[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0211530A - Preparation of aromatic hydroxy compound by continuous alkali fusion method - Google Patents

Preparation of aromatic hydroxy compound by continuous alkali fusion method

Info

Publication number
JPH0211530A
JPH0211530A JP16362488A JP16362488A JPH0211530A JP H0211530 A JPH0211530 A JP H0211530A JP 16362488 A JP16362488 A JP 16362488A JP 16362488 A JP16362488 A JP 16362488A JP H0211530 A JPH0211530 A JP H0211530A
Authority
JP
Japan
Prior art keywords
reaction
evaporator
water
thin film
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16362488A
Other languages
Japanese (ja)
Inventor
Akinori Matsuura
松浦 明徳
Masato Takagi
正人 高木
Tsugio Hotta
堀田 次男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16362488A priority Critical patent/JPH0211530A/en
Publication of JPH0211530A publication Critical patent/JPH0211530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To economically provide the subject compound in a high conversion rate by continuously supplying an aromatic sulfonic acid alkali metal salt and a caustic alkali to a thin film type evaporator and subsequently carrying out the evaporation of water, a kneading process and a reaction with the evaporator and a biaxial kneader. CONSTITUTION:An aromatic sulfonic acid alkali metal salt and a caustic alkali are mixed in a mixing tank 1 and supplied to a thin film type evaporator 3. The water in the mixture is evaporated in the evaporator 3 and the dried mixture is heated and supplied to a biaxial kneader 4 comprising a combination of a screw and a paddle, followed by kneading at 250-400 deg.C for 5min-5hr. The reaction product is mixed with water in a water-mixing tank 5 and further with an acid in a neutralization tank 6 to deposit the product, followed by subjecting to a step such as the separation of the product with a centrifugal separator 7 to provide the objective compound. The above-mentioned method reduces the loss of energy because of the continuous method and can prevent the heating of a local position. Further, since the control of the reaction is easy, the quality of the product is constant and the quality is highly readily controlled.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、芳香族スルホン酸のアルカリ金属塩を連続的
にアルカリ融解させることによる芳香族ヒドロキシ化合
物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing an aromatic hydroxy compound by continuously alkali-melting an alkali metal salt of an aromatic sulfonic acid.

〈従来の技術〉 スルホン化−アルカリ融解は多くの問題を抱えながらも
今日でも有効な芳香族ヒドロキシ化合物の製造方法であ
る。
<Prior Art> Sulfonation-alkali fusion is still an effective method for producing aromatic hydroxy compounds today, although it has many problems.

アルカリ融解反応混合物の状態が粉体、或は高粘度スラ
リーであり、そのため混合、伝熱の点でアルカリ融解反
応は通常の流通式連続反応器には向かないと考えられて
きたために、従来、アルカリ融解反応の工業的な実施は
回分式でのみ行われてきた。 しかしながら、回分式反
応器には次のような多くの問題点がある。
The alkali melting reaction mixture is in the form of a powder or a highly viscous slurry, and it has been thought that the alkali melting reaction is not suitable for a normal flow-type continuous reactor in terms of mixing and heat transfer. The industrial implementation of alkaline melting reactions has only been carried out batchwise. However, batch reactors have many problems as follows.

■同一の反応器で昇温−反応−冷却を繰り返すため、エ
ネルギーロスが大きくなるとともに生産性が悪い。
■Since temperature raising, reaction, and cooling are repeated in the same reactor, energy loss is large and productivity is poor.

■流動性が極めて悪い高粘度スラリー状となるため、攪
拌が困難となる。 又、その結果、伝熱が悪化し、局部
加熱が避けられず、局部加熱による生成物分解等が生じ
る。 このため大型化が出来ず、小型装置の並列設置と
なり、設備投責頷が大となるとともに多大の労働力を要
する。
■It becomes a highly viscous slurry with extremely poor fluidity, making stirring difficult. Moreover, as a result, heat transfer deteriorates, local heating is unavoidable, and product decomposition due to local heating occurs. For this reason, it is not possible to increase the size of the system, and small devices must be installed in parallel, which increases equipment investment and requires a large amount of labor.

