JPH02109986A - Method and apparatus for carrying out enzymic reaction using enzyme immobilized membrane - Google Patents
Method and apparatus for carrying out enzymic reaction using enzyme immobilized membraneInfo
- Publication number
- JPH02109986A JPH02109986A JP26244288A JP26244288A JPH02109986A JP H02109986 A JPH02109986 A JP H02109986A JP 26244288 A JP26244288 A JP 26244288A JP 26244288 A JP26244288 A JP 26244288A JP H02109986 A JPH02109986 A JP H02109986A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- enzyme
- porous layer
- immobilized
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 144
- 102000004190 Enzymes Human genes 0.000 title claims abstract description 64
- 108090000790 Enzymes Proteins 0.000 title claims abstract description 64
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 title claims description 26
- 239000010410 layer Substances 0.000 claims abstract description 59
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 229920000642 polymer Polymers 0.000 claims abstract description 24
- 239000002344 surface layer Substances 0.000 claims abstract description 4
- 238000006911 enzymatic reaction Methods 0.000 claims description 50
- 239000012466 permeate Substances 0.000 claims description 27
- 238000011001 backwashing Methods 0.000 claims description 9
- 230000003100 immobilizing effect Effects 0.000 claims description 5
- 239000007788 liquid Substances 0.000 abstract description 14
- 238000003825 pressing Methods 0.000 abstract 1
- 229940088598 enzyme Drugs 0.000 description 50
- 239000000243 solution Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 238000004140 cleaning Methods 0.000 description 14
- 125000000524 functional group Chemical group 0.000 description 13
- 229920006037 cross link polymer Polymers 0.000 description 12
- 230000004907 flux Effects 0.000 description 11
- 239000003431 cross linking reagent Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 229920003169 water-soluble polymer Polymers 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229920002873 Polyethylenimine Polymers 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920002472 Starch Polymers 0.000 description 5
- 102000004139 alpha-Amylases Human genes 0.000 description 5
- 108090000637 alpha-Amylases Proteins 0.000 description 5
- 229940024171 alpha-amylase Drugs 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 239000008107 starch Substances 0.000 description 5
- 235000019698 starch Nutrition 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- -1 polyethyleneimino Polymers 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 108090000604 Hydrolases Proteins 0.000 description 3
- 102000004157 Hydrolases Human genes 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 239000012510 hollow fiber Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 2
- 102100022624 Glucoamylase Human genes 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000008351 acetate buffer Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- VZZPYUKWXDLMGI-UHFFFAOYSA-N 1,6-diisothiocyanatohexane Chemical compound S=C=NCCCCCCN=C=S VZZPYUKWXDLMGI-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- OALYTRUKMRCXNH-UHFFFAOYSA-N 5-pentyloxolan-2-one Chemical compound CCCCCC1CCC(=O)O1 OALYTRUKMRCXNH-UHFFFAOYSA-N 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920002085 Dialdehyde starch Polymers 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000013040 bath agent Substances 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- DNZWLJIKNWYXJP-UHFFFAOYSA-N butan-1-ol;propan-2-one Chemical compound CC(C)=O.CCCCO DNZWLJIKNWYXJP-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940113088 dimethylacetamide Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- YURMZYDEIXVBLQ-UHFFFAOYSA-N ethanol methanol propane-1,2,3-triol Chemical compound OCC(O)CO.CO.C(C)O YURMZYDEIXVBLQ-UHFFFAOYSA-N 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229940118019 malondialdehyde Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 108010038270 melain Proteins 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- BHTJEPVNHUUIPV-UHFFFAOYSA-N pentanedial;hydrate Chemical compound O.O=CCCCC=O BHTJEPVNHUUIPV-UHFFFAOYSA-N 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920000724 poly(L-arginine) polymer Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 108010011110 polyarginine Proteins 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 210000000434 stratum corneum Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 210000004916 vomit Anatomy 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
く産業との利用分野〉
本発明は酵素固定膜を用いる酵素反1115方法pよび
装置に関し、詳しくは連続酵素反応において。DETAILED DESCRIPTION OF THE INVENTION FIELD OF APPLICATION IN THE FUNERAL INDUSTRY The present invention relates to an enzyme reaction method and apparatus using an enzyme-immobilized membrane, particularly in continuous enzyme reactions.
膜透過液の透過流束を効果的に回(Xさせつつ、酵素活
性を高く維持して、長期間にゎ几って高い生産性にて酵
素反応全行なうことができる酵素反応方法および装置に
関する。This invention relates to an enzyme reaction method and device capable of carrying out the entire enzyme reaction with high productivity over a long period of time by effectively increasing the permeation flux of a membrane permeate while maintaining a high enzyme activity. .
く従来の技術〉
従来、工業的規模にて#未反応ycよって有用物を生産
する方法が医薬品fjIL品製遭に訃いて広く行なわれ
ている。しかし、酵素自体が高価でめることf、 fn
液状態にて酵素を用いた場合1反応後の生成物と酵素と
の分離や回収が容易でないことから、近年、所l111
1i!1定化酵素を用いる酵素反応が実用化されるに至
っている。Conventional Technology> Conventionally, a method of producing useful substances from unreacted yc on an industrial scale has been widely used in the production of pharmaceutical fjIL products. However, the enzyme itself is expensive and difficult to obtain.
When enzymes are used in a liquid state, it is not easy to separate or recover the enzyme from the product after one reaction.
1i! An enzymatic reaction using a monovalent enzyme has come into practical use.
酵素を固定化する担体は、既に種々のものが知らルてい
るが、なかでも2表面に分画機能を有する緻密j−を備
え、これを一体に多孔質/#が支持している異方性構造
t−有する限外濾過膜のように。Various types of carriers for immobilizing enzymes are already known, but among them, two types of carriers are known: anisotropic carriers that have a dense J- layer with a fractionation function on the surface, which is supported by a porous layer. Like an ultrafiltration membrane with a structural structure.
分画機能を備えた膜体に酵素を固定化してなる所′s酵
素固定膜は、自体、酵素を固定化し、担持していると共
に、−tの分画性を適当に選択することによって0反応
生成・吻を酵素から直ちに分離し得るのみならず、場合
ic工っては、基質からも分離し得るので、高注能酵素
編リアクターとして注目を集めて−る。The enzyme-immobilized membrane itself is made by immobilizing an enzyme on a membrane body with a fractionation function. It is attracting attention as a high-capacity enzyme reactor because it not only allows the reaction product to be immediately separated from the enzyme, but also from the substrate if IC is used.
このような膜リアクターとして1例えば特開昭59−2
5686号公報には、酵素を多孔質層に閉じ込めて被覆
t−mしてなる換りアクタ−が記@されてお9.1九特
公11857−41238号公報には。As such a membrane reactor, for example, JP-A-59-2
Japanese Patent No. 5686 describes an alternative actor in which an enzyme is confined in a porous layer and coated with tm, and Japanese Patent Publication No. 9.19 No. 11857-41238 describes an alternative actor formed by enclosing an enzyme in a porous layer and coating it.
多孔質層に酵素をゲルと共に封入包括しCなる膜リアク
ターが記載されている。しかし、このような膜リアクタ
ーによれば、いずれも酵素が安定に保持されず、gリア
クターの酵素活性が経時的に着しく低下する。A membrane reactor named C is described in which an enzyme is encapsulated together with a gel in a porous layer. However, with such membrane reactors, enzymes are not stably retained, and the enzyme activity of the g reactor is severely reduced over time.
