[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02117913A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH02117913A
JPH02117913A JP26814588A JP26814588A JPH02117913A JP H02117913 A JPH02117913 A JP H02117913A JP 26814588 A JP26814588 A JP 26814588A JP 26814588 A JP26814588 A JP 26814588A JP H02117913 A JPH02117913 A JP H02117913A
Authority
JP
Japan
Prior art keywords
epoxy resin
formula
curing agent
resin composition
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26814588A
Other languages
Japanese (ja)
Inventor
Yasuji Yamada
保治 山田
Masashi Kaji
正史 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP26814588A priority Critical patent/JPH02117913A/en
Publication of JPH02117913A publication Critical patent/JPH02117913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the title composition suitable for semiconductor sealing and matrix of composite material, providing a cured material having excellent heat resistance, water resistance, toughness, etc., by blending a specific epoxy resin with a curing agent. CONSTITUTION:(A) an epoxy resin shown by formula I [A and B are group shown by formula II or III (R is H or lower alkyl; X is bifunctional group) and Anot equal to B; n is 0-10] is blended with (B) a curing agent (e.g., phenol novolak, phthalic anhydride or methylenedianiline) in a ratio of preferably 0.9-11 (molar ratio of functional group) to give the aimed composition.

Description

【発明の詳細な説明】 硬化物を与えるエポキシ樹脂組成物に係り、さらに詳し
くは、半導体封止用として、また、複合材料マトリック
スとして好適に用いられるエポキシ樹脂組成物に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an epoxy resin composition that provides a cured product, and more particularly to an epoxy resin composition that is suitably used for semiconductor encapsulation and as a composite material matrix.

[従来の技術] エポキシ樹脂は、その優れた耐熱性、力学的強度、絶縁
性により、接着剤、塗料、積層材、電気絶縁材料等の産
業上広い分野に亘って使用されている。
[Prior Art] Epoxy resins are used in a wide range of industrial fields such as adhesives, paints, laminated materials, and electrical insulation materials due to their excellent heat resistance, mechanical strength, and insulation properties.

近年、特に先端材料分野の進歩に伴い、より高性能なエ
ポキシ樹脂が求められている。例えば、航空宇宙産業に
使用される複合材マトリックス樹脂としてのエポキシ樹
脂には高靭性や高耐水性が強く求められており、また、
電子材料分野、例えば半導体封止用材料のペースエポキ
シ樹脂においても、半導体パッケージの大面積化や薄型
化に伴い、耐クラツク性が強く望まれている。
In recent years, especially with advances in the field of advanced materials, higher performance epoxy resins have been required. For example, epoxy resins used as composite matrix resins used in the aerospace industry are strongly required to have high toughness and high water resistance.
In the field of electronic materials, for example, in pace epoxy resins used as semiconductor sealing materials, crack resistance is strongly desired as semiconductor packages become larger in area and thinner.

ところで、従来、この種のエポキシ樹脂としては、ビス
フェノールA型エポキシ樹脂ヤフェノールノボラック型
エポキシ樹脂をフェノールノボラック、酸無水物系化合
物、ポリアミン系化合物等で硬化させたものが知られて
いる(特開昭63−218.725号公報等)。
By the way, conventionally known epoxy resins of this type include those obtained by curing bisphenol A type epoxy resin and phenol novolac type epoxy resin with phenol novolac, acid anhydride compounds, polyamine compounds, etc. Publication No. 1983-218.725, etc.).

しかしながら、これらのエポキシ樹脂の硬化物は、その
いずれも靭性に欠けるものであり、特に架橋密度を高め
、耐熱性を高くしたものについてはこの靭性が著しく低
い。
However, the cured products of these epoxy resins all lack toughness, and especially those with increased crosslink density and heat resistance have extremely low toughness.

