JPH02115810A - Optical module and production thereof - Google Patents
Optical module and production thereofInfo
- Publication number
- JPH02115810A JPH02115810A JP26972188A JP26972188A JPH02115810A JP H02115810 A JPH02115810 A JP H02115810A JP 26972188 A JP26972188 A JP 26972188A JP 26972188 A JP26972188 A JP 26972188A JP H02115810 A JPH02115810 A JP H02115810A
- Authority
- JP
- Japan
- Prior art keywords
- led
- ferrule
- optical
- spacer
- sleeve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 125000006850 spacer group Chemical group 0.000 claims abstract description 23
- 239000013307 optical fiber Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 abstract description 12
- 238000010168 coupling process Methods 0.000 abstract description 12
- 238000005859 coupling reaction Methods 0.000 abstract description 12
- 239000002184 metal Substances 0.000 abstract description 5
- 239000004020 conductor Substances 0.000 abstract description 4
- 238000004891 communication Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Landscapes
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光通信等の送受信に用いる光モジュール及び
その製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical module used for transmitting and receiving optical communications, etc., and a method for manufacturing the same.
光通信は光ファイバ、半導体レーザ(LD)、発光ダイ
オード(LED)、フォトダイオード(PD)を始めと
して、光スィッチ、光変調器、アイソ−レータ、光導波
路等の受動、能動素子の高性能、高機能化により応用範
囲が拡大されつつある。光通信システムにおいては、発
光、受光素子等の光素子は単独で使用されることはなく
通常、光ファイバと一体化したモジュールの形で用いら
れてる。光素子とファイバの光結合は、レンズを介する
レンズ結合とレンズを介さない直接結合に大別される。Optical communications require high performance passive and active devices such as optical fibers, semiconductor lasers (LDs), light emitting diodes (LEDs), and photodiodes (PDs), as well as optical switches, optical modulators, isolators, and optical waveguides. The range of applications is expanding due to higher functionality. In optical communication systems, optical elements such as light emitting and light receiving elements are not used alone, but are usually used in the form of modules integrated with optical fibers. Optical coupling between an optical element and a fiber is roughly divided into lens coupling via a lens and direct coupling without a lens.
マルチモード系や低コストが要求されるモジュールでは
直接結合が用いられる。Direct coupling is used in multimode systems and modules where low cost is required.
第2図は一般的な直接結合の光モジュールで、内部の素
子が見えるように中央部を切り欠いて描いてる。Cuや
CuW基板21上のほぼ中心に、ヒートシンクも兼ねた
SiやAIN製のサブマウント22が設置されている。Figure 2 shows a typical direct-coupled optical module, with the center cut out so that the internal elements can be seen. A submount 22 made of Si or AIN that also serves as a heat sink is installed approximately at the center of the Cu or CuW substrate 21 .
サブマウント22は表面が電極パターンを形成し、LE
D23の電極に融着している。光ファイバとの接続部と
して円筒上スリーブ26が基板21上にLED23とほ
ぼ中心軸を同一にして固定されている。金属製のフェル
ール25で保護された光ファイバ24は、LED23か
らの放射光が効率よく入射するようにxyz方向に光軸
を調整した後に接着剤、半田或は溶接によってスリーブ
26に固定される。ここで、光結合損を極力避けるため
に、LEDと光ファイバの距離をできるだけ小さくして
いる。フェルール25とスリーブ26は同一材料で構成
され通常5US304が用いられる。The surface of the submount 22 forms an electrode pattern, and the LE
It is fused to the electrode of D23. A cylindrical sleeve 26 is fixed on the substrate 21 as a connection part to the optical fiber so that the central axis is substantially the same as that of the LED 23. The optical fiber 24 protected by the metal ferrule 25 is fixed to the sleeve 26 by adhesive, solder, or welding after adjusting the optical axis in the x, y, and z directions so that the emitted light from the LED 23 is efficiently incident. Here, in order to avoid optical coupling loss as much as possible, the distance between the LED and the optical fiber is made as small as possible. The ferrule 25 and the sleeve 26 are made of the same material, and 5US304 is usually used.