■反応器の予熱、水分の蒸発に多大の時間とエネルギー
を要する。
■It takes a lot of time and energy to preheat the reactor and evaporate water.

■反応物の状態が刻々と変化し、時として異常な発泡が
起こり、反応のコントロールが不能となり、極めて危険
となる。
■The state of the reactants changes moment by moment, and sometimes abnormal foaming occurs, making it impossible to control the reaction and becoming extremely dangerous.

これらの問題点を克服すべく、これまでにいくつかの連
続アルカリ融解反応方式が提案されている。 これらは
例えば、特公昭35−13213号、特開昭54−10
0329号、米国特許第2378314号、同2353
237号、同3285706号の各明細書、或は工業化
学雑誌第60巻第2号、287〜289頁(1966年
)にみられるとおりである。
In order to overcome these problems, several continuous alkali melting reaction systems have been proposed so far. These are, for example, Japanese Patent Publication No. 35-13213, Japanese Patent Application Publication No. 10/1986.
No. 0329, U.S. Pat. No. 2,378,314, U.S. Pat. No. 2,353
No. 237, No. 3285706, or Industrial Chemistry Magazine, Vol. 60, No. 2, pp. 287-289 (1966).

〈発明が解決しようとする課題〉 そこで本発明者らはこれらについて詳細に問題点を検討
したところ、いずれの反応方式も連続的にアルカリ融解
を行うには不満足であるか、汎用性に欠けるという結論
に達した。 即ち、アルカリ融解の連続化では原料の送
液、水の蒸発、反応という3つの過程を考慮することが
重要である。 原料は反応器に連続して安定に供給する
必要があり、このためには溶液もしくは低粘度のスラリ
ーとして送液することが望まれる。 特公昭35−13
213号にみられる方式では芳香族スルホン酸粉末と苛
性アルカリの混合物を予め融解した後か、或は水溶液を
290℃まで加熱して水分を蒸発させたものを原料とし
ているが、前述のように水分を蒸発させた後の混合物は
極めて粘稠なスラリー状態となることが多く、この状態
での送液は極めて困難である。 また、水の蒸発過程は
反応混合物の温度を反応温度まで高めて高転化率を得る
ために必須であるが、通常は多大な時間を要し、またそ
の後の反応に大きな影響を及ぼすため、本アルカリ融解
プロセスでは極めて重要な要素となる。 次の反応過程
では反応混合物の効果的な混練、攪拌を行い、かつ流れ
方向での反応物と生成物との混合を抑制する(プラグフ
ロー)ことが転化率を高めるために必須である。 しか
しながら、反応混合物は通常、極めて粘稠なスラリーで
あり、満足な攪拌状態が得られないばかりか、壁面への
付着を起しやすい、 米国特許2378314号、同2
353237号および同3285706号の各明細書に
記載の方法では十分な攪拌が得られず、要所への付着残
留を起しやすい。
<Problems to be solved by the invention> Therefore, the present inventors investigated these problems in detail and found that all reaction methods are unsatisfactory or lack versatility for continuous alkali melting. I've come to a conclusion. That is, in continuous alkali melting, it is important to consider three processes: feeding of raw materials, evaporation of water, and reaction. It is necessary to continuously and stably supply the raw material to the reactor, and for this purpose, it is desirable to feed the raw material as a solution or a low-viscosity slurry. Tokuko Sho 35-13
In the method seen in No. 213, the raw material is a mixture of aromatic sulfonic acid powder and caustic alkali that has been melted in advance, or an aqueous solution that has been heated to 290°C to evaporate water, but as mentioned above, The mixture after water evaporation often becomes an extremely viscous slurry, and it is extremely difficult to feed the liquid in this state. In addition, the water evaporation process is essential to raise the temperature of the reaction mixture to the reaction temperature and obtain a high conversion rate, but it usually takes a lot of time and has a large impact on the subsequent reaction, so this is not an important step. It is a very important element in the alkaline melting process. In the next reaction process, it is essential to effectively knead and stir the reaction mixture and to suppress mixing of reactants and products in the flow direction (plug flow) in order to increase the conversion rate. However, the reaction mixture is usually an extremely viscous slurry, which not only makes it difficult to obtain a satisfactory stirring state but also tends to stick to walls.
The methods described in the specifications of No. 353237 and No. 3285706 do not provide sufficient stirring, and tend to remain attached to important points.