[発明が解決しようとする問題点] そこで、本発明者らは、エポキシ樹脂硬化物の耐熱性を
保ち、かつ、その靭性を改善すべく鋭意検討を重ねた結
果、高耐熱性を保持したまま、従来のエポキシ樹脂に比
へてはるかに高い靭性を示す硬化物を与えるエポキシ樹
脂組成物を見い出し、本発明に到達した。
[Problems to be Solved by the Invention] Therefore, the present inventors have conducted intensive studies to maintain the heat resistance of cured epoxy resin products and improve their toughness. They have discovered an epoxy resin composition that provides a cured product with much higher toughness than conventional epoxy resins, and have arrived at the present invention.

[問題点を解決するための手段] すなわち、本発明は、−絞入(1) (但し、式中A及び8は下記式(a)又は(b)で表さ
れるものであってA/=8であり、nは0.1〜10の
有理数を示す)で表されるエポキシ樹脂及び硬化剤を配
合してなるエポキシ樹脂組成物である。
[Means for Solving the Problems] That is, the present invention provides - Narrowing down (1) (wherein A and 8 are represented by the following formula (a) or (b), and A/ = 8, n is a rational number from 0.1 to 10) and a curing agent.

(但し、Rは水素又は低数アルキル基を承り)式(b)
  −o−o−xQo−(b)(但し、Xは2価の基を
示す) 本発明において、−絞入(1)で示される基本構造を有
するエポキシ樹脂において、A及びBは式(a)又は(
b)で表されるものであるが、A≠8であるので八が(
a)のとき8は式(b)であり、八が式(b)であると
きBは式(a)である。そして、好ましくは前者の組合
わせである。
(However, R can be hydrogen or a low alkyl group) Formula (b)
-o-o-xQo-(b) (where, ) or (
b), but since A≠8, eight is (
When a), 8 is the formula (b), and when 8 is the formula (b), B is the formula (a). The former combination is preferred.

式(a)において、置換基Rは炭素数1〜4のアルキル
基であるが、好ましくはメチル基である。
In formula (a), the substituent R is an alkyl group having 1 to 4 carbon atoms, preferably a methyl group.

また、式(b)において、Xは2価の基であるが、好ま
しくは−C112−1−C(CH3) 2−1る。
Furthermore, in formula (b), X is a divalent group, preferably -C112-1-C(CH3)2-1.

一般式(1)において、nは平均の重合度を示すもので
あり、その値は0.1〜10の範囲である。
In general formula (1), n indicates the average degree of polymerization, and its value is in the range of 0.1 to 10.

nの値は、本発明に示す組成物の溶融粘度、軟化点に大
きく影響し、本発明のエポキシ樹脂組成物を適用しよう
とする目的や用途により適宜選択される。
The value of n greatly influences the melt viscosity and softening point of the composition according to the present invention, and is appropriately selected depending on the purpose and use to which the epoxy resin composition of the present invention is to be applied.

本発明の一般式(1)で示されるエポキシ樹脂は例えば
次の方法で合成される。
The epoxy resin represented by the general formula (1) of the present invention is synthesized, for example, by the following method.

すなわち、次式(2) (但し、Rは水素原子又は炭素数1〜4のアルキル基を
示す)で表されるエポキシ化合物(2)と次式(3) %式%(3) で表されるビスフェノール化合物とを、モル比((a)
/(b) ) 1 、1 = 11 (DKe’JIJ
”’CaCa合唱反応6゜この際、反応を促進させるた
めに、アミン系化合物、イシダブール類、有機ボスフィ
ン類等を触媒として用いることかてぎる。反応温度とし
ては70〜160’Cが適当であり、また、この反応の
際に適当な溶媒を用いてもよい。この溶媒としては、例
えばベンゼン、トルエン、キシレン等の炭化水素溶剤や
、メチルエチルケトン、メヂルイソブチルケ1〜ン等の
ケトン系溶剤等が好ましい。
That is, an epoxy compound (2) represented by the following formula (2) (wherein R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms) and an epoxy compound (2) represented by the following formula (3) % formula % (3) bisphenol compound and the molar ratio ((a)
/(b) ) 1 , 1 = 11 (DKe'JIJ
``'CaCa Chorus Reaction 6゜ At this time, in order to accelerate the reaction, it is necessary to use amine compounds, isidabures, organic bosphines, etc. as catalysts. 70 to 160'C is suitable as the reaction temperature. In addition, an appropriate solvent may be used during this reaction. Examples of this solvent include hydrocarbon solvents such as benzene, toluene, and xylene, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone. is preferred.