そこで、従来の膜リアクターにおける上記し友問題点を
解決する九めに1例えば特開昭62−83885号公報
には、異方性限外濾過膜の多孔質層に架橋高分子t−保
持させ、この架橋高分子に共有結合にて酵素を固定化し
てなる模りアクタ−が提案されている、
このような貞すアクターIC工nば、fs索活゛注を比
較的高く維持しつつ、酵素反応全行なうことができるが
、しかし酵素反応を長期間にわたって連続して行なう場
合は、酵素活性の低下を免れることができず、更に膜面
への付着物によって、膜透過液の透過流束が経時的に低
下し、その結果として目的とする生産物の生産性が低下
する。更に酵素反応によっては、酵素反応阻害が起こり
たりする。上記屓リアクターの酵素活性の低下は、酵素
反応の条件t−最適に設定することによって、ある程度
は回避することができるものの、経時的な属の目詰まり
は防止することが困瘤でめる。Therefore, in order to solve the above-mentioned problems in conventional membrane reactors, for example, Japanese Patent Application Laid-Open No. 62-83885 proposes a structure in which a cross-linked polymer T- is retained in the porous layer of an anisotropic ultrafiltration membrane. A mimetic actor has been proposed in which an enzyme is covalently immobilized on this cross-linked polymer.If such a suitable actor IC design is used, the fs search activity can be maintained at a relatively high level. The entire enzymatic reaction can be carried out, but if the enzymatic reaction is carried out continuously over a long period of time, the enzyme activity will inevitably decrease, and the permeation flux of the membrane permeate will decrease due to deposits on the membrane surface. decreases over time, resulting in a decrease in the productivity of the desired product. Furthermore, depending on the enzymatic reaction, inhibition of the enzymatic reaction may occur. Although the decrease in the enzyme activity of the above-mentioned reactor can be avoided to some extent by optimally setting the enzyme reaction conditions, it is difficult to prevent clogging of the reactor over time.
〈発明が解決しようとする課題〉
本発明は膜リアクターを用いる酵素反応における上記問
題点t?解決すべくなされ比ものでめり。<Problems to be Solved by the Invention> The present invention solves the above-mentioned problems in enzyme reactions using membrane reactors. A lot of work has been done to solve the problem.
模りアクタ−の連続運転を行なiながら膜透過液のi!
i通流束を効果的に回復させ、酵素反応を高い生産性に
て長期間にわ九って行なうことがでさる酵素反応装置お
よび該方法に用いる酵素反応装置を提供すること金目的
とする。While the imitation actor is continuously operated, the i of the membrane permeate is measured.
It is an object of the present invention to provide an enzyme reaction device and an enzyme reaction device used in the method, which can effectively restore the i-transmission flux and carry out enzyme reactions over a long period of time with high productivity. .
く課題を解決する九めの手段〉
本発明の酵素反応方法は表面層としての緻′aJImと
、これを一体的に支持する多孔質層とt−備え比異方性
限外濾過膜の多孔質層に酵素上固定化してなる酵素(ロ
)電膜を用いる酵素反応方法において。Ninth Means for Solving the Problem> The enzyme reaction method of the present invention consists of a fine aJIm as a surface layer, a porous layer that integrally supports this, and a pore-forming specific anisotropic ultrafiltration membrane equipped with a T-layer. In an enzyme reaction method using an enzyme (b) electrolyte film formed by immobilizing an enzyme on a stratum corneum.
基質溶液と上記IIl索固定膜の多孔質層側に所定の圧
力下に鋪環供給して連続的に酵素反応を行なうと共に、
得られ交編透過液を所定時間毎に前記基質溶液への力ロ
圧圧力以上の圧力にて、前記酵素固定膜の緻密m il
lから多孔質層側に逆流透過させることを特徴とする。Continuously carrying out an enzyme reaction by supplying a substrate solution to the porous layer side of the III-fixed membrane under a predetermined pressure,
The resulting alternating permeate is applied to the substrate solution at predetermined intervals at a pressure higher than the force pressure applied to the enzyme-immobilized membrane to form a dense mil.
1 to the porous layer side.
ま之1本発明のd酵素反応装置は、に、記酵素反応を行
なうためのものであり1表diJl−としての緻密l−
と、これを一体的に支持する多孔質層とを1.を次異方
注限外濾過膜の多孔質層に酵素を固定化してなる酵素固
定編二ニットと、旦記酵素固定膜を膜透過液にて逆流洗
浄する之めの逆洗ユニットを義媚してなるものである。1. The d-enzyme reaction device of the present invention is for carrying out the following enzymatic reactions.
1. and a porous layer that integrally supports this. Next, we will introduce two enzyme-immobilized units in which enzymes are immobilized on the porous layer of an anisotropic ultrafiltration membrane, and a backwash unit that backwashes the enzyme-immobilized membrane with membrane permeate. This is what happens.
本発明VCJ?いては、模りアクタ−として多数の微孔
を有する緻密で分am機能を有する所謂緻密l−又は活
性層と、これを一体的に支持する比較的大きい孔径の微
孔を多数有する多孔質層とからなる異方性構造金有する
限外は4膜の多孔質層に酵素が固定化されている模りア
クタ−が用いられる。Invention VCJ? In this case, a so-called dense l- or active layer having a large number of micropores as a model actor and having a minute function, and a porous layer having a large number of relatively large micropores that integrally support this layer. A model actor is used in which an enzyme is immobilized on a porous layer of four membranes having an anisotropic structure consisting of gold.
酵素担体としてのこのような異方性構造を有する限外濾
過膜は、aに知られており、市販品として入手すること
ができる。Ultrafiltration membranes with such anisotropic structures as enzyme carriers are known in the art and can be obtained as commercial products.
と記異方性構造t−有する限外蓚1iA膜の多孔質J−
に酵素を固定化する方法は2特に限定されるものではな
く1例えば一般に酵素固定化の技術分野においてよく知
られているように、酵素は物理吸1法、共有結合法、架
橋法等にて固定化されていてもよい。しかし、酵素が安
定であると共に、酵素がその担体である限外濾過膜から
容易には脱離しないように、共有結合法にて固定化され
ていることが好ましい。Porous J- of ultrafilament 1iA membrane with anisotropic structure
There are no particular limitations on the method of immobilizing enzymes.For example, as is generally well known in the technical field of enzyme immobilization, enzymes can be immobilized using physical absorption methods, covalent bonding methods, cross-linking methods, etc. It may be fixed. However, it is preferable that the enzyme be immobilized by a covalent bonding method so that the enzyme is stable and does not easily detach from the ultrafiltration membrane that is its carrier.
