JPH02118064A - Vacuum deposition device - Google Patents
Vacuum deposition deviceInfo
- Publication number
- JPH02118064A JPH02118064A JP26949388A JP26949388A JPH02118064A JP H02118064 A JPH02118064 A JP H02118064A JP 26949388 A JP26949388 A JP 26949388A JP 26949388 A JP26949388 A JP 26949388A JP H02118064 A JPH02118064 A JP H02118064A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- deposition chamber
- crucible
- aluminum
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001771 vacuum deposition Methods 0.000 title abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 33
- 238000002844 melting Methods 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 30
- 238000007740 vapor deposition Methods 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 238000001704 evaporation Methods 0.000 claims description 14
- 230000008020 evaporation Effects 0.000 claims description 14
- 238000007738 vacuum evaporation Methods 0.000 claims description 13
- 238000004090 dissolution Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 abstract description 27
- 230000008021 deposition Effects 0.000 abstract description 25
- 239000008188 pellet Substances 0.000 abstract description 8
- 238000001816 cooling Methods 0.000 abstract description 7
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 239000002985 plastic film Substances 0.000 abstract description 5
- 229920006255 plastic film Polymers 0.000 abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 39
- 229910052782 aluminium Inorganic materials 0.000 description 35
- 238000007789 sealing Methods 0.000 description 5
- 239000007769 metal material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052755 nonmetal Inorganic materials 0.000 description 4
- 150000002843 nonmetals Chemical class 0.000 description 4
- 230000006698 induction Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/246—Replenishment of source material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は、プラスチックフィルム例えばポリエステル等
のフィルムにアルミニウム等の金属あるいはセラミック
ス等の非金属を蒸着する真空蒸着装置や、プラスチック
以外の各種の非金属材料または金°属材料に金属材料ま
たは非金属材料を蒸着する真空蒸着装置に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a vacuum evaporation apparatus for depositing metals such as aluminum or non-metals such as ceramics onto plastic films such as polyester films, and various non-metals other than plastics. The present invention relates to a vacuum evaporation apparatus that evaporates a metal material or a nonmetallic material onto a metal material or a metal material.
〔従来の技術]
第3図は、プラス千ツクフィルムにアルミニウムを蒸着
する従来の真空蒸着装置の一例を示す。[Prior Art] FIG. 3 shows an example of a conventional vacuum deposition apparatus for depositing aluminum onto a plastic film.
隔板りで仕切られた上室「と下室(蒸着室)gとからな
る真空槽aの中で、コイル状に巻いたフィルムbを巻出
glcから繰出しながら、下室gのるつぼjから原発す
るアルミニウム蒸気を冷却ロール(蒸着ロール)1部で
蒸着し、巻取機eで巻取る。lコイルの蒸着が完了する
と真空槽dを大気に開放し、コイル状に巻かれた新しい
フィルノ、bを装着し替えた移・、再度ポンプに、
ffiで真空に排気して蒸着する作業を行なう。るつぼ
j内のアルミニウムは、1回に消費する盟が約1kg程
度であり連続供給を行う必要はないが、大気開放時には
、るつぼjの破1員防止のため、その都度排出し、るつ
ぼj内の手入れを行った後、新しいアルミニウムを装填
する。このように、第3図の真空痕着装置による蒸着作
業は、フィルムの装着、るつぼの手入れ、新しい蒸着材
の装填、真空引き、加熱、走行、蒸着、大気開放を繰返
すパンチ作業となるので、極めて非能率的であった。In a vacuum chamber a consisting of an upper chamber `` and a lower chamber (deposition chamber) g separated by a partition plate, a coiled film b is unwound from an unwinding glc, and is transferred from a crucible j in the lower chamber g. The aluminum vapor generated from the nuclear power plant is deposited on one cooling roll (deposition roll) and wound on a winder e. When the deposition of the first coil is completed, the vacuum chamber d is opened to the atmosphere, and a new FILNO, which has been wound into a coil, is After replacing B, put it on the pump again.
Perform the work of evacuation and vapor deposition using ffi. The aluminum in crucible j consumes about 1 kg at a time, so there is no need to continuously supply it, but when opening it to the atmosphere, to prevent crucible j from breaking, it is discharged each time and the inside of crucible j is After cleaning, load new aluminum. As described above, the vapor deposition work using the vacuum trace deposition device shown in Fig. 3 is a punching work that repeats mounting of the film, cleaning of the crucible, loading of new vapor deposition material, evacuation, heating, running, vapor deposition, and opening to the atmosphere. It was extremely inefficient.