また、本発明で使用する硬化剤としては、多価フェノー
ル系、酸無水物系、アミン系等、一般にエポキシ樹脂の
硬化剤として使用されているものであればそのいずれも
使用可能である。そして、上記多価フェノール系硬化剤
としてはフェノールノボラック、ポリビニルフェノール
等を挙げることができ、また、酸無水物系硬化剤として
は無水フタル酸、デラヒトロ無水フタル酸、ヘキサヒド
ロ無水フタル酸、無水トリメリット酸、無水ペンゾフエ
ノンテ]〜ラカルボン酸等を挙げることができ、ざらに
、アミン系硬化剤としてはメヂレンジアニリン、ジアミ
ノジフェニルエーテル、ジアミノジフェニルスルホン等
を挙げることができる。
Further, as the curing agent used in the present invention, any curing agent that is generally used as a curing agent for epoxy resins, such as polyhydric phenol type, acid anhydride type, and amine type, can be used. Examples of the polyhydric phenol curing agent include phenol novolak, polyvinylphenol, etc., and examples of the acid anhydride curing agent include phthalic anhydride, delahydrophthalic anhydride, hexahydrophthalic anhydride, and trimeritic anhydride. Examples of the curing agent include medilene dianiline, diaminodiphenyl ether, diaminodiphenyl sulfone, and the like.

上記エポキシ樹脂と硬化剤の配合比は、通常その官能基
のモル比が0.7〜1.3の範囲、好ましくは0.9〜
1.1となるように決定される。
The blending ratio of the above-mentioned epoxy resin and curing agent is such that the molar ratio of their functional groups is usually in the range of 0.7 to 1.3, preferably 0.9 to 1.3.
1.1.

本発明のエポキシ樹脂組成物中には、必要に応じて、2
−メチルイミダゾール、2−エチル−4−メチルイミダ
ゾール、2−ウンデシルイミダゾール、2−ヘプタデシ
ルイミダゾール、2−フェニルイミダゾール等のイミダ
ゾール類、アミン類、トリノエニルホスフィンで代表さ
れる有機ボスフィン類等の硬化促進剤や、各種ワックス
、高級脂肪酸あるいはそのカルシウム塩等の滑剤や、シ
ランカップリング剤等の表面処理剤や、シリカ、アルミ
ナ、ガラス繊維、タルク等の無機充填剤等を配合するこ
ができる。
In the epoxy resin composition of the present invention, 2
- Curing of imidazoles such as methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecyl imidazole, and 2-phenylimidazole, amines, and organic bosphines represented by trinoenylphosphine, etc. Accelerators, various waxes, lubricants such as higher fatty acids or their calcium salts, surface treatment agents such as silane coupling agents, and inorganic fillers such as silica, alumina, glass fiber, and talc can be blended.

本発明のエポキシ樹脂組成物は、上記−絞入(1)で表
されるエポキシ樹脂と所定の硬化剤とを所定の割合で配
合し、ざらに必要に応じて添加される種々の添加剤を混
合し、ミキサー、ロール、ニーダ−等の手段で均一に混
合し混練することにより調製される。
The epoxy resin composition of the present invention is prepared by blending the epoxy resin represented by the above-mentioned (1) with a predetermined curing agent in a predetermined ratio, and adding various additives as necessary to the coating. It is prepared by uniformly mixing and kneading using a mixer, roll, kneader, or other means.