特に好ましい方法は1例えば特開昭62−83885号
公報に記載されているように、分子内に少なくとも2個
の官能基tMする水m性高分子の水溶液を0.1 ”
I K9/c4の加圧条件ドに限外濾過膜の多孔質層か
ら、透過、含浸させ、洗浄し7ti、上記水浴性高分子
の架橋剤、即ち、上記水m在高分子の育する官能基と反
応し得る官能基t−分子内に2個以に、有する化合物の
水I@液を前記加圧条件内にて多孔′R1l1llから
透過、含浸させて、上記水溶゛注高分子を架橋させ、限
外濾過膜の緻密、−側からの膜洗浄によって、未架橋の
水溶性高分子を1臭から除去し1次いで、酵素溶液t−
膜の多孔質側から前記加圧条件内で透過させて、前記架
橋高分子の有する官能基金倉して、共有結合にて酵素を
架橋高分子に結合させ、かくして、酵素を固定化した限
外濾過膜を得る方法である。A particularly preferred method is 1, for example, as described in Japanese Unexamined Patent Publication No. 62-83885, an aqueous solution of an aqueous polymer having at least two functional groups in its molecule is prepared by adding 0.1"
It is permeated, impregnated, and washed through the porous layer of the ultrafiltration membrane under pressurized conditions of IK9/C4, and the crosslinking agent for the water bathing polymer, i.e., the functionality developed by the water-based polymer is A water solution of a compound having two or more functional groups capable of reacting with the group t in the molecule is permeated and impregnated through the pores R11111 under the above-mentioned pressurized conditions to crosslink the water-injected polymer. Then, uncrosslinked water-soluble polymers are removed from the odor by washing the ultrafiltration membrane from the - side.
The enzyme is permeated from the porous side of the membrane under the above-mentioned pressurized conditions to store the functional funds possessed by the cross-linked polymer, and the enzyme is covalently bonded to the cross-linked polymer. This is a method for obtaining a filtration membrane.
上述し九方法において用いる限外濾過膜は1分画分子量
が1,000〜1,000,000(Q[囲である緻密
ノーと、孔径が数μ溝乃至100μ溝の微孔t−有する
多孔E1mとからなるものが好ましいが、その形状は何
ら制限されるものではなく1例えば平板状。The ultrafiltration membrane used in the above-mentioned nine methods has a molecular weight cut-off of 1,000 to 1,000,000 (a dense membrane with a Q[circle] and a porous membrane with a pore diameter of several microns to 100 microns). E1m is preferable, but its shape is not limited in any way; for example, it is flat.
管状、中空糸状等任意である。有効膜面積が大きく、且
つ、0!1定化された酵素と基質との接触面積が大きい
膜リアクターを得るためには、限外濾過膜として中壁糸
状dk用いることが好ましい。It can be in any shape such as tubular shape or hollow fiber shape. In order to obtain a membrane reactor with a large effective membrane area and a large contact area between a 0:1 standardized enzyme and a substrate, it is preferable to use a medium-walled filamentous dk as the ultrafiltration membrane.
上記限外濾過膜t”構成する重合体としては0例えばポ
リスルホン、ポリエーテルスルホン、ポリアミド、ポリ
イミド、酢酸セルロース ポリアクリロニトリル等が好
ましく用いられる。こルら直合体は後述する水m性高分
子と反応する官能基金特に有する必要は4<、異方性構
造を有する限外濾過膜に!l!膜し得るものであれば、
特に限定されるものではない。しかし2上記し之直合体
のなかでも1度品−?医薬品の製造に要求される厳格な
分画分子量を満足するものとして、ポリスルホンポリア
ミド又はポリイミドを用いることが好ましく、特にポリ
スルホンが好適である口
上記し几ような異方性構造を有する限外濾過膜は、既に
知られている方法によって製造することができる。例え
ば、上記直合体′t−そのm解性に応じて、水混和性の
有機m剤4例えばジメチルスルホキシド、ジメチルホル
ムアミド、ジメチルアセトアミド、フェノール、クレゾ
ール エチレンクロルヒドリン、エチレングリコール
グロビレンf IJコール セロソルブ、グリセリン
メタノール エタノール グロパノール ブタノール
アセトン、ジオー?テン、テトラヒドロフラン等のl橿
又は2m以上の混合物に浴解させて製膜溶液をAIMし
0次いで、この製g#i液を主として水からなる凝固浴
剤に接層させることによって、接触界面に緻密ノーを有
する種々の形状の限外濾過膜を得ることができる。As the polymer constituting the ultrafiltration membrane t'', for example, polysulfone, polyethersulfone, polyamide, polyimide, cellulose acetate, polyacrylonitrile, etc. are preferably used.These polymers react with the aqueous polymer described later. In particular, it is necessary to have a functional fund of
It is not particularly limited. However, among the 2 above-mentioned cuboids, is there one product? It is preferable to use polysulfone polyamide or polyimide as it satisfies the strict molecular weight cut-off required for the production of pharmaceuticals, and polysulfone is particularly suitable. can be manufactured by already known methods. For example, the above-mentioned polymer 't--depending on its decomposition properties, water-miscible organic agents such as dimethyl sulfoxide, dimethyl formamide, dimethyl acetamide, phenol, cresol, ethylene chlorohydrin, ethylene glycol
Globylene f IJ Cole Cellosolve, Glycerin
Methanol Ethanol Gropanol Butanol
Acetone, Geo? The membrane forming solution is AIMed by bath dissolving it in a mixture of ten or more than 2 m thick, such as ester, tetrahydrofuran, etc.Next, this g#i liquid is brought into contact with a coagulating bath agent mainly composed of water, so that the contact interface is Ultrafiltration membranes of various shapes with dense nos. can be obtained.
前記水浴′注高分子としては1例えばポリエチレンイミ
ノ ボリグロピVンイミン、ポリブチレンイミン等のポ
リアルキレンイオン。ポリエチレングリコール ポリプ
ロピレングリコール等のポリアルキレングリコール ポ
リリジン、ポリアルギニン等のポリアミノ酸、ボリアリ
ールアミン等を挙げることができる。これら水浴性高分
子は通常。Examples of the polymer injected into the water bath include polyalkylene ions such as polyethyleneimino, polyglobinimine, and polybutyleneimine. Examples include polyalkylene glycols such as polyethylene glycol and polypropylene glycol, polyamino acids such as polylysine and polyarginine, and polyarylamines. These water bathable polymers are normal.
その直置平均分子量が約1,000〜200,000の
範囲にあり、官能基金分子内に数十乃至数汀イするもの
が好ましい。特に、丘記し之水溶性高分子のなかでは1
分子当りの官能基数の!li1節が容易であると共に、
官能基の反応性が高いポリエチレンイミンやポリアリ−
ルアばンが好適に用いられる。Preferably, the direct average molecular weight is in the range of about 1,000 to 200,000, and several tens to several molecules are present in the functional group molecule. In particular, among the water-soluble polymers listed above, 1
Number of functional groups per molecule! The li1 clause is easy, and
Polyethyleneimine and polyaryl with highly reactive functional groups
Luaban is preferably used.
と配水m注高分子の水m銭金異方性限外dは過膜の多孔
質層に含浸させるに際しては、−f:のa度は通常、l
砿t%以下であり、特にO,OS〜0.25直量%の範
囲が好ましい。−度がl直t%金超えるときは溶液粘度
が高く、言浸しt層液が限外濾過膜を閉基して、m透過
液の透過流束?低ドさせ。When impregnating the porous layer of the membrane with the water distribution mNote, the a degree of -f: is usually l
It is preferably less than t%, and particularly preferably in the range of O,OS to 0.25% by direct weight. - When the concentration exceeds 1% gold, the solution viscosity is high, and the immersed t-layer liquid closes the ultrafiltration membrane, resulting in the permeation flux of the m-permeate liquid. Let it go low.
延いては酵素反応相I!I2物の生産速度を低ドさせる
からである。Finally, the enzymatic reaction phase I! This is because it lowers the production rate of I2 products.