そこで、本発明の発明者らは、さきに、連続真空蒸着装
置に用いて好適な、第4図に示される真空シール装置を
発明し、特願昭62−271923号として特許出願し
た。これは前記第3図で説明したと同様の蒸着室(2)
の上方に設けられ、フィルム(1)を大気中から連続し
て真空中に供給する差圧システムであって、3本11J
Iのシールロール(S−1a) 、 (S2a)(S3
a) ; (Slb) 、 (S2b) 、 (S3b
) : (Slc) 、 (S2c) 、 (S3c)
;と隔壁(S4a) 、 (S4b) 、 (S4c
) ニーによって仕切られる複数の差圧室(2a) 、
(2b) 、 (2c) + を有し、それら差圧
室(2a)、(2b)、(2c)、−に接続された排気
ポンプユニット(10a) 、 (lob) 、 (1
0c) 、−により、大気圧側から蒸着室(2)に至る
まで段階的に圧力勾配を発生させ、蒸着室(2)を所定
の真空度に保つものである。Therefore, the inventors of the present invention previously invented a vacuum sealing device shown in FIG. 4, which is suitable for use in a continuous vacuum evaporation device, and filed a patent application for the same as Japanese Patent Application No. 1982-271923. This is the same vapor deposition chamber (2) as explained in Fig. 3 above.
A differential pressure system installed above and continuously supplying the film (1) from the atmosphere into the vacuum, with three 11J
I seal roll (S-1a), (S2a) (S3
a); (Slb), (S2b), (S3b
): (Slc), (S2c), (S3c)
; and partition walls (S4a), (S4b), (S4c
) a plurality of differential pressure chambers (2a) partitioned by knees;
(2b), (2c) + and are connected to the differential pressure chambers (2a), (2b), (2c), -.
0c), - generates a pressure gradient in stages from the atmospheric pressure side to the deposition chamber (2) to maintain the deposition chamber (2) at a predetermined degree of vacuum.
そして、上記3本のシールロールが形成する2か所のロ
ール間隙のうらlか所に大気中から真空の蒸着室(2)
へ向かうフィルム(1)を通し、もう1か所には蒸着室
(2)から大気中へ向かうフィルムを通すことによって
、入側シール装置と出側シール装置とを一体化する。即
ち、1組3本のシールロルのうち、第10−ル(Sla
) 、 (Slb) 、 (Slc) 、−と第20−
ル(S2a) 、 (S2b) 、 (S2c) 、−
との隙間に大気圧側から真空側へ走行するフィルム(1
)を通過させ、第20−ル(S2a) 、 (S2b)
、 (S2c) 、−と第30−ル(S3a) 、
(S3b) 、 (S3c) 、−との隙間に真空側か
ら大気圧側へ逆行するフィルムを通過させるような、シ
ールロールの組を複数組、間隙をへだでて配設し、それ
らの組の間が差圧室(2a) 、 (2b) 、 (2
c) 、 −を形成しているのである。Then, a vacuum deposition chamber (2) is opened from the atmosphere at a location behind the two roll gaps formed by the three seal rolls.
The inlet sealing device and the outlet sealing device are integrated by passing the film (1) going from the deposition chamber (2) to the atmosphere and passing the film going from the deposition chamber (2) to the atmosphere at the other place. That is, of the three seal rolls in one set, the 10th roll (Sla
), (Slb), (Slc), - and the 20th -
(S2a), (S2b), (S2c), -
A film (1
), 20th rule (S2a), (S2b)
, (S2c), - and 30th rule (S3a),
(S3b), (S3c), - A plurality of sets of seal rolls are arranged across the gap to allow the film to pass backward from the vacuum side to the atmospheric pressure side, and the sets of seal rolls are arranged across the gap. The spaces between the differential pressure chambers (2a), (2b), (2
c) , - are formed.
上記真空ソール装置においては、第20−ル(S2a)
、 (S2b) 、 (S2c) 、−−を入側と出
側とで兼用するので、ロール数が少なくてすみ、またロ
ール間隙の数も少なくなって、シール性能が向上する。In the vacuum sole device, the 20th rule (S2a)
, (S2b), (S2c), -- are used for both the inlet side and the outlet side, so the number of rolls can be reduced, and the number of gaps between the rolls can also be reduced, improving sealing performance.
したがって排気系の容量を大幅に低減することができ、
併せてシール装置のコンパクト化とコスト低減を達成で
きる。Therefore, the capacity of the exhaust system can be significantly reduced,
At the same time, the sealing device can be made more compact and costs can be reduced.
なお第4図中(3)は冷却ロール(M着ロール)、(5
)は蒸着材を収納するるつぼである。In addition, (3) in Fig. 4 is a cooling roll (M-wearing roll), (5
) is a crucible that stores the vapor deposition material.
