[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0211592B2 - - Google Patents

Info

Publication number
JPH0211592B2
JPH0211592B2 JP57111460A JP11146082A JPH0211592B2 JP H0211592 B2 JPH0211592 B2 JP H0211592B2 JP 57111460 A JP57111460 A JP 57111460A JP 11146082 A JP11146082 A JP 11146082A JP H0211592 B2 JPH0211592 B2 JP H0211592B2
Authority
JP
Japan
Prior art keywords
oxide
reaction
yield
purity
naphthoquinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57111460A
Other languages
Japanese (ja)
Other versions
JPS595175A (en
Inventor
Yorinobu Yamada
Hiroyuki Suganuma
Kozo Bando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kasei Chemicals Ltd
Original Assignee
Kawasaki Kasei Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kasei Chemicals Ltd filed Critical Kawasaki Kasei Chemicals Ltd
Priority to JP57111460A priority Critical patent/JPS595175A/en
Publication of JPS595175A publication Critical patent/JPS595175A/en
Publication of JPH0211592B2 publication Critical patent/JPH0211592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、1,4−ナフトキノンから2,3−
エポキシ−2,3−ジヒドロ−1,4−ナフトキ
ノンを製造する新規な方法に関する。 農薬、2−ヒドロキシ−1,4−ナフトキノン
などの有機化合物中間体として重要な2,3−エ
ポキシ−2,3−ジヒドロ−1,4−ナフトキノ
ン(以下、NQ−オキシドと略す。)の合成法と
しては、次のような方法が知られている。即ち、 (1) 1,4−ナフトキノン(以下NQと略す。)
に次亜塩素酸カルシウムを反応させる方法
〔T.Zinke、Chem.Ber、第25巻3599頁(1892)〕 (2) アルコール溶媒中で、NQにアルカリ性過酸
化水素溶液を反応させる方法〔Weitz、
Schobbert、Seibert、Chem.Ber.、第68巻1168
頁(1935);Fieser、Campbell、Fry、Gates、
J.Am.Chem.Soc.、第61巻3216頁(1939)〕 (3) NQを水に懸濁し、無機塩基によるアルカリ
性過酸化水素溶液を反応させる方法〔和田、宮
寺、鶴見(特公昭46−17783)〕 (4) NQを水に懸濁し、次亜塩素酸ソーダ水溶液
を反応させる方法〔Shrartsamn、C.A.、第78
巻、58119X(1978)〕 (5) NQを水に懸濁し、有機塩基によるアルカリ
性過酸化水素溶液を反応させる方法〔松浦、山
田、堺、佐藤(特公昭56−54318)〕 である。(1)、(4)の方法はかなり副反応が起こり、
液の着色も激しい。(2)の方法は収率が非常に低
い。(3)、(5)の方法は前記の方法に比べて収率及び
純度などの点は改善されているが、未反応NQが
数%残る。また、反応が水性懸濁状態で行なわれ
るため、用いるNQの形状、純度が反応速度、収
率、純度に影響を与える。従つて、品質の良い
NQが原料として要求されるという工業的製造法
としての欠点を有している。 本発明者等は、これらの欠点を克服した工業的
に有利なNQ−オキシドの製造法について鋭意研
究した結果、原料NQを塩化メチレンなどの水と
相溶性のない不活性な有機溶媒に溶解させ、テト
ラブチルアンモニウムブロミドのような相間移動
触媒の存在下、次亜塩素酸ソーダのような次亜ハ
ロゲン酸塩水溶液と非常に温和な条件で反応させ
ることにより、反応が円滑に進行しかつ純度の良
いNQ−オキシドを高収率で製造し得ることを見
出し、本発明を完成した。 本発明の方法は、NQを水と相溶性のない不活
性な有機溶媒及び相間移動触媒の存在下、次亜ハ
ロゲン酸塩水溶液を用いて酸化することを特徴と
するNQ−オキシドの製造法に存する。 本発明に用いるNQは、有機溶媒に溶解させる
ので、如何なる形態のものでも、又はいかなる純
度のものでも使用が可能であるが、特にナフタレ
ンの接触気相酸化反応によつて製造された不純物
を5〜10%含んだ工業用品位のNQを使用した場
合でも高純度のNQ−オキシドを高収率で収得す
ることができる点で従来法に比べて一層有利であ
る。 本発明の方法に用いる相間移動触媒は、用いる
アルカリ性物質の種類に応じて各種類が使用し得
る。例えば、テトラブチルアンモニウムブロミ
ド、テトラブチルアンモニウムクロリド、テトラ
メチルアンモニウムブロミド、メチルトリオクチ
ルアンモニウムクロリド若しくはベンジルトリエ
チルアンモニウムクロリドなどの第四級アンモニ
ウム塩;クラウンエーテルなどの環状エーテル;
ジメチルポリエチレングリコール;クリプタン
ド;テトラメチルホスホニウムブロミド、テトラ
ブチルホスホニウムブロミドなどの第四級ホスホ
ニウム塩;一般式
The present invention provides a method for converting 1,4-naphthoquinone into 2,3-
A novel method for producing epoxy-2,3-dihydro-1,4-naphthoquinone. A method for synthesizing 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone (hereinafter abbreviated as NQ-oxide), which is important as an intermediate for organic compounds such as agricultural chemicals and 2-hydroxy-1,4-naphthoquinone. The following methods are known. (1) 1,4-naphthoquinone (hereinafter abbreviated as NQ)
A method of reacting NQ with calcium hypochlorite [T. Zinke, Chem. Ber, Vol. 25, p. 3599 (1892)] (2) A method of reacting NQ with an alkaline hydrogen peroxide solution in an alcohol solvent [Weitz,
Schobbert, Seibert, Chem.Ber., Volume 68, 1168
Page (1935); Fieser, Campbell, Fry, Gates,
J.Am.Chem.Soc., Vol. 61, p. 3216 (1939)] (3) A method in which NQ is suspended in water and reacted with an alkaline hydrogen peroxide solution using an inorganic base [Wada, Miyadera, Tsurumi (Special Publication 46 -17783)] (4) A method of suspending NQ in water and reacting it with an aqueous solution of sodium hypochlorite [Shrartsamn, CA, No. 78
Vol., 58119X (1978)] (5) A method in which NQ is suspended in water and reacted with an alkaline hydrogen peroxide solution using an organic base [Matsuura, Yamada, Sakai, Sato (Special Publication No. 56-54318)]. Methods (1) and (4) cause considerable side reactions,
The coloring of the liquid is also intense. Method (2) has a very low yield. Although methods (3) and (5) are improved in terms of yield and purity compared to the above-mentioned methods, several percent of unreacted NQ remains. Furthermore, since the reaction is carried out in an aqueous suspension state, the shape and purity of the NQ used affect the reaction rate, yield, and purity. Therefore, good quality
It has a drawback as an industrial production method in that NQ is required as a raw material. As a result of intensive research into an industrially advantageous production method for NQ-oxide that overcomes these drawbacks, the present inventors have discovered that the raw material NQ is dissolved in an inert organic solvent that is incompatible with water, such as methylene chloride. By reacting with an aqueous hypohalite solution such as sodium hypochlorite in the presence of a phase transfer catalyst such as tetrabutylammonium bromide under very mild conditions, the reaction proceeds smoothly and the purity can be maintained. The present invention was completed by discovering that good NQ-oxide can be produced in high yield. The method of the present invention is a method for producing NQ-oxide, which is characterized in that NQ is oxidized using an aqueous hypohalite solution in the presence of an inert organic solvent that is incompatible with water and a phase transfer catalyst. Exists. Since the NQ used in the present invention is dissolved in an organic solvent, it can be used in any form or with any purity. This method is more advantageous than conventional methods in that even when industrial grade NQ containing ~10% is used, highly pure NQ-oxide can be obtained in high yield. Various types of phase transfer catalysts can be used in the method of the present invention depending on the type of alkaline substance used. For example, quaternary ammonium salts such as tetrabutylammonium bromide, tetrabutylammonium chloride, tetramethylammonium bromide, methyltrioctylammonium chloride or benzyltriethylammonium chloride; cyclic ethers such as crown ether;
Dimethylpolyethylene glycol; Cryptand; Quaternary phosphonium salts such as tetramethylphosphonium bromide and tetrabutylphosphonium bromide; General formula