ま几、m記水躊°注高分子の溶液を限外濾過膜の多孔質
層に含浸するvc際しては、限外濾過膜の多孔質層鋤と
緻密層側との闇の圧力差が0.1〜l々/d、好ましく
は0.1〜0.5Kg/e4となる工うにするのが好ま
しいう余りに高い圧力にて水m性高分子溶液を限外濾2
Ii−の多孔質7m側から膜透過させるときは、多孔質
層内部、特に、緻密7m側に水m′注注封分子圧密化が
起こって、膜を閉塞することがあるからである。しかし
、圧力が余りに低いときは、水浴′注高分子の多孔質層
への含浸に長時間を要し几り、或いは多孔質層全体に均
一に含浸させ離〈1表1一部のみが含浸され九〇して、
酵素の同定化量の低下を招くこととなる。When impregnating the porous layer of an ultrafiltration membrane with a polymer solution, the pressure difference between the porous layer and the dense layer side of the ultrafiltration membrane is maintained. It is preferable to ultrafiltrate the aqueous polymer solution at too high a pressure so that it is 0.1 to l/d, preferably 0.1 to 0.5 Kg/e4.
This is because when the membrane is permeated from the porous 7m side of Ii-, compaction of water m'-pouring molecules may occur inside the porous layer, particularly on the dense 7m side, which may clog the membrane. However, if the pressure is too low, it may take a long time to impregnate the porous layer with the water bath, or the entire porous layer may be uniformly impregnated and separated. After ninety years,
This results in a decrease in the amount of identified enzyme.
このようにして限外a鑞過漠の多孔1j+−に水m8:
高分子を含浸させ友後、膜全適宜回数洗浄して不純物質
ヤ極度に低分子量の水m在高分子金膜から除去する。こ
の後、前配水m注高分子の限外濾過膜への含浸と同じ圧
力範囲内で1通常は同じ圧力にて、多孔・質重側から架
橋剤d液を通液して、前記水浴性高分子と接触させこれ
を架橋する。このような架橋によって、水溶性高分子は
多孔質層内で三次元化して不溶化し、分子の嵩張り千立
体障害が大きくなるので、限外謹過編目体に化学的に結
合されずとも、多孔質層に保持されるので、後述するよ
うに架橋高分子に酵素全固定化し比後の膜の逆洗Pp−
?、ま7を酵素反応時の膜リアクターの膜洗浄によって
も、限外濾過膜から離脱し几り溶出しないものとなる。In this way, water m8 is added to the pores 1j + - of the limit a
After impregnation with the polymer, the membrane is washed an appropriate number of times to remove impurities from the polymer gold membrane, including extremely low molecular weight water. After this, the crosslinking agent d solution is passed from the porous/massive side within the same pressure range as the pre-water injection polymer impregnation into the ultrafiltration membrane. Contact with a polymer to crosslink it. Due to such crosslinking, the water-soluble polymer becomes three-dimensional and insolubilized within the porous layer, and the bulk of the molecule and steric hindrance increase, so even if it is not chemically bonded to the ultra-permeable mesh, Since the enzyme is retained in the porous layer, the enzyme is completely immobilized on the cross-linked polymer as described later, and the membrane is backwashed after the Pp-
? , and No. 7 can also be separated from the ultrafiltration membrane by membrane washing of the membrane reactor during the enzyme reaction, and will not be eluted.
上記!i橋剤としては1例えばグリオキサールグルタル
アルデヒド、アジピンアルデヒド、マロンジアルデヒド
、ジアルデヒドデンプン等のようなジアルデヒド類、ヘ
キサメチレンジインシアネート、トルエンジイソシアネ
ート等のようなジインシアネート類、ヘキサメチレンジ
イソチオシアネート等のようなジインチオシアネート類
を挙げることができる。水溶性高分子が官能基としてア
ミノ基を有するときは、水m注カルボジイミド等のよつ
な縮合試薬ヤシアルデヒドのような架橋試薬を用いるこ
とができる、これらのうち、持にジアルデヒド類fシイ
、ツクアネート類は水溶液中で比較的安定であり2反応
性も高い九めに1本発明において架橋剤として好適に用
いられる。the above! Examples of the crosslinking agent include dialdehydes such as glyoxal glutaraldehyde, adipine aldehyde, malondialdehyde, and dialdehyde starch; diincyanates such as hexamethylene diisocyanate and toluene diisocyanate; and hexamethylene diisothiocyanate. Examples include dithiocyanates such as. When the water-soluble polymer has an amino group as a functional group, a condensing reagent such as water, carbodiimide, etc., and a crosslinking reagent such as coconut aldehyde can be used. , Tsuquanates are relatively stable in aqueous solution and have high 2-reactivity, and are suitably used as crosslinking agents in the present invention.
このような架橋剤は11/liとして膜透過させて。Such a crosslinking agent is allowed to permeate through the membrane at a ratio of 11/li.
水溶性高分子を架橋させ、他方、この架橋dk%に架橋
高分子が分子内に遊離の官能基金有するように。The water-soluble polymer is crosslinked, while this crosslinking dk% is such that the crosslinked polymer has free functional groups within the molecule.
用いる水溶液のm度−?[透過量を適宜に選定すること
が好ましい。造゛帛は、水溶性高分子中の′1能基童と
架橋剤中の官能基量とのモル濃度比t−2〜50、好ま
しくは6〜20とすることによつ′C1水醪往高分子に
酵素と結合する之めの官能基を充分に残存させることが
できる。m degrees of the aqueous solution used -? [It is preferable to appropriately select the amount of permeation. The composition is made by adjusting the molar concentration ratio of the functional groups in the water-soluble polymer to the amount of functional groups in the crosslinking agent to be t-2 to 50, preferably 6 to 20. A sufficient amount of the functional group that binds to the enzyme can remain in the polymer.
このように限外濾過膜の多孔質層にて水溶性高分子を架
橋させた後、緻密層側から通°帛の洗浄処理である膜洗
浄を行なって、多孔質層に残存゛する未架橋の水溶性高
分子を砿去し、この後、所定のflI素を含む溶液を限
外濾過膜の多孔質層側から通液して、前記架橋高分子の
有する官能基を介して#Xを架橋高分子に共有結合させ
る。After the water-soluble polymer is crosslinked in the porous layer of the ultrafiltration membrane in this way, membrane cleaning, which is a conventional cleaning process, is performed from the dense layer side to remove any uncrosslinked material remaining in the porous layer. After that, a solution containing a predetermined flI element is passed through the porous layer side of the ultrafiltration membrane to remove #X through the functional group of the crosslinked polymer. Covalently bond to a crosslinked polymer.
即ち、このような方法によれば、前記架橋高分子がその
分子末端−?Ndにアミノ基、カルボキシル基、ヒドロ
キシル基等の官能基をMしているので、従来から固定化
酵素の役所分野において知らnている方法によって、酵
素の有する官ng基を直接に、又は前dd架橋剤’?縮
合剤を用いて間接的に。That is, according to such a method, the crosslinked polymer has its molecular terminal -? Since functional groups such as amino groups, carboxyl groups, and hydroxyl groups are added to Nd, the functional groups of the enzyme can be directly or Crosslinking agent'? indirectly using a condensing agent.
酵素を共有結合にて架橋高分子に結合させることができ
る。固定化rII累の町動性紫大きくシ、酵素の反応性
を高める之めに、所謂スペー?を介して酵素を架橋高分
子に結合させることもできる。Enzymes can be covalently attached to crosslinked macromolecules. The immobilized rII layer has a large purple color, so-called space? Enzymes can also be attached to crosslinked polymers via .