混合状態を改善することを目的として特公昭33−99
70号のニーダ−型反応器での反応が公知であるが、こ
れは回分式であり、前述の回分式反応器特有の問題点を
全て解決するには至っていない。
To improve the mixing condition
A reaction in a No. 70 kneader type reactor is known, but this is a batch type reaction and does not solve all of the above-mentioned problems specific to the batch type reactor.

さらに、特開昭54−100329号の攪拌種型反応器
を用いたオーバーフローによるin法は反応混合物が良
好な流動性を示すもののみに適用できるのであフて、汎
用的ではない。
Furthermore, the overflow in method using a stirred seed reactor disclosed in JP-A-54-100329 is applicable only to reaction mixtures exhibiting good fluidity, and is therefore not universally applicable.

本発明は、前記従来法の回分式および連続式アルカリ融
解法の欠点を克服し、高転化率かつ制御の容易な高生産
性の連続アルカリ融解法による芳香族ヒドロキシ化合物
の製造方法を提供しようとするものである。 即ち、反
応混合物の残留付着がなく、かつ発泡の危険がなく、さ
らに2分程度という短時間で水の蒸発を行える薄膜式蒸
発器と混線状態の良いスクリューとパドルを組み合わせ
た翼を有する2軸ニーダ−を上下に直列に接続し、これ
に芳香族スルホン酸アルカリ金属塩のアルカリ水溶液も
しくはスラリーを連続的に送液することによフて連続し
て水の蒸発、混練および反応を行い、これによって高転
化率、かつ制御の容易な高生産性の連続アルカリ融解を
可能とする連続アルカリ融解法による芳香族ヒドロキシ
化合物の製造方法を提供することを目的としている。
The present invention aims to overcome the drawbacks of the conventional batch and continuous alkali melting methods and provide a method for producing aromatic hydroxy compounds by a continuous alkali melting method with high conversion rate, easy control, and high productivity. It is something to do. In other words, there is no residual adhesion of the reaction mixture, there is no risk of foaming, and there is also a thin film evaporator that can evaporate water in a short time of about 2 minutes, and a two-shaft blade that combines a screw and paddle with good crosstalk. Kneaders are connected vertically in series, and an alkaline aqueous solution or slurry of an alkali metal salt of aromatic sulfonic acid is continuously fed thereto to continuously evaporate water, knead and react. It is an object of the present invention to provide a method for producing an aromatic hydroxy compound by a continuous alkali melting method that enables continuous alkali melting with a high conversion rate and high productivity that is easy to control.

〈課題を解決するための手段〉 上記目的を達成するために、本発明によれば、芳香族ス
ルホン酸金属塩を連続的にアルカリ融解して芳香族ヒド
ロキシ化合物を製造するに際し、芳香族スルホン酸のア
ルカリ金属塩と苛性アルカリを薄膜式蒸発器に連続的に
供給し、該蒸発器と、これに直列に接続されたスクリュ
ーとパドルを組みあわせた翼を有する2軸ニーダ−とに
より水の蒸発、混練および反応を行うことを特徴とする
連続アルカリ融解法による芳香族ヒドロキシ化合物の製
造方法が提供される。
<Means for Solving the Problems> In order to achieve the above object, according to the present invention, when producing an aromatic hydroxy compound by continuously melting an aromatic sulfonic acid metal salt with an alkali, The alkali metal salt and caustic alkali are continuously supplied to a thin film evaporator, and water is evaporated by the evaporator and a twin-shaft kneader having blades that are a combination of screws and paddles connected in series to the evaporator. Provided is a method for producing an aromatic hydroxy compound by a continuous alkali melting method, which comprises performing kneading and reaction.