[実施例] 以下、実施例及び比較例に基いて、本発明を具体的に説
明する。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1 4.4゛−ジヒドロキン−3,3°、5,5°−テトラ
メチルビフェニルジグリシジルエーテル2409と9.
9−ビス(4−ヒドロキシフェニル)フルオレン56g
を150’Cで溶融混合し、ざらにトリノ■ニルホス7
 イン1 gヲ)Jtlt、150’CT’3時間反応
さけてエポキシ樹脂を19だ。このエポキシ樹脂l脂の
エポキシ当量は317であり、軟化点は82°Cであっ
た。
Example 1 4.4'-dihydroquine-3,3',5,5'-tetramethylbiphenyl diglycidyl ether 2409 and 9.
9-bis(4-hydroxyphenyl)fluorene 56g
Melt and mix at 150'C, add trinonylphos 7
In 1 gwo) Jtlt, 150'CT'3 hours reaction, epoxy resin 19. The epoxy equivalent of this epoxy resin was 317, and the softening point was 82°C.

このようにして得られたエポキシ樹脂100g、フェノ
ールノボラック(フェノール当!104、軟化点70℃
)33g及びトリフェニルホスフィン1゜39を100
℃で14分間溶融混練し、微粉砕後150℃、4分間の
条件でトランフッ1−成形し試験片を調製し、この試験
片を使用してガラス転移点、破壊靭性及び吸水率を測定
した。結果を第1表に示す。
100 g of the epoxy resin thus obtained, phenol novolak (phenol equivalent! 104, softening point 70°C)
)33g and triphenylphosphine 1°39 to 100g
The mixture was melt-kneaded at 150° C. for 14 minutes, pulverized, and then truncate-molded at 150° C. for 4 minutes to prepare a test piece. Using this test piece, the glass transition point, fracture toughness, and water absorption were measured. The results are shown in Table 1.

なお、ガラス転移点は熱機械分析装置を使用して7℃/
minの昇温速度で測定した。また、破壊靭性はジャー
ナル・オブ・マデリアル・ザイエンス第21巻第246
2頁(1986)に記載された方法に準じて測定した。
The glass transition point was measured using a thermomechanical analyzer at 7℃/
The temperature was measured at a temperature increase rate of min. In addition, fracture toughness is reported in Journal of Material Science, Vol. 21, No. 246.
It was measured according to the method described on page 2 (1986).

さらに、吸水率は133℃、3気圧の水蒸気中で100
時間吸湿させて求めた。
Furthermore, the water absorption rate is 100% in water vapor at 133°C and 3 atm.
It was determined by absorbing moisture for a period of time.

実施例2 4.4“−ジヒドロキシ−3,3°、5.5’−テトラ
メチルビフェニルジグリシジルエーテルを2409.9
゜9−ビス(4−ヒドロキシフェニル)フルオレンを7
53とした以外は上記実施例1と同様に反応させ、エポ
キシ当N384及び軟化点100℃のエポキシ樹脂を得
た。
Example 2 4.4"-dihydroxy-3,3°,5.5'-tetramethylbiphenyl diglycidyl ether 2409.9
゜9-bis(4-hydroxyphenyl)fluorene 7
The reaction was carried out in the same manner as in Example 1 except that the epoxy resin was changed to 53 to obtain an epoxy resin having an epoxy weight of N384 and a softening point of 100°C.

jqられたエポキシ樹脂1009に対し、硬化剤として
フェノールノボラック(フェノール当量104、軟化点
70℃)279を使用し、実施例]と同様に試験片を調
製してガラス転移点、破yA靭性及び吸水率を測定した
。結果を第1表に示す。
Using phenol novolak (phenol equivalent: 104, softening point: 70°C) 279 as a curing agent for the epoxy resin 1009, test pieces were prepared in the same manner as in Example], and the glass transition point, fracture toughness, and water absorption were determined. The rate was measured. The results are shown in Table 1.