本発明においては、上記したようにして酵素を限外濾過
膜に固定化してなる膜リアクターが用いられ、基質′溶
液金上記膜リアクターの多孔質層側に所定の圧力下に循
環供給して連続的に酵素反応を行なうと共に、得られt
膜透過液を所定時間毎に前記基質溶液への加圧圧力風と
の圧力にて、前記膜リアクターの緻m 1m Illか
ら多孔質j−側に逆流透過させる。従って1本発明の酵
素反応装置は酵素固定膜ユニットと逆洗ユニット金具備
してなるものである。In the present invention, a membrane reactor in which an enzyme is immobilized on an ultrafiltration membrane as described above is used, and the substrate solution gold is continuously supplied under a predetermined pressure to the porous layer side of the membrane reactor. In addition to carrying out the enzymatic reaction, the obtained t
The membrane permeate is permeated from the membrane reactor's dense membrane reactor to the porous j-side at predetermined time intervals under the pressure of the pressurized air applied to the substrate solution. Accordingly, the enzyme reaction apparatus of the present invention comprises an enzyme immobilized membrane unit and a backwashing unit fitting.
本発明において、酵素は特に限定されるものではないが
、h述し之ように分画機能を有する限外濾過膜を担体と
し、これに酵素を固定化してなる膜リアクターによる酵
素反応において、その特性を充分に活かす九めには、多
糖類fタンパク質の加水分解反応に用いることが有利で
るる。このような#未反応の几めの酵素として6例えば
α−アミラーゼ、グルコアミラーゼ、ペクチナーゼ、セ
ルラーゼ、ム2ミダーゼ等のような多II類加水分解酵
素、パパイン、ペプシン、トリプシン、キモトリプシン
、70メライン、グロテアーゼ等のようなタンパク質加
水分解酵素等金挙げることができる。このような酵素は
高分子基′Rを加水分解して、低分子の反応生成物を与
える。In the present invention, the enzyme is not particularly limited, but as mentioned above, in an enzyme reaction using a membrane reactor in which an ultrafiltration membrane having a fractionation function is used as a carrier and an enzyme is immobilized on the carrier, the enzyme can be used. Ninth, to fully utilize its properties, it is advantageous to use it in the hydrolysis reaction of polysaccharide f protein. Such as unreacted and refined enzymes such as 6, multiple class II hydrolases such as α-amylase, glucoamylase, pectinase, cellulase, mu2midase, etc., papain, pepsin, trypsin, chymotrypsin, 70 melain, Examples include protein hydrolases such as grotease and the like. Such enzymes hydrolyze the macromolecular group 'R to give low molecular weight reaction products.
本発明においては、用いる基質も特に限定されるもので
はないが、好ましくは前記酵素に対応する基質が用いら
れる。従って1例えば多tsi加水分解酵素に対しては
、液化デングン、oTfej性デンプン、デキストリン
のような多m類が用いられる。In the present invention, the substrate to be used is not particularly limited, but preferably a substrate corresponding to the above-mentioned enzyme is used. Therefore, for example, for multi-tsi hydrolases, multi-molecular compounds such as liquefied starch, oTfej starch, and dextrin are used.
液化デンプンの製造には、α−アミラーゼにてデンプン
を比較的高分子量のものに分解したもののほか、サイク
ロデキストリン生成11[、更には。In the production of liquefied starch, in addition to decomposing starch into relatively high-molecular-weight products using α-amylase, cyclodextrin production 11 [and furthermore].
酸、アルカリヤ物理的方法にてOT#化したものも用い
られる。Those converted into OT# by acid or alkaline physical methods are also used.
本発明に2いては、基質溶液は前記水f#性性分分子架
橋剤t′富有する水溶液を膜透過させ之ときと同じ(,
0,1−IKg/c4の範囲であって、且つ。In the second aspect of the present invention, the substrate solution is the same as that used when the aqueous solution rich in water f# and the crosslinking agent t' is permeated through the membrane.
0,1-IKg/c4, and.
前記水#11!1:高分子の限外濾過への含浸時の圧力
以丁の圧力にて膜を透過させることが好ましい。即ち、
基質溶液を前記水溶性高分子の限外濾過1漠への含浸時
の圧力よりも高(L7tJ!II合は、限外濾過膜の多
孔質I−に保持されている酵素の担体としての前記架橋
高分子が圧密化する几めに、基′R溶液t?膜透過させ
て酵素反応を行なう場合に、基質の透過が困難となって
酵素反応が妨げられるからである。Said water #11!1: It is preferable to permeate the membrane at a pressure equal to the pressure at the time of impregnating the polymer into the ultrafiltration. That is,
The pressure at which the substrate solution is impregnated into the ultrafiltration membrane of the water-soluble polymer is higher than the pressure (L7tJ!II) when the substrate solution is impregnated into the ultrafiltration membrane. This is because when an enzyme reaction is carried out by passing a group solution through a t? membrane so that the crosslinked polymer becomes compacted, it becomes difficult for the substrate to pass through the membrane and the enzyme reaction is hindered.
また、基質溶液のpHは用いる酵素にもよるが。Furthermore, the pH of the substrate solution depends on the enzyme used.
その#未反応の至適PH[Am整することが好ましく1
本発明においては1通常、4〜8の範囲のpHが好まし
い。反応温度も用いる酵素の種類にもよるが1通常40
〜70℃の範囲でめシ、好ましくは50〜55℃の範囲
である。It is preferable to adjust the optimum pH of the # unreacted [Am]
In the present invention, a pH in the range of 4 to 8 is usually preferred. Although the reaction temperature depends on the type of enzyme used, it is usually 40
It is preferably in the range of -70°C, preferably in the range of 50-55°C.
本発明の方法に2いては、基質溶液金上dピの工うに、
上記酵素固定膜の多孔質4111側に所定の圧力下に循
環供給し、所定時間毎に膜透過液t#記基質溶液への加
圧圧力以上に加圧して、酵素固定漠の緻密層側から多孔
質1I4iilllに逆流:i!!遇させて、酵−Jg
固定膜を逆洗する。逆洗は5〜120分間の酵素反応時
間当95〜30秒間程度に設定することが生産性の点か
ら好ましい。In method 2 of the present invention, the process of depositing dpi on a substrate solution of gold,
The enzyme-immobilized membrane is circulated under a predetermined pressure on the porous 4111 side, and is pressurized at predetermined time intervals to a pressure higher than the pressure applied to the membrane permeate t# substrate solution. Backflow to porous 1I4iill: i! ! Let me meet you, fermentation-Jg
Backwash the fixed membrane. From the viewpoint of productivity, it is preferable to set the backwashing time to about 95 to 30 seconds per 5 to 120 minutes of enzyme reaction time.
このように、基質溶液の酵1g[18ii定膜への循環
供給を停止することなく、換りアクタ−を逆155/=
I)することは、膜面への付着物の除去の容易性のみな
らず、膜洗浄による酵素反応の中断による生産注の低下
は最小限に抑えられ、酵素反応生産物を高生産性にて得
る几めに極めて1要である。In this way, without stopping the circulating supply of substrate solution to the fermenter 1 g [18
I) Not only does it make it easier to remove deposits on the membrane surface, but it also minimizes the drop in production due to interruption of the enzyme reaction due to membrane cleaning, allowing the enzyme reaction product to be processed at high productivity. It is very important to be precise in obtaining it.