このうち、2軸ニーダ−における混練、反応の温度が2
50〜400℃であることが好ましい。
Among these, the temperature of kneading and reaction in the twin-screw kneader is 2.
It is preferable that it is 50-400 degreeC.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明で使用できる芳香族スルホン酸のアルカリ金属塩
としては、芳香環を有する化合物、例えばベンゼン、ナ
フタレン、アントラセン、フェナンスレン、ジフェニル
、トリフェニル、ジフェニルアルカン、トリフェニルア
ルカンまたはキノリンなどの複素環と縮合した芳香族化
合物、或はこれらの部分水素化物の芳香環上に、単数ま
たは複数のスルホン酸基を有する化合物のナトリウム、
カリウムなどのアルカリ金属塩が挙げられる。 これら
の化合物は、環上または連結鎖に反応に影響しない他の
置換基を有していてもよい、 これらの化合物は常法に
より前記の芳香環を有する化合物を硫酸或は発煙硫酸に
よりスルホン化した後、アルカリ金属塩に変換すること
により得られる。
Alkali metal salts of aromatic sulfonic acids that can be used in the present invention include compounds having an aromatic ring, such as fused with a heterocyclic ring such as benzene, naphthalene, anthracene, phenanthrene, diphenyl, triphenyl, diphenylalkane, triphenylalkane or quinoline. Sodium of a compound having one or more sulfonic acid groups on the aromatic ring of an aromatic compound or a partially hydrogenated product thereof,
Examples include alkali metal salts such as potassium. These compounds may have other substituents on the ring or in the connecting chain that do not affect the reaction. These compounds can be prepared by sulfonating the aromatic ring-containing compound with sulfuric acid or fuming sulfuric acid using a conventional method. After that, it is obtained by converting it into an alkali metal salt.

本発明で使用できる苛性アルカリとしては、苛性ソーダ
、苛性カリ、或は両者の混合物の形で用いることもでき
る。 苛性アルカリの使用量は、スルホン酸基に対し理
論量の1〜5倍、さらに好ましくは理論量の1〜3.5
倍の範囲で用いる。
The caustic alkali that can be used in the present invention may be in the form of caustic soda, caustic potash, or a mixture of both. The amount of caustic alkali to be used is 1 to 5 times the theoretical amount, more preferably 1 to 3.5 times the theoretical amount based on the sulfonic acid group.
Use within the range of double.

反応温度は、原料の種類によっても多少異なるが250
〜400℃の範囲にあることが好ましい。
The reaction temperature varies somewhat depending on the type of raw materials, but it is 250
The temperature is preferably in the range of ~400°C.

2時ニーダ−での平均滞留時間は原料によっても異なる
が5分〜5時間の範囲にあることが好ましい。
The average residence time in the 2-hour kneader varies depending on the raw materials, but is preferably in the range of 5 minutes to 5 hours.

反応圧力は常圧、減圧、加圧いずれも可能であるが、本
発明の効果は常圧下でよく発現する。
Although the reaction pressure can be normal pressure, reduced pressure, or increased pressure, the effects of the present invention are best expressed under normal pressure.

以下に本発明を第1図〜第5図によって説明するが、こ
れらは本発明の一具体例であり、本発明の趣旨を逸脱し
ない範囲での変更が可能である。
The present invention will be explained below with reference to FIGS. 1 to 5, but these are only specific examples of the present invention, and changes can be made without departing from the spirit of the present invention.

第1図には本発明の全体の構成を示した。FIG. 1 shows the overall configuration of the present invention.

混合槽1で苛性アルカリに芳香族スルホン酸のアルカリ
金属塩を攪拌混合したものを、送液ポンプ2で薄膜式蒸
発器3に連続的に供給する。
A mixture of caustic alkali and an alkali metal salt of aromatic sulfonic acid is stirred and mixed in a mixing tank 1 and is continuously supplied to a thin film evaporator 3 by a liquid feed pump 2.