前記第4図に示された連続真空蒸着装置では、前記第3
図に示されたパンチ式の真空蒸着装置と比較して、1回
の運転で処理するプラスチックフィルムの量が300倍
程度となり、同時に消費するアルミニウム等蒸着材の璽
も300 kgとなる。そこで、真空室内にアルミニウ
ムワイヤ等の連続供給装置を設け、真空室内で連続供給
を行なう方法も考えられるが、そのような方法では、
■ 真空室が大型化する。In the continuous vacuum evaporation apparatus shown in FIG. 4, the third
Compared to the punch-type vacuum deposition apparatus shown in the figure, the amount of plastic film processed in one operation is about 300 times greater, and the amount of aluminum and other vapor deposition materials consumed at the same time is 300 kg. Therefore, a method can be considered in which a continuous supply device such as an aluminum wire is provided in the vacuum chamber to continuously supply the material within the vacuum chamber, but such a method (1) increases the size of the vacuum chamber.
■ 真空室内の蒸着材供給装置が故障した場合には連続
具−空蒸着装置全体を停止しなければならない。また、
大気中でるつぼ内の蒸着材を排出すると、るつぼが70
0〜800°Cの温度で大気にさらされるため、るつぼ
が焼を具する。■ If the evaporation material supply device in the vacuum chamber breaks down, the entire continuous device-empty evaporation device must be stopped. Also,
When the vapor deposition material in the crucible is discharged in the atmosphere, the crucible becomes 70
The crucible undergoes calcination because it is exposed to the atmosphere at temperatures ranging from 0 to 800°C.
等の問題があった。There were other problems.
本発明は、真空蒸着室を開放することなく、同1着室内
の展着材容器へ真空蒸着室外から蒸着材を供給したり、
逆に容器内の蒸着材を外部へ排出したりできるような、
真空蒸着装置を提供することを目的とする。The present invention enables supplying a deposition material from outside the vacuum deposition chamber to a spreading material container in the first deposition chamber without opening the vacuum deposition chamber,
Conversely, it is possible to discharge the vapor deposition material inside the container to the outside.
The purpose is to provide a vacuum evaporation device.
本発明は、I)11記目的を達成するために、真空の1
若室内で蒸着材容器の蒸着材を基板に蒸着させるように
した真空蒸着装rにおいて、上記蒸着室の外部に気密性
の溶解槽を配置し、上記熔解槽を宙封したまま同溶解槽
内に蒸着材を供給する手段と上記溶解槽の内部を排気す
る手段と上記)容解槽を加熱する手段とを設けるととも
に、上記溶解槽の底部と上記蒸着材容器の底部とをサイ
ホン管ににより連通さゼたことを特徴とする真空蒸着装
置、および上記蒸着材容器を昇降させる手段を設けたこ
とを特徴とする真空蒸8装置を堤案するものである。In order to achieve the object I) 11, the present invention provides
In a vacuum evaporation system r in which the evaporation material in the evaporation material container is evaporated onto the substrate in a vacuum chamber, an airtight dissolution tank is arranged outside the evaporation chamber, and the melting tank is kept airtight inside the dissolution tank. A means for supplying a vapor deposition material to the melting tank, a means for evacuating the inside of the melting tank, and a means for heating the melting tank are provided, and the bottom of the melting tank and the bottom of the vapor deposition material container are connected by a siphon pipe. The present invention proposes a vacuum evaporation apparatus characterized by a communication system, and a vacuum evaporation apparatus characterized by being provided with means for raising and lowering the evaporation material container.
[作用〕
本発明においては、蒸着室の外に設けた溶解槽と蒸着室
との間に圧力差を付けることにより、蒸石室を開放する
ことなく、サイホン管を通して蒸着材を供給、排出する
ことができる。また、真空中でるつぼ(蒸着材容器)内
の蒸着材をfJl−出することができるため、高温(7
00〜800°C)の状態でるつぼを大気にさらすこと
が無くなる。[Function] In the present invention, by creating a pressure difference between the melting tank provided outside the vapor deposition chamber and the vapor deposition chamber, the vapor deposition material can be supplied and discharged through the siphon pipe without opening the steam chamber. Can be done. In addition, since the vapor deposition material in the crucible (evaporation material container) can be discharged in a vacuum, high temperature (7
00 to 800°C), the crucible is no longer exposed to the atmosphere.
