擦部の
発熱状態が変化し、寄り代速度が変るため管理値工が管
理範囲を外れる。
For example, if the voltage drops due to fluctuations in the factory power supply and the number of rotations of the spindle that rotates the chuck 1 changes, the heat generation state of the friction part changes, the approach speed changes, and the control value goes out of the control range.

なお、管理値工を計算する計算式(1)はこれに限定さ
れるものではなく、寄り代速度vti−摩擦圧力P工で
補正するものであれば他の計算式でもよい。
Note that the calculation formula (1) for calculating the control value is not limited to this, and any other calculation formula may be used as long as it is corrected by the approach margin speed vti - friction pressure P.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、摩擦溶接
中の寄り代速度を摩擦圧力で補正して得た管理値により
、摩擦溶接部の品質を管理するようにしたので、異材混
入に対しての判別が容易に可能となり、後工程の検査が
不要となった。また摩擦溶接中の異常発生も監視するこ
とができる。
As explained in detail above, according to the present invention, the quality of the friction weld is controlled using the control value obtained by correcting the approach speed during friction welding by the friction pressure, so that the contamination of foreign materials can be prevented. It is now possible to easily distinguish between the two, and post-process inspections are no longer necessary. It is also possible to monitor the occurrence of abnormalities during friction welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
本実施例による実験結果による管理値の変動を示すグラ
フ、第3図はスピンドル回転数、摩擦圧力及び寄り代の
経時変化を示すグラフ、第4図は所定の寄り代を得るた
めの摩擦圧力と摩擦時間との関係を示すグラフ、第5図
は本実施例に用いられたワークを示す縦断面図である。 2・・・スリーブ、(被溶接部材) 4・・・チューブ、(被溶接部材) U・・・寄り代、 T・・・溶接時間、 P・・・加圧力。 工・・・管理値。 代 理 人 阿 部 哲 朗 第 図 第 図 第3図 第 図 第4 図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a graph showing fluctuations in control values based on experimental results of this embodiment, and Fig. 3 is a graph showing changes in spindle rotation speed, friction pressure, and offset over time. FIG. 4 is a graph showing the relationship between friction pressure and friction time for obtaining a predetermined offset margin, and FIG. 5 is a longitudinal sectional view showing the workpiece used in this example. 2... Sleeve, (member to be welded) 4... Tube, (member to be welded) U... Approach allowance, T... Welding time, P... Pressure force. Engineering...Management value. Agent Tetsuro Abe Figure Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)一対の被溶接部材を突き合わせ、加圧回転させて
接合する摩擦溶接により形成された摩擦溶接部の品質管
理方法において、前記摩擦溶接中の寄り代及び加圧力を
検出するとともに溶接時間を計測し、前記寄り代と溶接
時間とから演算された寄り代速度を前記加圧力で補正し
て管理値を求め、該管理値を基準値と比較して品質を管
理することを特徴とする摩擦溶接部の品質管理方法。
(1) In a quality control method for a friction weld formed by friction welding, in which a pair of welded members are butted against each other and joined by rotation under pressure, the approach margin and pressure force during friction welding are detected, and the welding time is Friction characterized in that a control value is obtained by correcting the deviation speed calculated from the deviation deviation and welding time by the pressurizing force, and the quality is controlled by comparing the control value with a reference value. Quality control method for welded parts.
JP28185888A 1988-11-08 1988-11-08 Quality control method for friction welded zone Pending JPH02127987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28185888A JPH02127987A (en) 1988-11-08 1988-11-08 Quality control method for friction welded zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28185888A JPH02127987A (en) 1988-11-08 1988-11-08 Quality control method for friction welded zone

Publications (1)

Publication Number Publication Date
JPH02127987A true JPH02127987A (en) 1990-05-16

Family

ID=17644977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28185888A Pending JPH02127987A (en) 1988-11-08 1988-11-08 Quality control method for friction welded zone

Country Status (1)

Country Link
JP (1) JPH02127987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2419947A (en) * 2003-07-21 2006-05-10 Horiba Instr Inc Acoustic Transducer
JP2010269364A (en) * 2009-05-25 2010-12-02 Nakamura Tome Precision Ind Co Ltd Friction welding method
US9217608B2 (en) 2007-12-21 2015-12-22 Alfa Laval Corporate Ab Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2419947A (en) * 2003-07-21 2006-05-10 Horiba Instr Inc Acoustic Transducer
GB2419947B (en) * 2003-07-21 2006-10-18 Horiba Instr Inc Acoustic Transducer
US9217608B2 (en) 2007-12-21 2015-12-22 Alfa Laval Corporate Ab Heat exchanger
JP2010269364A (en) * 2009-05-25 2010-12-02 Nakamura Tome Precision Ind Co Ltd Friction welding method

Similar Documents

Publication Publication Date Title
JPH02127987A (en) Quality control method for friction welded zone
JP4187818B2 (en) Inspection method of welding state
Khan et al. Infrared thermography as a control for the welding process
JPS59151046A (en) Inside defect detecting method
KR101002628B1 (en) Apparatus for automatically overlay welding, inspecting and processing nozzzle part having different kind metals of pressurizer in nuclear power plant and method thereof
JPH0646632Y2 (en) Continuous seam welding monitor
JP2540630B2 (en) Method of evaluating remaining life of ferritic heat resistant steel
JPH05115903A (en) Quality determining device for strip weld zone
JPH08215868A (en) Method and device for monitoring welding
JPH01107141A (en) Non-destructive determining method of weld penetration
JP2898351B2 (en) Inspection method of drum can body weld
KR100270098B1 (en) Apparatus and method for quality judge of welding
JP4642221B2 (en) Pass / fail judgment device and judgment method of initial butt state in upset butt welding
JPH0972721A (en) Method and apparatus for diagnosing welded part of thin plate material of continuous processing line
JP2000225542A (en) Screw hole inspecting device
JP2002160070A (en) Seam welding method and controlling method for welding quality
JPH04157074A (en) Method for detecting butting angle of electro resistance welded tube
JPH09216059A (en) Electrode non-consumption type welding robot and arc welding method using it
JP2002028983A (en) Method and apparatus for detecting defective welding in welding by non-contact hot plate
Wagan et al. The Effects of Six Sigma on the Performance of Pipe Manufacturing In Hi-Tech Industries
JP2004074224A (en) Welding robot apparatus
JPS58154466A (en) Automatic control of high frequency welding of electric welded steel tube
JPH109833A (en) Detecting method of shape of butt welding part
JP2000289115A (en) Method for inspecting plastic pipe butt-welded part
JPH07243961A (en) Inspecting method and device for socket type pipe fusion joint