薄膜式蒸発器3で水分を蒸発させ、温度を高められた混
合物を、スクリューとパドルを組み合わせた2軸ニーダ
−4に供給し、該ニーダ−において前記の反応温度およ
び滞留時間で混練し反応させる。  2軸ニーダ−4か
ら排出される反応物を水混合槽5で水とともに混合し、
ついで中和槽6で酸を添加して酸析し、例えば遠心分離
機7で分離するなどの操作を行って目的物を得る。
Water is evaporated in a thin film evaporator 3, and the heated mixture is supplied to a twin-screw kneader 4 that combines a screw and a paddle, where it is kneaded and reacted at the above reaction temperature and residence time. . The reactant discharged from the twin-screw kneader 4 is mixed with water in a water mixing tank 5,
Next, an acid is added in the neutralization tank 6 to precipitate the product, and the target product is obtained by performing operations such as separation using a centrifugal separator 7, for example.

次に、薄膜式蒸発器3の構造の一例について説明する。Next, an example of the structure of the thin film evaporator 3 will be explained.

 第2図は該蒸発器の長袖に沿った断面図であり、第3
図は長軸と直交する断面図である。
Figure 2 is a sectional view along the long sleeve of the evaporator;
The figure is a sectional view perpendicular to the long axis.

攪拌翼8と本体内壁面との間隔は薄膜を形成できる範囲
にある事が必要である。 攪拌翼の構造は有効に薄膜を
形成できる構造であれば何れでも良く、材質が対アルカ
リ、対摩耗性のあるものであれば良い、 なお、9は長
袖、10は原料供給ノズル、11は混合物排出ノズル、
12は蒸気排出ノズル、13は送液スクリュー 14は
熱媒ジャケットである。
The distance between the stirring blade 8 and the inner wall surface of the main body must be within a range that allows a thin film to be formed. The structure of the stirring blade may be any structure as long as it can effectively form a thin film, and the material may be alkali-resistant and abrasion-resistant. Note that 9 is a long sleeve, 10 is a raw material supply nozzle, and 11 is a mixture. discharge nozzle,
12 is a steam discharge nozzle, 13 is a liquid feeding screw, and 14 is a heat medium jacket.

次に第4図および第5図にスクリューとパドルを組み合
わせた翼を有する2軸ニーダ−4の構造の一例を示す、
 第4図は該2軸ニーダ−の長袖に沿った断面図であり
、第5図は長袖と直交する断面図である。
Next, FIGS. 4 and 5 show an example of the structure of a two-shaft kneader 4 having blades that combine screws and paddles.
FIG. 4 is a sectional view along the long sleeve of the biaxial kneader, and FIG. 5 is a sectional view perpendicular to the long sleeve.

スクリュー15およびバドル16.17.18および1
9と壁面との間隔は反応混合物の付着を防止するため1
mm以下にするのが好ましい。 また、常に2軸の一方
のバドル16および17が他方のバドル18および19
の表面を更新するセルフクリーニング構造である事が好
ましい。 なお、20は原料供給ノズル、21は反応混
合物排出ノズル、22は蒸気排出ノズル、23は熱媒ジ
ャケットである。
Screw 15 and paddle 16.17.18 and 1
The distance between 9 and the wall is 1 to prevent the reaction mixture from adhering.
It is preferable to make it less than mm. Also, one paddle 16 and 17 of the two axes is always connected to the other paddle 18 and 19.
It is preferable that the material has a self-cleaning structure that renews the surface of the material. Note that 20 is a raw material supply nozzle, 21 is a reaction mixture discharge nozzle, 22 is a steam discharge nozzle, and 23 is a heat medium jacket.

本発明は薄膜式蒸発器、2軸ニーダ−各1機で本発明の
目的は十分達成されるが、勿論2機以上の直列配列をす
ることも可能である。
In the present invention, the object of the present invention can be sufficiently achieved with one thin film evaporator and one twin-shaft kneader, but it is of course possible to arrange two or more in series.

〈実施例〉 以下に本発明を実施例に基づいて具体的に説明するが本
発明はこれらの実施例に限定されるものではない。
<Examples> The present invention will be specifically described below based on Examples, but the present invention is not limited to these Examples.