〔実施例]
第1図は本発明の一実施例を示す縦断側面Vである。本
実施例では、プラスチックのフィルムを蒸着基板とし、
これにアルミニウムを真空蒸着する場合について説明す
るが、本発明はこれに限らず、他の非金属あるいは金属
材料を蒸着基板とし、これらにアルミニウムその他の金
属あるいは非金属を蒸着する場合も、本実施例とほぼ同
様である。[Embodiment] FIG. 1 is a vertical cross-sectional side view V showing an embodiment of the present invention. In this example, a plastic film is used as the deposition substrate,
Although the case where aluminum is vacuum-deposited on this is explained, the present invention is not limited to this, and the present invention can also be applied to cases where other non-metals or metal materials are used as the evaporation substrate and aluminum, other metals, or non-metals are evaporated thereon. It is almost the same as the example.
第1図図示の真空蒸着装置において、コイル状のフィル
ム(1)はまず、大気中に置かれたアンコイラ(図示せ
ず)から払い出される0次に、シールロール(図示せず
)によって仕切られて順次高真空となるよう差動排気さ
れた複数の差圧室(図示せず)の中を通過し、真空の蒸
着室(2)に導入される。そして冷却ロール(蒸着ロー
ル)(3)に巻付き、この冷却ロール(3)を通過する
間に蒸着材容器(るつぼ)(5)から蒸発したアルミニ
ウムが基若される。In the vacuum evaporation apparatus shown in FIG. 1, a coiled film (1) is first discharged from an uncoiler (not shown) placed in the atmosphere, and then separated by a seal roll (not shown). It passes through a plurality of differential pressure chambers (not shown) that are sequentially differentially evacuated to a high vacuum, and is introduced into a vacuum deposition chamber (2). Then, it is wound around a cooling roll (evaporation roll) (3), and while passing through this cooling roll (3), the aluminum evaporated from the deposition material container (crucible) (5) is concentrated.
それから再度上記差圧室を通り、大気中に設けたコイラ
(巻取装置)(図示せず)に巻取られる。Then, it passes through the differential pressure chamber again and is wound up by a coiler (winding device) (not shown) provided in the atmosphere.
蒸着室(2)内には、アルミニウム(4a)が入れられ
たるつぼ(5)の他、同るつぼ(5)を加熱するための
誘導加熱コイル(6)や、るつぼ(5)と蒸着室(2)
外部に配された真空溶解炉(8)とを連結するサイホン
管(7)の−部等が有る。Inside the vapor deposition chamber (2), in addition to the crucible (5) containing aluminum (4a), there is an induction heating coil (6) for heating the crucible (5), and the crucible (5) and the vapor deposition chamber ( 2)
There is a part of the siphon pipe (7) that connects the vacuum melting furnace (8) arranged outside.
次に、真空溶解炉(8)について説明する。(9)は気
密性の溶解槽、(10)はバルブ(vl)を介して同溶
解槽(9)に接続された真空ポンプである。(11)は
アルミニウムベレット(4b)を貯めておくためのホッ
パであって、中間ホッパ(12)を介して、上記溶解槽
(9)の上部に接続されている。ホッパ(11)と中間
ホッパ(12)との間および中間ホッパ(12)と溶解
槽(9)との間には、真空シール機能とアルミニウムベ
レノ) (4b)の供給量を調節する機能とを持った上
部ダンパ(13a)および下部ダンパ(13b)が、そ
れぞれ設けられている。中間ホッパ(12)もバルブ(
ν2)を介して上記真空ポンプ(lO)に接続されてい
る。Next, the vacuum melting furnace (8) will be explained. (9) is an airtight dissolution tank, and (10) is a vacuum pump connected to the dissolution tank (9) via a valve (vl). (11) is a hopper for storing aluminum pellets (4b), and is connected to the upper part of the melting tank (9) via an intermediate hopper (12). Between the hopper (11) and the intermediate hopper (12) and between the intermediate hopper (12) and the melting tank (9), there is a vacuum seal function and a function to adjust the supply amount of aluminum (4b). An upper damper (13a) and a lower damper (13b) each having a diameter are provided. The intermediate hopper (12) also has a valve (
ν2) to the vacuum pump (lO).
(LV)は溶解槽(9)内の圧力を調節するためのリー
ク弁である。(I4)は溶解槽(9)およびその中のア
ルミニウム(4a)を加熱するためのヒータである。ン
容解漕(9)の底部は、前記サイホン管(7)によって
、前記るつぼ(5)の底部と連通している。(LV) is a leak valve for regulating the pressure inside the dissolution tank (9). (I4) is a heater for heating the melting tank (9) and the aluminum (4a) therein. The bottom of the melting tank (9) communicates with the bottom of the crucible (5) by the siphon tube (7).