上記のごとく、発光、受光素子等の光素子と光ファイバ
とを直接結合する場合、結合損を小さくするためには光
素子と光ファイバの間隔を狭める必要があり、間隔が零
の時に最小となる。しかし、光素子表面の損傷や、電極
のボンディングワイヤの切断を回避するためにある程度
の距離を設けている。実際の光軸調整はファイバの出力
端で光出力をモニタして行う。xy力方向基板面に平行
な方向)は光出力が最大になる位置に調整するが、2方
向(光の出射方向)は、前述のごとく光素子と光ファイ
バの距離が小さいほど光出力が増加するので最適位置を
見いだしにくく調整工数が大きい。また外部から光ファ
イバの位置が見えないので光ファイバを光素子やボンデ
ィングワイヤに接触させて破損させる危険性が大きく、
光ファイバの傾きを性格に把握できない。As mentioned above, when directly coupling an optical device such as a light emitting or light receiving device to an optical fiber, it is necessary to reduce the distance between the optical device and the optical fiber in order to reduce the coupling loss, and when the distance is zero, it is the minimum. Become. However, a certain distance is provided to avoid damage to the surface of the optical element and cutting of the bonding wires of the electrodes. Actual optical axis adjustment is performed by monitoring the optical output at the output end of the fiber. Adjust to the position where the optical output is maximum in the x and y force directions (directions parallel to the board surface), but as mentioned above, the optical output increases as the distance between the optical element and the optical fiber becomes smaller. Therefore, it is difficult to find the optimal position and the adjustment process is large. Also, since the position of the optical fiber cannot be seen from the outside, there is a high risk of the optical fiber coming into contact with an optical element or bonding wire and damaging it.
The inclination of the optical fiber cannot be accurately determined.
本発明の目的は上記の問題点を解決し、光結合損失が小
さく、かつ生産性が良く低コストな光モジュール及びそ
の製造方法を提供することにある。An object of the present invention is to solve the above-mentioned problems and provide an optical module with low optical coupling loss, high productivity, and low cost, and a method for manufacturing the same.
本発明の光モジュールは、発光あるいは受光素子から成
る光素子と前記光素子を支持・固定する基板と、前記光
素子と中心軸を一致させ、前記基板に固定された円筒状
スリーブと、前記光素子と直接光学的に結合する前記光
ファイバを被覆して保護し、前記スリーブと嵌合して固
定される少なくとも先端面が導電性のフェルールとを備
え、さらに、前記光素子より厚みがあり少なくとも上面
の一部が導電性を示すスペーサを前記フェルールの端面
に接触させて前記光素子の周囲、前記スリーブ内基板表
面に備えた構成になっている。The optical module of the present invention includes an optical element consisting of a light emitting or light receiving element, a substrate for supporting and fixing the optical element, a cylindrical sleeve whose central axis is aligned with the optical element and fixed to the substrate, and the optical element. a ferrule that covers and protects the optical fiber that is directly optically coupled to the optical element, and has at least a conductive tip surface that is fitted and fixed to the sleeve; A spacer whose upper surface is partially conductive is provided in contact with the end surface of the ferrule around the optical element and on the surface of the substrate inside the sleeve.
また、上記光モジュールを製造する方法は、前記フェル
ールと前記スペーサの導電性の部分を電極とし、前記フ
ェルールを、スペーサに挿入して前記二つの電極が導通
する位置に移動させて固定する製造工程を採っている。Further, the method for manufacturing the optical module includes a manufacturing process in which the conductive portions of the ferrule and the spacer are used as electrodes, and the ferrule is inserted into the spacer and moved to a position where the two electrodes are electrically connected and fixed. are taken.
(作用)
本発明は光モジュールでは、フェルールをLEDに接近
させる場合LEDより厚みのあるスペーサの上端で制限
されるのでLEDを損傷することなく光ファイバをごく
近距離まで接近させることができ、その結果高効率の光
結合を実現できる。(Function) In the optical module of the present invention, when the ferrule is brought close to the LED, it is restricted by the upper end of the spacer which is thicker than the LED, so the optical fiber can be brought close to the LED without damaging it. As a result, highly efficient optical coupling can be achieved.