(実施例り ベンゼンスルホン酸ナトリウム塩を苛性ソーダ水溶液と
混合し、混合物中のベンゼンスルホン酸の濃度が30%
、苛性ソーダとベンゼンスルホン酸ナトリウム塩が2.
5:1.0のモル比となるように調整した。 この液を
第3図および第4図に示すような蒸発器および2軸ニダ
ーを用いて反応させた。 蒸発器および2軸ニーダ−の
材質は5US316製とし、その加熱は熱媒循環とし、
供給熱媒の温度は350℃とした。 また、温度コント
ロールは熱媒供給量の調整により行った。 薄膜式蒸発
器から排出される混合物の温度が290℃、2軸ニーダ
から排出される反応物の温度が300℃となる様に調節
を行った。 原料の供給開始後約5時間経過し、十分定
常組成の反応物が得られた後、その一部を採取し、これ
を水に溶解し、硫酸で中和し、さらにメタノールを加え
溶解させた試料を液体クロマトグラフィーで分析し、こ
れにより転化率を求めた。 この結果、ベンゼンスルホ
ン酸の転化率は95%、フェノール選択率は92%であ
った。
(Example) Benzene sulfonic acid sodium salt was mixed with a caustic soda aqueous solution, and the concentration of benzene sulfonic acid in the mixture was 30%.
, caustic soda and benzenesulfonic acid sodium salt 2.
The molar ratio was adjusted to 5:1.0. This liquid was reacted using an evaporator and a twin-screw kneader as shown in FIGS. 3 and 4. The material of the evaporator and twin-shaft kneader is made of 5US316, and the heating is done by circulating a heat medium.
The temperature of the supplied heating medium was 350°C. In addition, temperature control was performed by adjusting the amount of heat medium supplied. The temperature of the mixture discharged from the thin film evaporator was adjusted to 290°C, and the temperature of the reactant discharged from the twin-screw kneader was adjusted to 300°C. Approximately 5 hours had passed since the start of supply of raw materials, and after a reactant with a sufficiently steady composition was obtained, a portion of it was collected, dissolved in water, neutralized with sulfuric acid, and further methanol was added and dissolved. The sample was analyzed by liquid chromatography to determine the conversion rate. As a result, the conversion rate of benzenesulfonic acid was 95% and the phenol selectivity was 92%.

(実施例2) 実施例1において原料をβ−ナフタレンスルホン酸ナト
リウム塩とし、薄膜式蒸発器、2軸ニーダ−からの排出
物の温度をそれぞれ310℃、325℃とした以外は同
一条件で反応を行った結果、β−ナフタレンスルホン酸
の転化率は95%、β−ナフトールの選択率は90%で
あった。
(Example 2) The reaction was carried out under the same conditions as in Example 1 except that the raw material was β-naphthalenesulfonic acid sodium salt and the temperature of the discharge from the thin film evaporator and twin-screw kneader was 310°C and 325°C, respectively. As a result, the conversion rate of β-naphthalenesulfonic acid was 95%, and the selectivity of β-naphthol was 90%.

(実施例3) 実施例1において原料を2,7−ナフタレンジスルホン
酸ナトリウム塩とし、苛性ソーダと2.7−ナフタレン
ジスルホン酸ナトリウム塩のモル比を5:1とした以外
は同一条件で反応を行った結果、2.7−ナフタレンジ
スルホン酸の転化率は95%、2.7−ナフタレンジオ
ールの選択率は92%であった。
(Example 3) The reaction was carried out under the same conditions as in Example 1 except that the raw material was 2,7-naphthalenedisulfonic acid sodium salt and the molar ratio of caustic soda and 2,7-naphthalenedisulfonic acid sodium salt was 5:1. As a result, the conversion rate of 2.7-naphthalenedisulfonic acid was 95%, and the selectivity of 2.7-naphthalenediol was 92%.