このような装置において、溶解槽(9)にアルミニウム
ベレット(4b)を供給するには、次のようにする。ま
ず下部ダンパ(13b)を閉じ、上部ダンパ(13a)
を開いて、中間ホッパ(12)内にアルミニウムベレッ
トを充填する。次に上部ダンパ(13a)を閉じ、バル
ブm)、(ν2)を開いて、真空ポンプ(lO)を作動
させる。リーク弁(LV)は当然閉じておく。中間ホッ
パ(12)内の圧力P、と溶解槽(9)内の圧力P2と
が等しくなったら、バルブ(v2)を閉し下部ダンパ(
13b)を開くと、中間ホッパ(12)内のアルミニウ
ムベレット(4b)が溶解槽(9)内に入る。In such an apparatus, the aluminum pellets (4b) are supplied to the melting tank (9) as follows. First, close the lower damper (13b), then close the upper damper (13a).
is opened and aluminum pellets are filled into the intermediate hopper (12). Next, the upper damper (13a) is closed, valves m) and (v2) are opened, and the vacuum pump (lO) is activated. Naturally, the leak valve (LV) should be closed. When the pressure P in the intermediate hopper (12) and the pressure P2 in the melting tank (9) become equal, the valve (v2) is closed and the lower damper (
13b), the aluminum pellet (4b) in the intermediate hopper (12) enters the melting tank (9).
その後下部ダンパ(13b)を閉し上部ダンパ(13a
)を開(と、次のアルミニウムベレットがホッパ(11
)から中間ホッパ(12)に入る。以下同様に繰返され
る。溶解槽(9)内に入ったアルミニウムベレットはヒ
ータ(14)により加熱され溶融する。After that, close the lower damper (13b) and close the upper damper (13a).
) (and the next aluminum pellet moves into the hopper (11
) into the intermediate hopper (12). The same process is repeated below. The aluminum pellets entering the melting tank (9) are heated and melted by the heater (14).
次に溶融したアルミニウム(4a)をるつぼ(5)へ(
」(給する方、去を説明する。まず、るつぼ(5)に設
けたレベル計(図示せず)によりるつぼ(5)内のアル
ミニウム(4a)のレベルを検出し、これが所定のレベ
ル以ドになったならば、下部ダンパ(13b)およびバ
ルブ(vl)を閉しる。次にリーク弁(LV)を開いて
溶解槽(9)内の圧力P2を蒸着室(2)内の圧力P。Next, the molten aluminum (4a) is transferred to the crucible (5) (
” (explaining the supply method). First, the level of aluminum (4a) in the crucible (5) is detected by a level meter (not shown) installed in the crucible (5), and the level of aluminum (4a) in the crucible (5) is , close the lower damper (13b) and valve (vl).Next, open the leak valve (LV) to reduce the pressure P2 in the dissolution tank (9) to the pressure P2 in the deposition chamber (2). .
よりも1盲くすることにより、78人11アルミニウム
(4a)をナイホン管(7)を経てるつぼ(5)内に押
し流し、るつぼ(5)内のアルミニウム(4a)のレベ
ルを上げる。78 people 11 aluminum (4a) is forced into the crucible (5) through the Nyphon tube (7), increasing the level of aluminum (4a) in the crucible (5).
そして上記レベル計で検出したアルミニウム(4a)の
レベルが所定値になったならば、リーク弁(1,ν)を
閉しバルブ(vl)を開いて、溶解槽(9)内の圧力P
2を下げ、るつぼ(5)へのアルミニうムの供給を停止
する。When the level of aluminum (4a) detected by the level meter reaches a predetermined value, the leak valve (1, ν) is closed, the valve (vl) is opened, and the pressure inside the melting tank (9) is
2 and stop supplying aluminum to the crucible (5).
るつは′(5)内のアルミニウム(4a)を溶解槽(9
)にtlF出する場合には、上記とは逆に蒸着室(2)
内の圧力P、を溶解槽(9)内の圧力P2よりも高くず
ればよ次に溶解槽(9)からるつぼ(5)へ熔融アルミ
ニウムを押し流すに必要な圧力差について述べる。アル
ミニウム液面からサイホン管最上部までの高さを!]、
アルミニウムの比重をγとすると、P2 Po=r−H
11を仮に0.2mとすると、r −2300kg /
m ’だから、P z P o=460kg/Il
”Po=1.o Xl0−’Torrとすると、P O
−0,0014kg/m1−0だから、
P z=460kg/ll”=33.8Torrすなわ
ち、P2を33..8Torr以上にすれば良いことに
なる。The aluminum (4a) in '(5) is melted into the melting tank (9).
), in contrast to the above, the deposition chamber (2)
The pressure P in the melting tank (9) should be set higher than the pressure P2 in the melting tank (9).Next, the pressure difference required to force the molten aluminum from the melting tank (9) to the crucible (5) will be described. The height from the aluminum liquid level to the top of the siphon tube! ],
If the specific gravity of aluminum is γ, then P2 Po=r−H If 11 is 0.2 m, then r −2300 kg /
m', so P z P o = 460 kg/Il
”If Po=1.o Xl0-'Torr, then P O
-0,0014 kg/m1-0, so P z = 460 kg/ll'' = 33.8 Torr, that is, it is sufficient to set P2 to 33..8 Torr or more.