【式】で表わされ る高分子に固定化した第四級塩;一般式Represented by [formula] Quaternary salt immobilized on a polymer; general formula

【式】で表わされる シリカゲルを修飾した第四級塩などが挙げられ
る。しかしながら、毒性、価格及び入手しやすさ
及び反応性を考慮すれば、第四級アンモニウム塩
が好ましく、さらにはテトラブチルアンモニウム
ブロミド、テトラブチルアンモニウムクロリド、
又はベンジルトリエチルアンモニウムクロリドが
触媒効果及び価格的には好ましい。 相間移動触媒の使用量は、NQに対して一般的
には0.001重量倍以上であり、通常は0.1重量倍以
下、好ましくは0.005〜0.05重量倍がよい。 本発明の方法に用いる不活性な有機溶媒は、
NQを溶解し、実質的に水と相溶性のないものが
好ましい。例えば、n−ヘキサン、n−ヘプタ
ン、n−オクタンなどの脂肪族炭化水素;シクロ
ヘキサンなどの脂肪族環式炭化水素;ベンゼン、
トルエン、キシレンなどの芳香族炭化水素;塩化
メチレン、クロロホルム、1,2−ジクロロエタ
ン、1,1,1−トリクロロエタン、トリクロル
エチレン、クロルベンゼン、0−ジクロルベンゼ
ンなどのハロゲン化炭化水素などのケトンなどが
挙げられる。 溶媒の使用量は、一般には反応条件下において
NQを実質的に溶解する程度以上の濃度ならよ
く、通常は1〜30%から選ばれる。 本発明の方法において、NQの酸化剤としては
次亜ハロゲン酸塩水溶液が用いられる。酸化剤と
して従来用いられた過酸化水素を用いた場合反応
は進行しにくい。次亜ハロゲン酸塩としては、例
えば次亜塩素酸、次亜臭素酸などのナトリウム又
はカリウム塩が挙げられ、通常は安価で入手しや
すい次亜塩素酸ソーダが用いられる。次亜塩素酸
ソーダは結晶としても存在するが、通常は水溶液
として市販されているので工業的には、該水溶液
を用いるのが好都合である。又、該水溶液は通常
アルカリ性を呈するので、本発明の方法にはこの
まま使用してもよいが、適宜アルカリ性物質を添
加することにより、アルカリ性の強さを調整する
こともできる。アルカリ性物質としては例えば、
炭酸ソーダ、水酸化ナトリウムなどの無機の塩
基、トリメチル−ベンジルアモニウムハイドロオ
キサイド等の有機の塩基が挙げられるが、通常は
安価で取扱いやすい炭酸ソーダが用いられる。こ
れらアルカリの使用量は通常は使用する次亜ハロ
ゲン酸塩に対して0〜0.5モル倍が用いられる。 次亜ハロゲン酸塩水溶液の使用量は、通常は次
亜ハロゲン酸塩として使用するNQに対して1.0〜
1.5倍モルである。次亜ハロゲン酸塩の濃度は通
常5〜20%が用いられる。 酸化反応の温度は、10〜70℃、好ましくは20〜
50℃であり、その際の反応時間は通常0.1〜4.0時
間あればよい。 本発明の方法を一般的に実施するには次の様に
実施する。 原料NQを有機溶媒に溶解し、該溶液に10〜20
%の濃度のアルカリ性次亜塩素酸ソーダ水溶液を
徐々に加えて20〜50℃で良く撹拌する。その後、
相間移動触媒を加えて30〜35℃で0.1〜4.0時間良
く撹拌しながら反応する。反応後、有機層を分液
する。該有機層からNQ−オキシドを回収するに
は、原料中の不純物が少ない場合は有機溶媒を減
圧留去しNQ−オキシドをその残渣として回収す
ることができるが、原料中に不純物が多く又は取
得NQ−オキシド中のNQ含有量を少なくした場
合には有機層を一定濃度にまで濃縮し、該濃縮液
を冷却し晶出したNQ−オキシドを過し回収す
る方法が適当である。 次に、本発明の方法を実施例により詳細に説明
する。なお、本明細書中「%」は特に断わらない
限り重量%、「部」は重量部を表わす。 実施例 1 純度94.6%のNQ18gを塩化メチレン100mlに溶
解させた後、該溶液に12%の次亜塩素酸ソーダ90
gを加え、25〜30℃で0.5時間撹拌し、次いでテ
トラブチルアンモニウムクロリド0.17gを加え30
〜35℃で1時間撹拌下に反応させた。塩化メチレ
ン層を分液して取り出し芒硝を加えて脱水した
後、減圧下で塩化メチレンを除去することによ
り、わずかに黒色物質の点在する白色結晶状の
NQ−オキシド18.5gを得た。該生成物を高速液
体クロマトグラフイーにより分析した結果、純度
は95%、未反応NQは3.9%であり、NQ−オキシ
ドの収率は94モル%であつた。 実施例 2 実施例1において、テトラブチルアンモニウム
クロリドの代りにテトラブチルアンモニウムブロ
ミドを用いた以外は実施例1と同様に行ない、
NQ−オキシド18gを得た。該生成物の純度は95
%、未反応NQは3.5%であり、収率は94モル%で
あつた。 比較例 1 実施例1において、塩化メチレン及びテトラブ
チルアンモニウムクロリドを用いず、反応を45
℃、2時間で行なつた以外は実施例1と同様に実
施した。NQ−オキシドの収率は73.1モル%、未
反応NQは20%であつた。 比較例 2 実施例1において、テトラブチルアンモニウム
クロリドを用いず、塩化メチレンを150ml用い、
反応を38℃、2時間で行つた以外は実施例1と同
様に実施した。NQ−オキシドの収率は43.6モル
%であり、未反応NQは51.6%であつた。 比較例 3 実施例1の方法において、酸化剤として12%次
亜塩素酸ソーダの代りに35%過酸化水素水14.1
g、炭酸ソーダ0.68g及び水30gを用いた以外は
実施例1と同様に実施した。NQ−オキシドの収
率は52.7%であり、未反応NQは40.6%であつた。 実施例 3 純度94.6%のNQ16gをオルソキシレン100mlに
溶解させた後、該溶液に12%の次亜塩素酸ソーダ
90gを加え、25〜30℃で0.5時間撹拌し、次いで
テトラブチルアンモニウムブロミド0.3gを加え
45℃で0.5時間撹拌下に反応させた。オルソキシ
レン層を分液して取り出し芒硝を加えて脱水した
後、減圧下で全溶液を約30mlまで濃縮し冷却して
NQ−オキシドを晶出し過・乾燥し、生成物
12.4gを得た。該生成物を高速液体クロマトグラ
フイーにより分析した結果、純度は97.5%、未反
応NQは1.2%であり、収率は72.5モル%であつ
た。 実施例 4 実施例3において、原料NQを16.5g、オルソ
キシレンの代りに塩化エチレン(Cl CH2−CH2
Cl)250mlを用いた以外は実施例3と同様に実施
し、NQ−オキシド13.5g(純度98.5%)を得た。
収率は77.9%及び生成物中のNQはトレースであ
つた。 実施例 5 実施例1において、原料NQを16.5g、テトラ
ブチルアンモニウムクロリドの代りにクラウンエ
ーテル(18−Crown−6)0.3g及び反応を35℃
で2時間で行なつた以外は実施例1と同様に実施
し、NQ−オキシド15.8g(純度93%)を得た。
収率は85.5モル%、生成物中の未反応NQは6.2%
であつた。
Examples include quaternary salts obtained by modifying silica gel represented by the formula: However, considering toxicity, price, availability, and reactivity, quaternary ammonium salts are preferred, and moreover, tetrabutylammonium bromide, tetrabutylammonium chloride,