〈発明の効果〉 本発明によれば、以上説明したように効率良く水分蒸発
が行える薄膜式蒸発器と混線状態がよくかつ伝熱特性の
良い2軸ニーダ−とから構成されているので、高転化率
、かつ制御の容易な高生産性の連続アルカリ融解法によ
る芳香族ヒドロキシ化合物の製造が可能となった。 ま
た、連続法であるためエネルギーロスが低減され、局部
加熱が防止できる。 さらに、制御が容易であるため生
成物の性状が一定で、品質管理が極めて容易であるとい
う効果がある。
<Effects of the Invention> According to the present invention, as explained above, it is composed of a thin-film evaporator that can efficiently evaporate water and a twin-shaft kneader that has good crosstalk and good heat transfer characteristics. It has become possible to produce aromatic hydroxy compounds by a continuous alkaline melting method with high productivity and easy control of conversion. Furthermore, since it is a continuous method, energy loss is reduced and local heating can be prevented. Furthermore, since it is easy to control, the properties of the product are constant and quality control is extremely easy.

また、薄膜式蒸発器により水分が効果的に短時間で蒸発
するため長時間の濃縮操作を必要とせず、発泡の危険も
皆無となった。
In addition, the thin film evaporator effectively evaporates water in a short time, eliminating the need for long concentration operations and eliminating the risk of foaming.

さらに、本発明では汎用の薄膜式蒸発器および2軸ニー
ダ−を使用できるため、設計が容易となり製作費が低減
できるという効果がある。
Furthermore, since the present invention can use a general-purpose thin film evaporator and a twin-shaft kneader, the present invention has the effect of facilitating design and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の構成を示すフロー図である。 第2図は、 図である。 第3図は、 薄膜式蒸発器の一例を示す側断面 薄膜式蒸発器の横断面図である。 第4図は、2軸ニーダ−の−例を示す側断面図である。 第5図は、2軸ニーダ−の横断面図である。 6.17.18.19・・・パドル、 0・・・原料供給ノズル、 1・・・反応混合物排出ノズル、 2・・・蒸気排出ノズル、 3・・・熱媒ジャケット、 符号の説明 1・・・混合槽、 3・・・薄膜式蒸発器、 5・・・水混合槽、 7・・・遠心分離機、 9・・・長軸、 10・・・原料供給ノズル、 11・・・混合物排出ノズル、 12・・・蒸気排出ノズル、 13・・・送液スクリュー 14・・・熱媒ジャケット、1 2・・・送液ポンプ、 4・・・2軸ニーダ− 6・・・中和槽、 8・・・攪拌翼、 5・・・スクリュー FIG、1 FIG. 1 is a flow diagram showing the configuration of the present invention. Figure 2 shows It is a diagram. Figure 3 shows Side cross section showing an example of a thin film evaporator FIG. 2 is a cross-sectional view of a thin film evaporator. FIG. 4 is a side sectional view showing an example of a two-axis kneader. FIG. 5 is a cross-sectional view of the two-shaft kneader. 6.17.18.19...paddle, 0...raw material supply nozzle, 1... Reaction mixture discharge nozzle, 2...Steam exhaust nozzle, 3...heat medium jacket, Explanation of symbols 1...mixing tank, 3...thin film evaporator, 5...Water mixing tank, 7... Centrifugal separator, 9...long axis, 10... Raw material supply nozzle, 11...Mixture discharge nozzle, 12... Steam exhaust nozzle, 13...Liquid feeding screw 14...heat medium jacket, 1 2...liquid pump, 4...2-axis kneader 6...neutralization tank, 8... Stirring blade, 5...Screw FIG.1

Claims (2)