光軸方向(Z)の光軸調整は単にフェルールがスペーサ
に接触することろまでフェルールを移動するだけで済ん
でしまう。従って、工数の削減、生産性の向上が計れる
。Optical axis adjustment in the optical axis direction (Z) can be accomplished by simply moving the ferrule until it comes into contact with the spacer. Therefore, it is possible to reduce man-hours and improve productivity.
以下、本発明について図面を参照して詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.
第1図(A)は、本発明を示すモジュールの一例で、第
1図(B)はその断面図である。FIG. 1(A) is an example of a module showing the present invention, and FIG. 1(B) is a sectional view thereof.
CuやCuW製の基板21のほぼ中心にヒートシンクを
兼ねた例えばSi製で厚さが0.5mmで1mm角のサ
ブマウント22が半田付は等により固定されており、そ
の上に厚みが0.2mm、0.5mm角のLED23が
半田融着されている。さらにLED23に近接して金属
や半導体等の材料で厚さが0.705〜2.71mm、
2mm角のスペーサ27が接着剤や半田等により基板2
1上に固定されている。スペーサ27の上面は金属等の
導電性の材料29からなり、LED23の上面、あるい
はLED電極に接続しているボンディングワイヤより僅
かに高い位置に脱走されている。金属例えば5US30
4製のスリーブ26はLED23と中心軸をほぼ一致さ
せて半田やろう付けにより基板21に固定されている。A 1 mm square submount 22 made of Si, for example, 0.5 mm thick and 1 mm square, which also serves as a heat sink, is fixed approximately at the center of a substrate 21 made of Cu or CuW, and a submount 22 with a thickness of 0.5 mm made of Si, for example, is fixed by soldering or the like. A 2 mm x 0.5 mm square LED 23 is soldered and fused. Furthermore, in the vicinity of the LED 23, a material such as metal or semiconductor with a thickness of 0.705 to 2.71 mm,
A 2 mm square spacer 27 is attached to the board 2 using adhesive or solder.
It is fixed on 1. The upper surface of the spacer 27 is made of a conductive material 29 such as metal, and is escaped to a position slightly higher than the upper surface of the LED 23 or the bonding wire connected to the LED electrode. Metal e.g. 5US30
The sleeve 26 made of No. 4 is fixed to the substrate 21 by soldering or brazing with its center axis substantially aligned with the LED 23.
光ファイバ24を被覆したフェルール25は5US30
4等の導電性の材料からなり、スペーサ27の表面電極
29に接触させて2方向の位置合わせがなされる。即ち
、スリーブ25とスペーサ27との導通を電流計28を
モニタしながらスリーブ25を降下させ、スペーサ27
に接触して電流計28が作動したところでスリーブ25
を固定する方法である。xy力方向、光ファイバの出射
端からの光出力をモニタし、最大になるようにフェルー
ル25を移動させる通常の光軸調整を行い、その位置で
レーザ溶接、半田溶接等の方法で固定される。従来の構
成では困難であった2方向の光軸調整はほとんど無調整
で実現でき、また光ファイバ24とLED23を接近さ
せ過ぎてLED23を破損させる危険性は全くなくなる
。The ferrule 25 covering the optical fiber 24 is 5US30.
It is made of a conductive material such as No. 4, and is brought into contact with the surface electrode 29 of the spacer 27 for alignment in two directions. That is, the sleeve 25 is lowered while monitoring the conduction between the sleeve 25 and the spacer 27 using the ammeter 28, and the spacer 27 is lowered.
When the ammeter 28 is activated by contacting the sleeve 25
This is a method of fixing. The light output from the output end of the optical fiber is monitored in the x and y force directions, and the normal optical axis adjustment is performed by moving the ferrule 25 to maximize it, and the ferrule is fixed at that position by a method such as laser welding or solder welding. . Optical axis adjustment in two directions, which was difficult with the conventional configuration, can be achieved almost without adjustment, and there is no risk of damaging the LED 23 by bringing the optical fiber 24 and the LED 23 too close together.