実施例3 9.9−ビス(4−ヒドロキシフェニル)フルオレンジ
グリシジルエーテル240g、4,4°−ジヒドロキシ
ビフェニル30y及びトリノエニルホスフィン1.0g
をメチルイソブチルケトン20Od中に溶解し、加熱還
流下に6時間反応させたのち、減圧下に溶媒を留去して
エポキシ樹脂を1qた。1qられたエポキシ樹脂のエポ
キシ当量は370であり、軟化点は123℃であった。
Example 3 240 g of 9.9-bis(4-hydroxyphenyl)fluorenedi glycidyl ether, 30y of 4,4°-dihydroxybiphenyl and 1.0g of trinoenylphosphine
was dissolved in 20 Od of methyl isobutyl ketone and reacted under heating and reflux for 6 hours, and then the solvent was distilled off under reduced pressure to obtain 1 q of epoxy resin. The epoxy equivalent of the 1q epoxy resin was 370, and the softening point was 123°C.

このようにして得られたエポキシ樹脂100gに対し、
硬化剤としてフェノールノボラック(フェノール当ω1
04、軟化点70℃)28gを使用し、実施例1と同様
に試験片を調製してガラス転移点、破壊靭性及び吸水率
を測定した。結果を第1表に示す。
For 100g of epoxy resin obtained in this way,
Phenol novolac (phenol equivalent ω1) is used as a curing agent.
04, softening point 70° C.), a test piece was prepared in the same manner as in Example 1, and the glass transition point, fracture toughness, and water absorption were measured. The results are shown in Table 1.

実施例4 ビスフェノールAジグリシジルエーテル240J、4.
4″−ジヒドロキシビフェニル60g及びトリフェニル
ホスフィン1.C)gを使用し、上記実施例3と同様に
反応させてエポキシ樹脂を調製した。1qられたエポキ
シ樹脂のエポキシ当量は477であり、軟化点は79℃
であった。
Example 4 Bisphenol A diglycidyl ether 240J, 4.
Using 60 g of 4''-dihydroxybiphenyl and 1.C) g of triphenylphosphine, an epoxy resin was prepared by reacting in the same manner as in Example 3. The epoxy equivalent of the 1q epoxy resin was 477, and the softening point was is 79℃
Met.

このようにして得られたエポキシ樹脂1007に対し、
硬化剤としてフェノールノボラック(フェノール当m1
04、軟化点70℃)22gを用いて上記実施例1と同
様に試験片を調製してガラス転移点、破壊靭性及び吸水
率を測定した。結果を第1表に示す。
For the epoxy resin 1007 obtained in this way,
Phenol novolac (phenol/m1) as a curing agent
A test piece was prepared in the same manner as in Example 1 above using 22 g of 04, softening point 70°C), and the glass transition point, fracture toughness, and water absorption were measured. The results are shown in Table 1.

実施例5 4.4゛−ジヒドロキシ−3,3’、5.5’−テトラ
メチルビフェニルジグリシジルエーテル240gと4,
4゜−ジヒドロキシジフェニルスルホン107gとを実
施例3と同様に反応させ、エポキシ化ff1405及び
軟化点90℃のエポキシ樹脂を調製した。
Example 5 240 g of 4.4'-dihydroxy-3,3',5.5'-tetramethylbiphenyl diglycidyl ether and 4,
107 g of 4°-dihydroxydiphenyl sulfone was reacted in the same manner as in Example 3 to prepare epoxidized ff1405 and an epoxy resin having a softening point of 90°C.

このようにして1qられたエポキシ樹脂100gに対し
、硬化剤としてフェノールノボラック(フェノール当量
104、軟化点70℃)26g用いて実施例1と同様に
試験片を調製してガラス転移点、破壊靭性及び吸水率を
測定した。結果を第1表に示す。
Test specimens were prepared in the same manner as in Example 1 using 26 g of phenol novolac (phenol equivalent: 104, softening point: 70°C) as a hardening agent for 100 g of the epoxy resin prepared in this manner. The water absorption rate was measured. The results are shown in Table 1.