即ち、前記基′R浴漱の循環供給が120分間t″越え
る毎に、膜リアクターを膜洗浄するときは、所定の期間
にわ几って行なわnる#未反応に2いて。That is, every time the circulating supply of the R bath effluent exceeds 120 minutes t'', when cleaning the membrane reactor, it is carried out for a predetermined period of time to remove unreacted water.
膜洗浄の間の酵素反応の時間が長く、換言すれば。In other words, the time of enzyme reaction during membrane cleaning is long.
膜洗浄の頻度が小さく、かくして、膜面に付着物が強固
に且つ多量に付着することになって、膜洗浄によってP
Alfrへの付着物を十分に除去することができず、そ
の結果として1g透過液の透過流束の経時低下が着しく
、酵素反応に2いて高い生産性′t″確保しがたい。他
方、前記基質溶液の循環供給が5分間より短い時間毎に
、膜リアクターを迎洗浄すると@は、P!洗浄の頻度が
看しく高くなるので、透過流束を高く維持し得ても、所
定の期間内の#未反応の時間が短く、膜洗浄に用いられ
る膜透過液が減量して、J:、記と同様に酵素反応にp
いて、高い生産性を確保しがたくなる。The frequency of membrane cleaning is low, and as a result, a large amount of deposits adhere firmly to the membrane surface, and membrane cleaning reduces P.
It is not possible to sufficiently remove the deposits on the Alfr, and as a result, the permeation flux of 1 g of permeate decreases over time, making it difficult to ensure high productivity in the enzyme reaction.On the other hand, If the membrane reactor is cleaned every time the substrate solution is circulated for less than 5 minutes, the frequency of P! cleaning becomes unreasonably high, so even if the permeation flux can be maintained high, The unreacted time in # is short, the amount of membrane permeate used for membrane cleaning is reduced, and the amount of # unreacted in the enzyme reaction is reduced as described in J:.
This makes it difficult to maintain high productivity.
上記膜洗浄に2いて、膜透過液は酵素反応における基質
m/fcへの加圧圧力以上であって、#未反応における
&ii!jr4i液への力U圧圧力との差圧が2.0K
I9/c4以下のカロ圧下に、限外濾過膜の繊密j−側
から透過させる必要かめる。膜透過液の加圧圧力が#未
反応における基′R溶液への加圧圧力よりも低いときは
、基質7)循環供給中に膜洗浄を行うことはできず、他
方、差圧が2.0kcll/cjよりも高い場合は、架
橋高分子が限外濾過膜の多孔質層から離脱し几り、ある
いは限外濾tlla目体が破損する恐れがあるからであ
る。In the above membrane washing step 2, the membrane permeate liquid has a pressure higher than the pressure applied to the substrate m/fc in the enzyme reaction, and # unreacted &ii! The differential pressure between the force on the jr4i liquid and the U pressure is 2.0K.
It is necessary to permeate from the delicate J-side of the ultrafiltration membrane under a Calo pressure of less than I9/c4. When the pressure applied to the membrane permeate is lower than the pressure applied to the group'R solution in the unreacted state, membrane cleaning cannot be carried out during substrate 7) circulating supply; on the other hand, if the differential pressure is 2. This is because if it is higher than 0 kcll/cj, there is a risk that the crosslinked polymer will separate from the porous layer of the ultrafiltration membrane and become clogged, or the ultrafiltration membrane may be damaged.
更に、好ましくは、逆洗側により重環液中に流出する不
m物t−除去する几めに、基質溶液の#I環供給ラうン
中に、孔径的0.1−1t)μ畷のメンブレンフィルタ
ーを設置して、不m物の除去を行ないコク。酵素反応を
連続的に行なうのが望ましい。Furthermore, preferably, in order to remove impurities flowing into the heavy ring solution by the backwash side, a pore diameter of 0.1-1t) is added in the #I ring supply line of the substrate solution. A membrane filter is installed to remove impurities. It is desirable to carry out the enzymatic reaction continuously.
本発明の酵素反応装置は丘記反応方法を行なう九めのも
のであって、酵素−電膜ユニットと逆洗ユニットを具備
するものである。これらのユニットは連結されているが
、所定時1i!1毎の逆洗を自動的に行なうために0両
ユニット間にタイマーによって弁の開閉が設定時間毎に
生じる電磁弁を設置することが好ましい。The enzyme reaction apparatus of the present invention is the ninth one for carrying out the Oki reaction method, and is equipped with an enzyme-electromembrane unit and a backwashing unit. These units are connected, but at a given time 1i! In order to automatically perform backwashing every time, it is preferable to install an electromagnetic valve between the two units so that the valve opens and closes at set time intervals using a timer.
〈発明の効果〉
以上のように6本発明によれば、膜リアクターを透過す
る膜透過液金用い、所定時間毎に所定の条件にて逆洗側
するので、膜面への付着物を効果的に除去することがで
き、他方、逆洗側の間の酵素反応の中断による生産性の
低下を最小限に抑えつつ、酵素反応を連続的に行なうこ
とができる。<Effects of the Invention> As described above, according to the present invention, the membrane permeated liquid gold that permeates through the membrane reactor is backwashed at predetermined intervals under predetermined conditions, so that the deposits on the membrane surface can be effectively removed. On the other hand, the enzymatic reaction can be carried out continuously while minimizing the decrease in productivity due to interruption of the enzymatic reaction during the backwashing process.
従って1本発明によれば膜リアクター上用いる長期間に
わたる酵素反応に2いて、高い透過流束と高い酵素活性
を維持しつつ、酵素反に6を行なうことができるので、
高い生産性にて目的とする酵素反応生産物全得ることが
できる。Therefore, according to the present invention, it is possible to carry out enzyme reaction over a long period of time using a membrane reactor while maintaining high permeation flux and high enzyme activity.
All of the desired enzymatic reaction products can be obtained with high productivity.
〈実施例〉
以下に実施例を挙げて挟体的に説明するが1本発明はこ
れらの実施例により何ら限定されるものではない。<Examples> The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples in any way.
実施例1
(限外濾過膜への酵素の一定化)
ポリスルホンからなる酵gIa定化用中空糸状限外1過
膜(日東電工四裂NTE−3713.分画分子量20.
000)を庸えた膜モジュール(中空糸状瞑径3.51
11.長さ32α1元44故115本、膜面積0.1−
)金用いた。Example 1 (Standardization of enzyme in ultrafiltration membrane) Hollow fiber ultrafiltration membrane for quantifying yeast gIa made of polysulfone (Nitto Denko Shifi NTE-3713. Molecular weight cut off: 20.
000) membrane module (hollow fiber diameter 3.51
11. Length 32 α 1 element 44 so 115, membrane area 0.1-
) Money was used.
先ず、限外濾過膜の多孔質ノ11側から室温にて0.1
重電%のボリニチ(し、・ン・イミン水杉液を0.3ゆ
/−の加圧下に30分間透過させ、ポリエチレンイミン
全長孔貞ノーに扱者保持させ友。次いで、0.1重量%
濃度のグルタルアルデヒド水mg1.rc膜の多孔質層
側から温度40℃で0.3 ky/c4の加圧下に4時
間強制通液し、ポリエチレンイミンを架橋させ比。この
後、室温にて膜の緻密層側から水を逆通欣し。First, from the porous No. 11 side of the ultrafiltration membrane, 0.1
A solution of 0.1% by weight of heavy electricity was permeated for 30 minutes under a pressure of 0.3% by weight, and the handle was held in a polyethyleneimine full length hole.