第1図(C)は光モジュールのパッケージ部、すなわち
、LEDを固定した基板に固定されたスリーブを上から
見た図で、環状のスペーサ27に設けた電極が4個(2
9a、b、c、d)に分割されている。それぞれ4個の
電極についてフェルール25との導通をモニタし、全て
が導通した状態の時にフェルール25の傾きはなくなる
。即ち光ファイバ24の光軸はLED2B光軸と平行と
なり高効率の光結合が可能になる。従って、従来の構造
に比べ大幅な工数削減、生産性の向上を実現できる。FIG. 1(C) is a top view of the package part of the optical module, that is, the sleeve fixed to the substrate on which the LED is fixed.
9a, b, c, d). Continuity with the ferrule 25 is monitored for each of the four electrodes, and when all of the four electrodes are in a conductive state, the ferrule 25 no longer tilts. That is, the optical axis of the optical fiber 24 is parallel to the optical axis of the LED 2B, allowing highly efficient optical coupling. Therefore, compared to the conventional structure, it is possible to significantly reduce the number of man-hours and improve productivity.
本実施例では光素子としてLEDを示したがLD、PD
でも同様である。また、スペーサ27は他の形状、例え
ば円柱形やL E Dと中心軸をほぼ同一にした円筒形
、角筒形等でもかまわない。In this example, an LED is shown as an optical element, but LD, PD
But it's the same. Further, the spacer 27 may have other shapes, such as a cylindrical shape, a cylindrical shape whose central axis is substantially the same as that of the LED, or a prismatic cylindrical shape.
さらに、スペーサ電極を4つに分割したがそれ以上でも
よく、スペーサを導電性の材料で構成し、分割電極をフ
ェルール側に設けても良い。Further, although the spacer electrode is divided into four parts, it may be divided into four parts or more, and the spacer may be made of a conductive material and the divided electrodes may be provided on the ferrule side.
以上説明したように本発明によれば、光結合損が小さい
光モジュールが実現でき、生産性が良く低コストで光モ
ジュールを製造できる。As explained above, according to the present invention, an optical module with small optical coupling loss can be realized, and the optical module can be manufactured with high productivity and at low cost.
第1図(A)、(B)、(C)は本発明の実施例を示す
構成図、第2図は従来の光モジュールの構成図である。
21・・・基板、22・・・サブマウント、23・・・
LED、24・・・光ファイバ、25・・・フェルール
、26・・・スリーブ、27・・・スペーサ、28・・
・電流計、29、 29 (a)、 (b)、
(c)、 (d)−電流。FIGS. 1A, 1B, and 1C are block diagrams showing an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional optical module. 21... Board, 22... Submount, 23...
LED, 24... Optical fiber, 25... Ferrule, 26... Sleeve, 27... Spacer, 28...
・Ammeter, 29, 29 (a), (b),
(c), (d) - current.
Claims (2)
素子を支持・固定する基板と、前記光素子と中心軸を一
致させ、前記基板に固定された円筒状スリーブと、前記
光素子と直接光学的に結合する前記光ファイバを被覆し
て保護し、前記スリーブと嵌合して固定される少なくと
も先端面が導電性のフェルールとを備え、さらに、前記
光素子より厚みがあり少なくとも上面の一部が導電性を
示すスペーサを前記フェルールの端面に接触させて前記
光素子の周囲、前記スリーブ内基板表面に備えたことを
特徴とする光モジュール。(1) An optical element consisting of a light emitting or light receiving element, a substrate that supports and fixes the optical element, a cylindrical sleeve whose central axis coincides with the optical element and is fixed to the substrate, and a cylindrical sleeve that is directly connected to the optical element. A ferrule is provided to cover and protect the optical fiber to be optically coupled, and has at least a conductive tip surface that is fitted and fixed to the sleeve, and further includes a ferrule that is thicker than the optical element and at least part of the upper surface. An optical module characterized in that a spacer whose portion is electrically conductive is provided in contact with the end face of the ferrule around the optical element and on the surface of the substrate inside the sleeve.