比較例1 エポキシ樹脂としてビスフェノールAジグリシジルエー
テルを使用し、硬化剤としてフェノールノボラック(軟
化点70℃)を使用し、実施例1と同様に試験片を調製
してガラス転移点、破壊靭性及び吸水率を測定した。結
果を第1表に示す。
Comparative Example 1 Using bisphenol A diglycidyl ether as the epoxy resin and using phenol novolak (softening point 70°C) as the hardening agent, test pieces were prepared in the same manner as in Example 1, and the glass transition point, fracture toughness, and water absorption were measured. The rate was measured. The results are shown in Table 1.

比較例2 エポキシン樹脂として叶タレゾールノ小ラックエポキシ
(軟化点80°C)を使用し、硬化剤とじてフェノール
ノボラック(軟化点70℃)を使用し、実施例1と同様
に試験片を調製してガラス転移点、破壊靭性及び吸水率
を測定した。結果を第1表に示す。
Comparative Example 2 A test piece was prepared in the same manner as in Example 1, using Kotaresol Novolak epoxy (softening point 80°C) as the epoxy resin and phenol novolak (softening point 70°C) as the hardening agent. The glass transition point, fracture toughness and water absorption were measured. The results are shown in Table 1.

比較例3 エポキシン樹脂として4,4°−ジヒドロキシ−3゜3
’、5,5°−テトラメチルビフェニルジグリシジルエ
ーテルを使用し、硬化剤としてフェノールノボラック(
軟化点70℃)を使用し、実施例1と同様に試験片を調
製してガラス転移点、破壊靭性及び吸水率を測定した。
Comparative Example 3 4,4°-dihydroxy-3°3 as epoxy resin
', 5,5°-tetramethylbiphenyl diglycidyl ether and phenol novolak (
A test piece was prepared in the same manner as in Example 1, and the glass transition point, fracture toughness, and water absorption were measured.

結果を第1表に示す。The results are shown in Table 1.

第  1  表 [発明の効果] 本発明のエポキシ樹脂組成物は、優れた耐熱性や耐水性
を有するだけでなく、高い靭性を有するエポキシ硬化物
を与えるものであり、産業上惨めで有用なものである。
Table 1 [Effects of the Invention] The epoxy resin composition of the present invention not only has excellent heat resistance and water resistance, but also provides a cured epoxy product with high toughness, and is useful in industrial applications. It is.

Claims (3)

【特許請求の範囲】[Claims] (1)一般式(1) ▲数式、化学式、表等があります▼(1) (但し、式中A及びBは下記式(a)又は(b)で表さ
れるものであってA≠Bであり、nは0.1〜10の有
理数を示す)で表されるエポキシ樹脂に硬化剤を配合し
てなるエポキシ樹脂組成物。 式(a)▲数式、化学式、表等があります▼(a) (但し、Rは水素又は低数アルキル基を示す)式(b)
▲数式、化学式、表等があります▼(b) (但し、Xは2価の基を示す)
(1) General formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (1) (However, in the formula, A and B are represented by the following formula (a) or (b), and A≠B An epoxy resin composition prepared by blending a curing agent into an epoxy resin represented by the following formula (where n is a rational number from 0.1 to 10). Formula (a) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (a) (However, R represents hydrogen or a lower alkyl group) Formula (b)
▲There are mathematical formulas, chemical formulas, tables, etc.▼(b) (However, X indicates a divalent group)
(2)一般式(1)において、Aが式(a)で表される
ものであり、Bが式(b)で表されるものである請求項
1記載のエポキシ樹脂組成物。
(2) The epoxy resin composition according to claim 1, wherein in general formula (1), A is represented by formula (a) and B is represented by formula (b).
(3)式(a)のRがメチル基であり、式(b)のXが
▲数式、化学式、表等があります▼である請求項1又は
2記載のエポキシ樹脂組成物。
(3) The epoxy resin composition according to claim 1 or 2, wherein R in formula (a) is a methyl group, and X in formula (b) is ▲a numerical formula, a chemical formula, a table, etc. ▼.
JP26814588A 1988-10-26 1988-10-26 Epoxy resin composition Pending JPH02117913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26814588A JPH02117913A (en) 1988-10-26 1988-10-26 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26814588A JPH02117913A (en) 1988-10-26 1988-10-26 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH02117913A true JPH02117913A (en) 1990-05-02