Alternatively, benzyltriethylammonium chloride is preferable in terms of catalytic effect and cost. The amount of the phase transfer catalyst to be used is generally 0.001 times or more by weight, and usually 0.1 times or less, preferably 0.005 to 0.05 times by weight, based on NQ. The inert organic solvent used in the method of the present invention is
Preferably, it dissolves NQ and is substantially incompatible with water. For example, aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane; aliphatic cyclic hydrocarbons such as cyclohexane; benzene,
Aromatic hydrocarbons such as toluene and xylene; ketones such as halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, trichloroethylene, chlorobenzene, 0-dichlorobenzene, etc. can be mentioned. The amount of solvent used is generally determined under the reaction conditions.
The concentration may be at least a level that substantially dissolves NQ, and is usually selected from 1 to 30%. In the method of the present invention, an aqueous hypohalite solution is used as the NQ oxidizing agent. When hydrogen peroxide, which has been conventionally used as an oxidizing agent, is used, the reaction is difficult to proceed. Examples of the hypohalite include sodium or potassium salts of hypochlorous acid, hypobromous acid, etc., and sodium hypochlorite, which is inexpensive and easily available, is usually used. Sodium hypochlorite exists as a crystal, but it is usually commercially available as an aqueous solution, so industrially it is convenient to use the aqueous solution. Further, since the aqueous solution is usually alkaline, it may be used as is in the method of the present invention, but the strength of alkalinity can be adjusted by adding an alkaline substance as appropriate. Examples of alkaline substances include:
Examples include inorganic bases such as soda carbonate and sodium hydroxide, and organic bases such as trimethyl-benzyl ammonium hydroxide, but usually soda carbonate is used because it is inexpensive and easy to handle. The amount of these alkalis used is usually 0 to 0.5 times the amount of the hypohalite used. The amount of hypohalite aqueous solution used is usually 1.0 to 1.0 to NQ used as hypohalite.
It is 1.5 times the mole. The concentration of hypohalite is usually 5 to 20%. The temperature of the oxidation reaction is 10~70℃, preferably 20~
The temperature is 50°C, and the reaction time at that time is usually 0.1 to 4.0 hours. The method of the present invention is generally carried out as follows. Dissolve the raw material NQ in an organic solvent and add 10 to 20
% concentration of alkaline sodium hypochlorite aqueous solution and stir well at 20-50℃. after that,
Add a phase transfer catalyst and react at 30-35°C for 0.1-4.0 hours with good stirring. After the reaction, the organic layer is separated. To recover NQ-oxide from the organic layer, if there are few impurities in the raw material, the organic solvent can be distilled off under reduced pressure and NQ-oxide can be recovered as a residue. When the NQ content in the NQ-oxide is reduced, it is appropriate to concentrate the organic layer to a certain concentration, cool the concentrated solution, and collect the crystallized NQ-oxide by filtration. Next, the method of the present invention will be explained in detail using examples. In this specification, "%" means % by weight, and "part" means parts by weight, unless otherwise specified. Example 1 After dissolving 18 g of NQ with a purity of 94.6% in 100 ml of methylene chloride, 90% of 12% sodium hypochlorite was added to the solution.