Concentration of glutaraldehyde water mg1. Liquid was forcibly passed from the porous layer side of the RC membrane at a temperature of 40°C under a pressure of 0.3 ky/c4 for 4 hours to crosslink polyethyleneimine. After this, water was pumped back through the dense layer side of the membrane at room temperature.
膜の多孔質層に残留する木架橋のポリエチレンイミンを
洗浄除去し九仮、再び多孔質層側から2.5直重%濃度
のグルタルアルデヒド水溶液を温度40゛CでO−3に
97cdの力ロ圧下に4時間通液して、ポリエチレンイ
ミンのアミノ基を活性化させ友。この後。After cleaning and removing the wood-crosslinked polyethyleneimine remaining in the porous layer of the membrane, a glutaraldehyde aqueous solution with a concentration of 2.5% by weight was applied again from the porous layer side to O-3 at a temperature of 40°C with a force of 97 cd. The amino groups of polyethyleneimine were activated by passing liquid under pressure for 4 hours. After this.
室温にて水を多孔質側から強制通液して膜を洗浄し友。Wash the membrane by forcing water through the porous side at room temperature.
このように処理した限外濾過膜にその多孔質j−側から
2.Oing7rxt濃度のα−アミラーゼ溶液(三基
■装コクラーゼ、酢all緩衝液P)I 6.υ)を温
度2℃で0.2に!?/e4の加圧下に15時間通液し
て、共M結合にてα−アミラーゼ茫限外濾過膜の多孔質
j−の保持する架橋ポリエチレンイミンに一定化し友。2. α-amylase solution (trivalent coclase, vinegar all buffer P) with a concentration of Oing7rxt I 6. υ) becomes 0.2 at a temperature of 2℃! ? /e4 for 15 hours to form a constant cross-linked polyethyleneimine held by the porous membrane of the α-amylase ultrafiltration membrane through co-M bonds.
このようにして得らn7tmリアクターにおけるα−ア
ミラーゼの固定化量は0g面積1c11当りに0.4#
でめった。The amount of α-amylase immobilized in the n7tm reactor obtained in this way was 0.4# per 1c11 of 0g area.
I failed.
(編リアクターによるグルコースのl!a)上記獲りア
クタ−に1重量%#度の町d注デンプン浴g(酢酸緩衝
液P)I6.0)を0.54/−の加圧下に40℃の一
度で供給し、第1図に示す如く接続され之逆洗浄装置を
稼動させながら連続的に酵素反応を行ない、透過流束お
よび膜透過液中の還元糖の量を測定し比。(l!a) of glucose by ed reactor) Add 1% by weight of starch bath g (acetate buffer P) I6.0) to the above harvested reactor at 40°C under a pressure of 0.54/- The enzyme reaction was carried out continuously while the backwashing device connected as shown in Fig. 1 was operated, and the permeation flux and the amount of reducing sugar in the membrane permeate were measured and compared.
第1図に示す逆洗側装置は、タイマーによって45分間
毎に三方電磁弁4が10秒間開き、弁開放中に小型空気
圧m礪2(f4’J1日立製作所裂スーパーオイルフリ
ーベビコン、蹟高圧カフ Kll f /c4 U’)
。The backwash side device shown in Fig. 1 uses a timer to open the three-way solenoid valve 4 for 10 seconds every 45 minutes, and while the valve is open, a small pneumatic m Kll f /c4 U')
.
吐出′!!!気虚45 g/min )によって1.5
Kll(U VC刀口圧して、膜透過液タンク5から
透過液を膜リアクター1に強制的に逆流洗浄させるもの
である。尚。vomit'! ! ! Qi deficiency 45 g/min) by 1.5
Kll (UVC) is used to forcefully backwash the permeate from the membrane permeate tank 5 into the membrane reactor 1.
本実施例では基質循環供給ラインにメンブレンフィルタ
ー(アトパンチツク東洋■製コンパクトカプセルフィル
ターCCFタイプ、孔径0.2μ溝 有効濾過面積2,
2UOc4)を設けて、逆洗側によって流出し之不m物
t?除去しつつ連続酵素反応を行なった。In this example, a membrane filter (Compact Capsule Filter CCF type manufactured by Atopanczuk Toyo ■, pore diameter 0.2μ groove, effective filtration area 2,
2UOc4) is installed to prevent waste from flowing out through the backwash side. Continuous enzymatic reactions were performed while removing.
反応時間と透過流束、および反応時間と透過液中の還元
糖量との関係を第2図に示した。Figure 2 shows the relationship between reaction time and permeation flux, and the relationship between reaction time and the amount of reducing sugar in the permeate.
比較例1
実施例1において膜洗浄を行なわない、即ち膜リアクタ
ーを洗浄しない以外は、実施例1と同様にして酵素反応
を連続的に行ない、結果を第3図に示した。Comparative Example 1 An enzyme reaction was carried out continuously in the same manner as in Example 1, except that the membrane was not washed in Example 1, that is, the membrane reactor was not washed, and the results are shown in FIG.
実施例2
実施例1vcpいて3時間毎vc電磁弁を開き、10秒
間逆洗lpを行なり次項外は、実施例1と同様にして酵
素反応を連続的に行ない、結果を第4図に示した。Example 2 In Example 1, the VC solenoid valve was opened every 3 hours, backwashing was carried out for 10 seconds, and the enzymatic reaction was carried out continuously in the same manner as in Example 1 except for the following. The results are shown in Figure 4. Ta.
上記各実施例pよび比較例の結果から明らかなように、
所定時間毎の膜洗浄によって透過流束および透過液中の
還元糖量の低下が効果的に抑制されていることが判る口
また膜透過液を膜洗浄に用いても還元糖量などの値に悪
影#金及ぼさないことが判る。As is clear from the results of each Example p and Comparative Example above,
It can be seen that the decrease in the permeation flux and the amount of reducing sugar in the permeate is effectively suppressed by cleaning the membrane at predetermined intervals.Furthermore, even when the membrane permeate is used for membrane cleaning, values such as the amount of reducing sugar do not change. Bad shadow #It turns out that it doesn't cost money.
実施例3 実施例1において固定化する酵素溶液として。Example 3 As the enzyme solution to be immobilized in Example 1.
0.021i%グルコアミラーゼ(酢酸緩衝液pf(6
11)金用い急以外は実施例1と同様にして膜リアクタ
ーを炸裂し友。0.021i% glucoamylase (acetate buffer pf (6
11) The membrane reactor was exploded in the same manner as in Example 1, except for the use of metal.
と配属りアクタ−に51i量%のデングン液化液(6m
41繭液pH6,0) 金0.51C1l/die)1
M圧下に40’t::の、、遥、1で供給し、実施例と
同様の膜洗浄IRImを用い、5分間毎に10秒間逆洗
浄(1,5X’/I4加圧ン金行な匹、酵素反応を連続
的に行なった。The actor was assigned 51i% dengun liquefied liquid (6m
41 Cocoon liquid pH 6,0) Gold 0.51C1l/die)1
Using the same membrane cleaning IRIm as in the example, backwashing was carried out for 10 seconds every 5 minutes (1,5X'/I4 pressure pumping). The enzymatic reaction was carried out continuously.