サを配し、光素子の光軸と円筒状スリーブの中心軸とを
一致させてスペーサ、光素子、スリーブを基板に固定し
た後、光ファイバを内部に固定している少なくとも先端
面が導電性のフェルールをスリーブ内に挿入し、フェル
ールとスペーサの導電性を示す部分を電極とし、前記フ
ェルールを、前記二つの電極が導通する位置に移動させ
て固定することを特徴とする光モジュールの製造方法。(2) Arrange a spacer whose upper surface is conductive at least around the optical element, align the optical axis of the optical element with the center axis of the cylindrical sleeve, and fix the spacer, optical element, and sleeve to the substrate, and then Insert into the sleeve a ferrule that fixes the fiber inside and has at least a conductive tip surface, use the conductive portion of the ferrule and spacer as an electrode, and move the ferrule to a position where the two electrodes are electrically conductive. 1. A method for manufacturing an optical module, characterized in that the optical module is fixed in a fixed position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26972188A JPH02115810A (en) | 1988-10-25 | 1988-10-25 | Optical module and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26972188A JPH02115810A (en) | 1988-10-25 | 1988-10-25 | Optical module and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02115810A true JPH02115810A (en) | 1990-04-27 |
Family
ID=17476240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26972188A Pending JPH02115810A (en) | 1988-10-25 | 1988-10-25 | Optical module and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02115810A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012185435A (en) * | 2011-03-08 | 2012-09-27 | Citizen Holdings Co Ltd | Optical device |
US20150347259A1 (en) * | 2012-05-09 | 2015-12-03 | Pacific Industrial Co., Ltd. | Server monitoring device and server monitoring system |
-
1988
- 1988-10-25 JP JP26972188A patent/JPH02115810A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012185435A (en) * | 2011-03-08 | 2012-09-27 | Citizen Holdings Co Ltd | Optical device |
US20150347259A1 (en) * | 2012-05-09 | 2015-12-03 | Pacific Industrial Co., Ltd. | Server monitoring device and server monitoring system |
US9959189B2 (en) * | 2012-05-09 | 2018-05-01 | Pacific Industrial Co., Ltd. | Server monitoring device and server monitoring system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6757308B1 (en) | Hermetically sealed transmitter optical subassembly | |
EP0723170A2 (en) | Optical composite module and method of assembling the same | |
KR0171374B1 (en) | Laser module with focusing lense and fixing method of the focusing lense | |
EP2169437A1 (en) | Optical module, optical transmission device, and surface optical device | |
US20040042071A1 (en) | Light emitting modules | |
US11327258B2 (en) | Optical module | |
JPH07199006A (en) | Optical subassembly and optical module | |
US20040179793A1 (en) | Optoelectronic device packaging assemblies and methods of making the same | |
JP3907051B2 (en) | Optical module and manufacturing method thereof | |
US5959315A (en) | Semiconductor to optical link | |
JPH02115810A (en) | Optical module and production thereof | |
JPH02154208A (en) | Parallel transmission optical module | |
JPS59166907A (en) | Semiconductor laser coupling device | |
JP2004029161A (en) | Optical semiconductor device module | |
US20220329041A1 (en) | Laser Engine Supporting Multiple Laser Sources | |
JPH02127606A (en) | Optical module and manufacture thereof | |
JPH02170107A (en) | Optical module | |
WO2002079845A1 (en) | Small-formed optical module with optical waveguide | |
US20050201668A1 (en) | Method of connecting an optical element at a slope | |
JP3027649B2 (en) | Optical semiconductor device module | |
JP2009253176A (en) | Photoelectric conversion module and optical subassembly | |
JPH04221912A (en) | Parallel transmission light module | |
US6862385B2 (en) | Tap monitor | |
JPH0682660A (en) | Optical semiconductor module | |
JP2967003B2 (en) | Optical semiconductor module and manufacturing method thereof |