g and stirred at 25-30℃ for 0.5 hour, then added 0.17 g of tetrabutylammonium chloride and stirred at 25-30℃ for 30 minutes.
The reaction was allowed to proceed at ~35° C. for 1 hour with stirring. After separating the methylene chloride layer and dehydrating it by adding Glauber's salt, the methylene chloride layer was removed under reduced pressure to form a white crystalline layer with a few black particles.
18.5 g of NQ-oxide was obtained. Analysis of the product by high performance liquid chromatography revealed that the purity was 95%, the amount of unreacted NQ was 3.9%, and the yield of NQ-oxide was 94 mol%. Example 2 The same procedure as in Example 1 was carried out except that tetrabutylammonium bromide was used instead of tetrabutylammonium chloride.
18 g of NQ-oxide was obtained. The purity of the product is 95
%, unreacted NQ was 3.5%, and the yield was 94 mol%. Comparative Example 1 In Example 1, methylene chloride and tetrabutylammonium chloride were not used, and the reaction was carried out at 45%
The same procedure as in Example 1 was carried out except that the temperature was 2 hours. The yield of NQ-oxide was 73.1 mol%, and the amount of unreacted NQ was 20%. Comparative Example 2 In Example 1, 150 ml of methylene chloride was used without using tetrabutylammonium chloride,
The reaction was carried out in the same manner as in Example 1 except that the reaction was carried out at 38°C for 2 hours. The yield of NQ-oxide was 43.6 mol%, and the amount of unreacted NQ was 51.6%. Comparative Example 3 In the method of Example 1, 35% hydrogen peroxide solution 14.1 was used instead of 12% sodium hypochlorite as the oxidizing agent.
The same procedure as in Example 1 was carried out except that 0.68 g of sodium carbonate and 30 g of water were used. The yield of NQ-oxide was 52.7%, and the amount of unreacted NQ was 40.6%. Example 3 After dissolving 16 g of NQ with a purity of 94.6% in 100 ml of orthoxylene, 12% sodium hypochlorite was added to the solution.
Add 90g and stir at 25-30℃ for 0.5 hours, then add 0.3g of tetrabutylammonium bromide.
The reaction was carried out at 45°C for 0.5 hour with stirring. Separate the ortho-xylene layer, remove it, add sodium sulfate to dehydrate it, and then concentrate the entire solution to about 30 ml under reduced pressure and cool it.
NQ-oxide is crystallized, filtered and dried, and the product is
12.4g was obtained. Analysis of the product by high performance liquid chromatography revealed that the purity was 97.5%, the amount of unreacted NQ was 1.2%, and the yield was 72.5 mol%. Example 4 In Example 3, 16.5 g of raw material NQ and ethylene chloride (Cl CH 2 −CH 2
The procedure was carried out in the same manner as in Example 3, except that 250 ml of NQ-oxide (purity: 98.5%) was obtained.
The yield was 77.9% and the NQ in the product was traceable. Example 5 In Example 1, 16.5 g of raw material NQ, 0.3 g of crown ether (18-Crown-6) instead of tetrabutylammonium chloride, and reaction at 35°C
The same procedure as in Example 1 was carried out except that the reaction was carried out for 2 hours, and 15.8 g of NQ-oxide (purity 93%) was obtained.
Yield is 85.5 mol%, unreacted NQ in product is 6.2%
It was hot.