Family

ID=17454519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26814588A Pending JPH02117913A (en) 1988-10-26 1988-10-26 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH02117913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710234A (en) * 1993-07-20 1998-01-20 Nippon Steel Chemical Co., Ltd. Ortho spiroesters and curable and cured resin compositions of same
US5814373A (en) * 1991-11-26 1998-09-29 Dow Chemical Company Heat-resistant hydroxy-functional polyethers as thermoplastic barrier resins
JP2010001379A (en) * 2008-06-20 2010-01-07 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and its cured product
US7999042B2 (en) * 2004-06-25 2011-08-16 Intel Corporation Low coefficient of thermal expansion (CTE) thermosetting resins for integrated circuit applications

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814373A (en) * 1991-11-26 1998-09-29 Dow Chemical Company Heat-resistant hydroxy-functional polyethers as thermoplastic barrier resins
US5710234A (en) * 1993-07-20 1998-01-20 Nippon Steel Chemical Co., Ltd. Ortho spiroesters and curable and cured resin compositions of same
US7999042B2 (en) * 2004-06-25 2011-08-16 Intel Corporation Low coefficient of thermal expansion (CTE) thermosetting resins for integrated circuit applications
US8242216B2 (en) 2004-06-25 2012-08-14 Intel Corporation Low coefficient of thermal expansion (CTE) thermosetting resins for integrated circuit applications
US20120282462A1 (en) * 2004-06-25 2012-11-08 Matayabas Jr James C Low coefficient of thermal expansion (cte) thermosetting resins for integrated circuit applications
US8431223B2 (en) * 2004-06-25 2013-04-30 Intel Corporation Low coefficient of thermal expansion (CTE) thermosetting resins for integrated circuit applications
JP2010001379A (en) * 2008-06-20 2010-01-07 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and its cured product

Similar Documents

Publication Publication Date Title
JP6030125B2 (en) Insulation compound
HUT70873A (en) Amine modified epoxide-resin
EP0669357A2 (en) N-alkyl-n'-aryl-p-phenylenediamines as modifiers for epoxy resins
JPH03177418A (en) One-component thermosetting epoxy resin composition
JP2709731B2 (en) Epoxy resin composed of aromatic diamine curing agent
JP3476994B2 (en) Epoxy resin composition
JP3735896B2 (en) Epoxy resin composition and semiconductor sealing material
JP2004231787A (en) Epoxy resin diluent, epoxy resin composition and epoxy resin cured product
JPH02117913A (en) Epoxy resin composition
US3945971A (en) Phenyl urea epoxy resin accelerator
KR20150079627A (en) Curable compositions comprising 1,3-dioxiranylcyclopentane epoxide compounds and thermosets prepared therefrom
KR102589546B1 (en) Novel acid anhydride-based epoxy compound, epoxy resin composition containing the same, and cured product prepared therefrom
US3988257A (en) Epoxy resin accelerator
JPH0379624A (en) Epoxy resin composition and cured material
US4366302A (en) Imide-anhydrides and epoxy resin systems containing such compounds
JP3915938B2 (en) Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material
JP2001114866A (en) Epoxy compound
JPS62121721A (en) Epoxy resin composition
JP4334446B2 (en) Semiconductor sealing material
JPS61143419A (en) Resin composition and intermediate for composite material
JP3978242B2 (en) Epoxy resin composition and semiconductor sealing material
JP3173629B2 (en) Epoxy resin composition and cured product thereof
JP3173628B2 (en) Epoxy resin composition and cured product thereof
JP3681020B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JPH05301942A (en) Epoxy resin composition and its cured product