上記のように、本実施例の装置を用いれば、蒸着室(2
)内の圧力を上昇させることなく、長時間にわたりるつ
ぼ(5)にアルミニウムを供給することが可能となる。As mentioned above, if the apparatus of this embodiment is used, the deposition chamber (2
) It becomes possible to supply aluminum to the crucible (5) over a long period of time without increasing the pressure in the crucible (5).
第2図には本発明の他の実施例を示す縦断側面図である
。本実施例は、るつぼ(5)および誘導加熱コイル(6
)の両方もしくはるつぼ(5)のみを昇降台(I5)に
乗せ、必要に応じ昇降させることによって、サイホン管
(7)の先端部が高温のアルミニウム(4a)に長時間
接触することのないようにしたものである。これにより
、サイホン管の先端部が高温のアルミニウムと反応して
破損することが防止される。FIG. 2 is a longitudinal sectional side view showing another embodiment of the present invention. This example uses a crucible (5) and an induction heating coil (6).
) or only the crucible (5) is placed on the lifting platform (I5) and raised and lowered as necessary to prevent the tip of the siphon tube (7) from coming into contact with the hot aluminum (4a) for a long time. This is what I did. This prevents the tip of the siphon tube from reacting with hot aluminum and being damaged.
〔発明の効果]
本発明によれば、蒸着室を開放することなく、したがっ
て蒸着室内の圧力を上昇させることなく、長時間連続し
て、蒸着室内の蒸着材容器に蒸着材を供給することがで
きる。また、参看終了時には高温の蒸着材を真空中で蒸
着材容器から取出すことができるから、蒸着材容器の焼
損も防止できる。[Effects of the Invention] According to the present invention, it is possible to continuously supply a deposition material to a deposition material container in a deposition chamber for a long time without opening the deposition chamber and therefore without increasing the pressure inside the deposition chamber. can. Moreover, since the high-temperature vapor deposition material can be taken out from the vapor deposition material container in a vacuum at the end of the inspection, it is possible to prevent the vapor deposition material container from burning out.
第1図および第2図はいずれも本発明の実施例を示す縦
断側面図、第3図および第4図はいずれも従来の真空演
着装置の例を示す縦断側面図である。
(+)−フィルム、 (2)−・蒸着室、(3)
−冷却ロール(蒸着ロール)、
(4a)−アルミニウム、
アルミニウムペレット、
るつぼ(M着付容器)、
誘導加熱コイル、 (7)
真空溶解炉、 (9)
真空ポンプ、 (11)
中間ホッパ、 (13a)
下部ダンパ、 (14)
昇降台、
(v2)−バルブ、
サイホン管、
溶解槽、
ホッパ、
上部ダンパ、
ヒータ、
(LV) −リーク弁。
(4b)
(13b)
(Vl)
第1図FIGS. 1 and 2 are both longitudinal sectional side views showing an embodiment of the present invention, and FIGS. 3 and 4 are longitudinal sectional side views showing an example of a conventional vacuum forming apparatus. (+) - film, (2) - vapor deposition chamber, (3)
- Cooling roll (evaporation roll), (4a) - Aluminum, aluminum pellets, crucible (M attachment container), induction heating coil, (7) Vacuum melting furnace, (9) Vacuum pump, (11) Intermediate hopper, (13a) Lower damper, (14) Lifting platform, (v2) - valve, siphon pipe, dissolving tank, hopper, upper damper, heater, (LV) - leak valve. (4b) (13b) (Vl) Figure 1
Claims (2)
着させるようにした真空蒸着装置において、上記蒸着室
の外部に気密性の溶解槽を配置し、上記溶解槽を密封し
たまま同溶解槽内に蒸着材を供給する手段と上記溶解槽
の内部を排気する手段と上記溶解槽を加熱する手段とを
設けるとともに、上記溶解槽の底部と上記蒸着材容器の
底部とをサイホン管により連通させたことを特徴とする
真空蒸着装置。(1) In a vacuum evaporation apparatus in which the evaporation material in the evaporation material container is evaporated onto the substrate in a vacuum evaporation chamber, an airtight dissolution tank is arranged outside the evaporation chamber, and the dissolution tank is kept sealed. A means for supplying a vapor deposition material into the melting tank, a means for exhausting the inside of the melting tank, and a means for heating the melting tank are provided, and the bottom of the melting tank and the bottom of the vapor deposition material container are connected by a siphon pipe. A vacuum evaporation device characterized by being connected.