Claims (1)

【特許請求の範囲】 1 1,4−ナフトキノンを水と相溶性のない不
活性な有機溶媒及び相間移動触媒の存在下、次亜
ハロゲン酸塩水溶液を用いて酸化することを特徴
とする2,3−エポキシ−2,3−ジヒドロ−
1,4−ナフトキノンの製造法。 2 有機溶媒が脂肪族炭化水素、脂肪族環式炭化
水素若しくは芳香族炭化水素又はそれらのハロゲ
ン化物である特許請求の範囲第1項記載の方法。 3 相間移動触媒が第四級アンモニウム塩、ホス
ホニウム塩、クラウンエーテル類又はクリプタン
ドである特許請求の範囲第1項記載の方法。
[Claims] 1. A method of oxidizing 1,4-naphthoquinone using an aqueous hypohalite solution in the presence of an inert organic solvent that is incompatible with water and a phase transfer catalyst. 3-epoxy-2,3-dihydro-
Method for producing 1,4-naphthoquinone. 2. The method according to claim 1, wherein the organic solvent is an aliphatic hydrocarbon, an aliphatic cyclic hydrocarbon, an aromatic hydrocarbon, or a halide thereof. 3. The method according to claim 1, wherein the phase transfer catalyst is a quaternary ammonium salt, a phosphonium salt, a crown ether, or a cryptand.
JP57111460A 1982-06-30 1982-06-30 Preparation of 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone Granted JPS595175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111460A JPS595175A (en) 1982-06-30 1982-06-30 Preparation of 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111460A JPS595175A (en) 1982-06-30 1982-06-30 Preparation of 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone

Publications (2)

Publication Number Publication Date
JPS595175A JPS595175A (en) 1984-01-12
JPH0211592B2 true JPH0211592B2 (en) 1990-03-14

Family

ID=14561791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111460A Granted JPS595175A (en) 1982-06-30 1982-06-30 Preparation of 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone

Country Status (1)

Country Link
JP (1) JPS595175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492851U (en) * 1990-12-28 1992-08-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492851U (en) * 1990-12-28 1992-08-12

Also Published As

Publication number Publication date
JPS595175A (en) 1984-01-12

Similar Documents

Publication Publication Date Title
JP3166215B2 (en) Method for producing 1,2-naphthoquinonediazide-5-sulfonyl chloride
JPH0211592B2 (en)
ES2562498T3 (en) Process to produce indole compounds
JP2000273081A (en) Industrial production of diphenyl sulfone compound
US6020514A (en) Process for producing di-tert-butyl dicarbonate
JPH042594B2 (en)
JP2008074722A (en) Method for producing 2-amino-5-iodobenzoic acid
KR20050112082A (en) Process for production of iodine compounds and process for production of high-purity 5-iodo-2-methylbenzoic acid
JPH06211729A (en) Production of flourenone
JP2846939B2 (en) Method for producing 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone
JP3289338B2 (en) Norcamphor manufacturing method
JPS5914469B2 (en) Method for producing 5-methylfurfural
JPH0543695B2 (en)
JP3001626B2 (en) 2-Chloropropionaldehyde trimer and method for producing the same
JP7141304B2 (en) Method for producing diallyl 2,6-naphthalenedicarboxylate
JP3757592B2 (en) Process for producing optically active alicyclic ketones
JP2706517B2 (en) Novel disulfide and method for producing tolnaftate using the disulfide as a raw material
RU2204551C2 (en) Method of synthesis of 4-hydroxy-9h-carbazole
JP2001058968A (en) Production of 1,3-di(2-parahydroxyphenyl-2-propyl)benzene
JPH1129588A (en) Production of diphenylphosphoryl azide
JPH09227434A (en) Production of 6-bromo-2-naphthol
JPH10168058A (en) Production of optically active 1-benzyl-3-hydroxypyrrolidine
JPH026340B2 (en)
JP2003267915A (en) Method for producing 3,3-dimethyl-2- formylcyclopropanecarboxylic acid derivative
JP2004083424A (en) Method for producing 6-acyloxy-1-acylindole