【特許請求の範囲】[Claims] (1)芳香族スルホン酸金属塩を連続的にアルカリ融解
して芳香族ヒドロキシ化合物を製造するに際し、芳香族
スルホン酸のアルカリ金属塩と苛性アルカリを薄膜式蒸
発器に連続的に供給し、該蒸発器と、これに直列に接続
されたスクリューとパドルを組みあわせた翼を有する2
軸ニーダーとにより水の蒸発、混練および反応を行うこ
とを特徴とする連続アルカリ融解法による芳香族ヒドロ
キシ化合物の製造方法。
(1) When producing an aromatic hydroxy compound by continuously melting an aromatic sulfonic acid metal salt with an alkali, an alkali metal salt of an aromatic sulfonic acid and a caustic alkali are continuously supplied to a thin film evaporator. 2, which has an evaporator and blades that are a combination of screws and paddles connected in series to the evaporator.
A method for producing an aromatic hydroxy compound by a continuous alkali melting method, which comprises evaporating water, kneading, and reacting with a shaft kneader.
(2)2軸ニーダーにおける混練、反応の温度が250
〜400℃である請求項1記載の芳香族ヒドロキシ化合
物の製造方法。
(2) The kneading and reaction temperature in the twin-screw kneader is 250°C.
The method for producing an aromatic hydroxy compound according to claim 1, wherein the temperature is 400°C.
JP16362488A 1988-06-30 1988-06-30 Preparation of aromatic hydroxy compound by continuous alkali fusion method Pending JPH0211530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16362488A JPH0211530A (en) 1988-06-30 1988-06-30 Preparation of aromatic hydroxy compound by continuous alkali fusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16362488A JPH0211530A (en) 1988-06-30 1988-06-30 Preparation of aromatic hydroxy compound by continuous alkali fusion method

Publications (1)

Publication Number Publication Date
JPH0211530A true JPH0211530A (en) 1990-01-16

Family

ID=15777468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16362488A Pending JPH0211530A (en) 1988-06-30 1988-06-30 Preparation of aromatic hydroxy compound by continuous alkali fusion method

Country Status (1)

Country Link
JP (1) JPH0211530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712482A (en) * 2018-02-07 2020-09-25 默克专利股份有限公司 Preparation method of metformin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712482A (en) * 2018-02-07 2020-09-25 默克专利股份有限公司 Preparation method of metformin
EP3749643A1 (en) * 2018-02-07 2020-12-16 Merck Patent GmbH Process for the preparation of metformin

Similar Documents

Publication Publication Date Title
US3259645A (en) Continuous sulfonation process
EP1328499B1 (en) Method of producing carboxylic acid salts
US4544493A (en) Neutralization of organic sulfuric or sulfonic detergent acid to produce high solids concentration detergent salt
US3579537A (en) Process for separation of sultones from alkenyl sulfonic acids
JPH0211530A (en) Preparation of aromatic hydroxy compound by continuous alkali fusion method
US4467123A (en) Process for the preparation of alkali metal diphenylates and free hydroxydiphenyls
CN104016890A (en) Method for preparing 1-amino-4-sodium naphthalene sulfonate through solid-phase continuous reaction
JPH0149330B2 (en)
DE2728070A1 (en) CONTINUOUS PRODUCTION OF NAPHTHALIN-1-SULPHONIC ACID AND 1,5-DISULPHONIC ACID
JPS5943935B2 (en) Method for producing 4,4&#39;-dihydroxydiphenyl
US4376737A (en) Process for the production of naphthylaminehydroxysulphonic acids
CN113454074B (en) Preparation method of acesulfame potassium
JPS58157760A (en) Preparation of m-xylene-4-sulfonic acid
US3801632A (en) Process for the continuous production of the disodium salts of m-benzenedi-sulfonic acid
CN112851659A (en) Preparation method of thiamine oxidation liquid and thiamine nitrate preparation method applying same
JPS6035332B2 (en) Method for alkaline melting of aromatic sulfonate
US2360010A (en) Process for the sulphonation of alpha - aminoanthraquinone compounds
EP0506308B1 (en) Method for sulfonating acyloxybenzenes and neutralization of resulting product
EP0066770B1 (en) Process for producing 3-hydroxybenzoic acid
CN113454071B (en) Preparation method of acesulfame potassium
JPS5932453B2 (en) Method for alkaline melting of aromatic sulfonate
KR930006197B1 (en) Process for preparation of 3-(acyl) amino-4-alkoxy-phenyl-(beta)-hydroxyethyl-sulfone(sulfates)
DE3501754A1 (en) Sulphonation of ortho-nitrochlorobenzene, para-nitrochlorobenzene and ortho-nitrotoluene
JPH0556336B2 (en)
JPS61115039A (en) Production of beta-naphthol