とする請求項(1)記載の真空蒸着装置。(2) The vacuum evaporation apparatus according to claim 1, further comprising means for raising and lowering the evaporation material container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26949388A JPH02118064A (en) | 1988-10-27 | 1988-10-27 | Vacuum deposition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26949388A JPH02118064A (en) | 1988-10-27 | 1988-10-27 | Vacuum deposition device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02118064A true JPH02118064A (en) | 1990-05-02 |
Family
ID=17473203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26949388A Pending JPH02118064A (en) | 1988-10-27 | 1988-10-27 | Vacuum deposition device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02118064A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000008226A3 (en) * | 1998-08-03 | 2000-12-07 | Coca Cola Co | Vapor deposition system |
US6223683B1 (en) | 1997-03-14 | 2001-05-01 | The Coca-Cola Company | Hollow plastic containers with an external very thin coating of low permeability to gases and vapors through plasma-assisted deposition of inorganic substances and method and system for making the coating |
US6599584B2 (en) | 2001-04-27 | 2003-07-29 | The Coca-Cola Company | Barrier coated plastic containers and coating methods therefor |
US6740378B1 (en) | 2000-08-24 | 2004-05-25 | The Coca-Cola Company | Multilayer polymeric/zero valent material structure for enhanced gas or vapor barrier and uv barrier and method for making same |
US6808753B2 (en) | 2000-08-24 | 2004-10-26 | The Coca-Cola Company | Multilayer polymeric/inorganic oxide structure with top coat for enhanced gas or vapor barrier and method for making same |
JP2007023319A (en) * | 2005-07-13 | 2007-02-01 | Sumitomo Electric Ind Ltd | Vacuum vapor-deposition apparatus, and method for operating the apparatus |
JP2008500454A (en) * | 2004-05-27 | 2008-01-10 | ズィードラーベ インコーポレイテッド | Vacuum deposition method and apparatus by evaporation of metal and alloy |
WO2008040329A1 (en) * | 2006-09-29 | 2008-04-10 | Von Ardenne Anlagentechnik Gmbh | Vacuum coating method, and arrangement for carrying out said method |
JP2010144221A (en) * | 2008-12-18 | 2010-07-01 | Tokyo Electron Ltd | Raw material gas generator and film-deposition apparatus |
EP2369033A1 (en) * | 2010-03-26 | 2011-09-28 | Saint-Gobain Glass France | Method for refilling an evaporation chamber |
DE102012109626A1 (en) * | 2012-10-10 | 2014-04-10 | Von Ardenne Anlagentechnik Gmbh | Coating substrate by forming evaporation material as steam source in surface of crucible, and providing substrate to vapor cloud in source, where vapor deposition distance is adjusted by adjusting a height of surface and/or substrate |
WO2015082022A1 (en) * | 2013-12-06 | 2015-06-11 | Applied Materials, Inc. | Depositing arrangement, deposition apparatus and methods of operation thereof |
CN107873064A (en) * | 2015-05-26 | 2018-04-03 | 欧瑞康表面解决方案股份公司,普费菲孔 | Reduced by using the abrasion and/or friction of the coating based on molybdenum nitride |
-
1988
- 1988-10-27 JP JP26949388A patent/JPH02118064A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6223683B1 (en) | 1997-03-14 | 2001-05-01 | The Coca-Cola Company | Hollow plastic containers with an external very thin coating of low permeability to gases and vapors through plasma-assisted deposition of inorganic substances and method and system for making the coating |
US6279505B1 (en) | 1997-03-14 | 2001-08-28 | The Coca-Cola Company | Plastic containers with an external gas barrier coating |
US6548123B1 (en) | 1997-03-14 | 2003-04-15 | The Coca-Cola Company | Method for coating a plastic container with vacuum vapor deposition |
US6599569B1 (en) | 1997-03-14 | 2003-07-29 | The Coca-Cola Company | Plastic containers with an external gas barrier coating, method and system for coating containers using vapor deposition, method for recycling coated containers, and method for packaging a beverage |
WO2000008226A3 (en) * | 1998-08-03 | 2000-12-07 | Coca Cola Co | Vapor deposition system |
US6251233B1 (en) | 1998-08-03 | 2001-06-26 | The Coca-Cola Company | Plasma-enhanced vacuum vapor deposition system including systems for evaporation of a solid, producing an electric arc discharge and measuring ionization and evaporation |