反応時間と透過流束、および反応時間と透過液中の生成
グルコース盪との関係1?i@5図に示し次。Relationship between reaction time and permeate flux, and reaction time and glucose produced in the permeate 1? The following is shown in Figure i@5.
第1図は本発明の酵素反応装置n示す簡略図であり、第
2図〜第5図は本発明の実施例pよび比較例によって得
られた結果を示すグラフである。
l・・・膜リアクタ−2・・・小型空気圧縮機。
3・・・フィルター付レギュレータ、4・・・三方ta
弁、5・・・膜透過液タンク、6・・・圧力計時#f出
願人
日東電工株式会社
代表、f 嫌 居 五 朗
第2図
第1図
第3図
反んFJ’PM (E)
(自発)
手続補正書
第
≠
図
昭和63年12月12
日FIG. 1 is a simplified diagram showing the enzyme reaction apparatus of the present invention, and FIGS. 2 to 5 are graphs showing the results obtained in Example P and Comparative Example of the present invention. l...Membrane reactor-2...Small air compressor. 3...Regulator with filter, 4...Three-way ta
Valve, 5... Membrane permeate tank, 6... Pressure measurement #f Applicant: Representative of Nitto Denko Co., Ltd., f. (Voluntary) Procedural Amendment No. ≠ Figure December 12, 1988
Claims (4)
る多孔質層とを備えた異方性限外濾過膜の多孔質層に酵
素を固定化してなる酵素固定膜を用いる酵素反応方法に
おいて、基質溶液を上記酵素固定膜の多孔質層側に所定
の圧力下に循環供給して連続的に酵素反応を行なうと共
に、得られた膜透過液を所定時間毎に前記基質溶液への
加圧圧力以上の圧力にて、前記酵素固定膜の緻密層側か
ら多孔質層側に逆流透過させることを特徴とする酵素反
応方法。(1) Enzyme reaction using an enzyme-immobilized membrane in which an enzyme is immobilized on the porous layer of an anisotropic ultrafiltration membrane that has a dense layer as a surface layer and a porous layer that integrally supports this membrane. In this method, a substrate solution is circulated and supplied under a predetermined pressure to the porous layer side of the enzyme-immobilized membrane to carry out an enzyme reaction continuously, and the obtained membrane permeate is added to the substrate solution at predetermined intervals. An enzyme reaction method characterized in that the enzyme-immobilized membrane is allowed to pass through the membrane in a reverse manner from the dense layer side to the porous layer side at a pressure higher than the applied pressure.
高分子重合体を保持し、この重合体に酵素が共有結合に
て固定化されている請求項(1)記載の酵素反応方法。(2) The enzyme according to claim (1), wherein the enzyme-immobilized membrane holds a polymer cross-linked to the porous layer of the ultrafiltration membrane, and the enzyme is immobilized to this polymer through covalent bonds. Reaction method.
る多孔質層とを備えた異方性限外濾過膜の多孔質層に酵
素を固定化してなる酵素固定膜ユニットと、上記酵素固
定膜を膜透過液にて逆流洗浄するための逆洗ユニットを
具備し、請求項(1)記載の酵素反応方法を行なうため
の酵素反応装置。(3) An enzyme-immobilized membrane unit formed by immobilizing an enzyme on the porous layer of an anisotropic ultrafiltration membrane, which has a dense layer as a surface layer and a porous layer that integrally supports the same; An enzyme reaction apparatus for carrying out the enzyme reaction method according to claim 1, comprising a backwash unit for backwashing an enzyme-immobilized membrane with a membrane permeate.
高分子重合体を保持し、この重合体に酵素が共有結合に
て固定化されている請求項(3)記載の酵素反応装置。(4) The enzyme according to claim (3), wherein the enzyme-immobilized membrane holds a polymer cross-linked to the porous layer of the ultrafiltration membrane, and the enzyme is immobilized to this polymer through covalent bonds. Reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26244288A JPH02109986A (en) | 1988-10-18 | 1988-10-18 | Method and apparatus for carrying out enzymic reaction using enzyme immobilized membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26244288A JPH02109986A (en) | 1988-10-18 | 1988-10-18 | Method and apparatus for carrying out enzymic reaction using enzyme immobilized membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02109986A true JPH02109986A (en) | 1990-04-23 |
Family
ID=17375847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26244288A Pending JPH02109986A (en) | 1988-10-18 | 1988-10-18 | Method and apparatus for carrying out enzymic reaction using enzyme immobilized membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02109986A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7176017B2 (en) | 2001-07-13 | 2007-02-13 | Co2 Solution Inc. | Triphasic bioreactor and process for gas effluent treatment |
US8889373B2 (en) | 2010-08-12 | 2014-11-18 | Eastman Chemical Company | Enzyme catalyst immobilized on porous fluoropolymer support |
-
1988
- 1988-10-18 JP JP26244288A patent/JPH02109986A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7176017B2 (en) | 2001-07-13 | 2007-02-13 | Co2 Solution Inc. | Triphasic bioreactor and process for gas effluent treatment |
US7579185B2 (en) | 2001-07-13 | 2009-08-25 | Co2 Solution Inc. | Triphasic process for gas effluent treatment |
US8889373B2 (en) | 2010-08-12 | 2014-11-18 | Eastman Chemical Company | Enzyme catalyst immobilized on porous fluoropolymer support |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6283885A (en) | Immobilized enzyme membrane and production thereof | |
DE69404848T2 (en) | FILTER CARTRIDGE WITH INSOLUBLE ENZYME PARTICLES ARRANGED ON IT | |
EP0562371B1 (en) | Immobilisation of biochemical substances | |
EP0562373A2 (en) | Immobilisation of biochemical substances | |
CA1307632C (en) | Forming membrane structure by applying protein suspension to carrier | |
JPH02109986A (en) | Method and apparatus for carrying out enzymic reaction using enzyme immobilized membrane | |
JPS5835679B2 (en) | Kosohannouno Jitsushihouhou | |
JPH02245190A (en) | Enzymatic reaction | |
JPH01141587A (en) | Method for enzymic reaction using immobilized enzyme membrane | |
Staude et al. | Reactions with enzymes covalently bonded to heterogeneous ultrafiltration membranes | |
JPH02128650A (en) | Production of tea using filtration membrane | |
JPH02219575A (en) | Production of membrane for immobilizing enzyme | |
JPS63245675A (en) | Hollow fiber membrane for immobilization of enzyme and production thereof | |
CN108467425A (en) | A kind of chlorella growth factor(CGF)Extraction process | |
JPS62296876A (en) | Immobilized enzyme membrane | |
JPH02249494A (en) | Production of branched cyclodextrin | |
JPH0372881A (en) | Production of hollow fiber membrane for enzyme immobilization | |
US4695483A (en) | Method for the preparation of composite membranes based on interpenetrating polymer networks | |
JPS63177790A (en) | Regeneration of enzyme immobilizing membrane | |
JPH01179698A (en) | Production of maltooligosucrose | |
JPS6365699B2 (en) | ||
JP2620788B2 (en) | Method for producing cyclodextrin | |
JPH02109980A (en) | Hollow fiber membrane for immobilizing enzyme | |
JPS61111687A (en) | Immobilized enzyme membrane and preparation thereof | |
JPH01144990A (en) | Production of glucose |