US6447837B2 (en) | 1998-08-03 | 2002-09-10 | The Coca-Cola Company | Methods for measuring the degree of ionization and the rate of evaporation in a vapor deposition coating system |
US6811826B2 (en) | 2000-08-24 | 2004-11-02 | The Coca-Cola Company | Multilayer polymeric/zero valent material structure for enhanced gas or vapor barrier and UV barrier and method for making same |
US6808753B2 (en) | 2000-08-24 | 2004-10-26 | The Coca-Cola Company | Multilayer polymeric/inorganic oxide structure with top coat for enhanced gas or vapor barrier and method for making same |
US6740378B1 (en) | 2000-08-24 | 2004-05-25 | The Coca-Cola Company | Multilayer polymeric/zero valent material structure for enhanced gas or vapor barrier and uv barrier and method for making same |
US6599584B2 (en) | 2001-04-27 | 2003-07-29 | The Coca-Cola Company | Barrier coated plastic containers and coating methods therefor |
JP2008500454A (en) * | 2004-05-27 | 2008-01-10 | ズィードラーベ インコーポレイテッド | Vacuum deposition method and apparatus by evaporation of metal and alloy |
JP4697411B2 (en) * | 2005-07-13 | 2011-06-08 | 住友電気工業株式会社 | Vacuum deposition apparatus and operation method of vacuum deposition apparatus |
JP2007023319A (en) * | 2005-07-13 | 2007-02-01 | Sumitomo Electric Ind Ltd | Vacuum vapor-deposition apparatus, and method for operating the apparatus |
WO2008040329A1 (en) * | 2006-09-29 | 2008-04-10 | Von Ardenne Anlagentechnik Gmbh | Vacuum coating method, and arrangement for carrying out said method |
JP2010144221A (en) * | 2008-12-18 | 2010-07-01 | Tokyo Electron Ltd | Raw material gas generator and film-deposition apparatus |
EP2369033A1 (en) * | 2010-03-26 | 2011-09-28 | Saint-Gobain Glass France | Method for refilling an evaporation chamber |
DE102012109626A1 (en) * | 2012-10-10 | 2014-04-10 | Von Ardenne Anlagentechnik Gmbh | Coating substrate by forming evaporation material as steam source in surface of crucible, and providing substrate to vapor cloud in source, where vapor deposition distance is adjusted by adjusting a height of surface and/or substrate |
WO2015082022A1 (en) * | 2013-12-06 | 2015-06-11 | Applied Materials, Inc. | Depositing arrangement, deposition apparatus and methods of operation thereof |
KR20160095091A (en) * | 2013-12-06 | 2016-08-10 | 어플라이드 머티어리얼스, 인코포레이티드 | Depositing arrangement, deposition apparatus and methods of operation thereof |
JP2016540892A (en) * | 2013-12-06 | 2016-12-28 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Deposition arrangement, deposition apparatus, and method of operation thereof |
CN107873064A (en) * | 2015-05-26 | 2018-04-03 | 欧瑞康表面解决方案股份公司,普费菲孔 | Reduced by using the abrasion and/or friction of the coating based on molybdenum nitride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02118064A (en) | Vacuum deposition device | |
JP5820731B2 (en) | Substrate processing apparatus and solid material replenishment method | |
US5000114A (en) | Continuous vacuum vapor deposition system having reduced pressure sub-chambers separated by seal devices | |
US3227132A (en) | Apparatus for depositing coatings of tin on a flexible substrate | |
JP2003347198A5 (en) | ||
US20090020070A1 (en) | Vacuum evaporation apparatus for solid materials | |
JPH11168092A (en) | Method and equipment for vapor phase growth | |
JPS63243264A (en) | Apparatus for producing thin film | |
JP3257056B2 (en) | Vacuum deposition equipment | |
JP2008057000A (en) | Film deposition system of lithium or lithium alloy | |
JPH11125491A (en) | Continuous heat treatment furnace | |
US3029777A (en) | Vapor deposition coating apparatus | |
JPH02118072A (en) | Vacuum deposition device | |
KR100773567B1 (en) | Deposition source material supply | |
JPH02118073A (en) | Continuous vacuum deposition device | |
US3078082A (en) | Apparatus for reducing vaporizable refractory metal compounds | |
JPH02118071A (en) | Continuous vacuum deposition device | |
JPS6160912B2 (en) | ||
JPH0620051B2 (en) | Method of filling cylinder of organometallic compound | |
JPH03141192A (en) | Device and method for gaseous phase growth | |
KR200453135Y1 (en) | Apparatus for supplying source gas including means for outflow prevention of deposition source meaterial | |
JPH0733577B2 (en) | Vacuum deposition equipment | |
JPH0499166A (en) | Production of double vacuum-deposited film | |
JPH0211767A (en) | Continuous dry plating apparatus for long material | |
JPH04183863A (en) | Base plate treating device |