JPH02104619A - Production of non-oriented magnetic steel sheet having excellent iron loss characteristic - Google Patents
Production of non-oriented magnetic steel sheet having excellent iron loss characteristicInfo
- Publication number
- JPH02104619A JPH02104619A JP63258157A JP25815788A JPH02104619A JP H02104619 A JPH02104619 A JP H02104619A JP 63258157 A JP63258157 A JP 63258157A JP 25815788 A JP25815788 A JP 25815788A JP H02104619 A JPH02104619 A JP H02104619A
- Authority
- JP
- Japan
- Prior art keywords
- rolled
- rolling
- less
- steel sheet
- iron loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 33
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 22
- 239000010959 steel Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000005096 rolling process Methods 0.000 claims abstract description 28
- 238000000137 annealing Methods 0.000 claims abstract description 19
- 230000009466 transformation Effects 0.000 claims abstract description 18
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 238000005097 cold rolling Methods 0.000 claims description 8
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 claims description 6
- 238000005554 pickling Methods 0.000 claims description 3
- 238000005461 lubrication Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 21
- 230000004907 flux Effects 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000005275 alloying Methods 0.000 abstract description 4
- 239000010960 cold rolled steel Substances 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 13
- 238000005098 hot rolling Methods 0.000 description 8
- 230000005389 magnetism Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000012467 final product Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は鉄損が低く、磁束密度の高い無方向性電磁鋼板
の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a non-oriented electrical steel sheet with low core loss and high magnetic flux density.
(従来の技術)
従来の電磁鋼板は鉄損を低くする手段として一般に固有
抵抗増加による渦電流損低下の観点からStあるいはM
等の含有量を高める方法が用いられてきた。また、これ
らの合金成分を添加せずに優れた電磁特性を得る方法と
して冷延・焼鈍板に数%のスキンパス圧延を行い、ユー
ザーで打ち抜き加工をした後、ひずみ取り焼鈍を行う方
法がある(特開昭60−17014号公報など)。(Prior art) Conventional electrical steel sheets are generally made of St or M as a means of reducing iron loss from the viewpoint of reducing eddy current loss due to increased specific resistance.
Methods have been used to increase the content of In addition, as a method to obtain excellent electromagnetic properties without adding these alloy components, there is a method in which cold-rolled/annealed sheets are subjected to several percent skin pass rolling, punched by the user, and then subjected to strain relief annealing ( JP-A No. 60-17014, etc.).
これらの従来法では一般に仕上熱延を800℃以上とし
、捲取温度が低く、再結晶が十分進行していない場合、
高温の熱延板焼鈍を行った後75%以上の冷延を行い高
温短時間焼鈍を施して製品としていた。ただし、後者の
セミプロセスでは前記したように、その上に数%のスキ
ンパス圧延を行っている。In these conventional methods, the finish hot rolling is generally 800°C or higher, and if the winding temperature is low and recrystallization has not progressed sufficiently,
After performing high-temperature hot-rolled sheet annealing, the product was cold-rolled by 75% or more and subjected to high-temperature short-time annealing. However, in the latter semi-process, as described above, several percent of skin pass rolling is performed thereon.
(発明が解決しようとする課題)
本発明が解決しようとする課題は、鉄損を下げるために
添加する高価な合金元素の添加量の減少と圧延プロセス
の省略である。(Problems to be Solved by the Invention) Problems to be solved by the present invention are to reduce the amount of expensive alloying elements added to reduce iron loss and to omit the rolling process.
(課題を解決するための手段)
本発明はかかる課題を解決するために、^r3変態点以
下で行う圧延の前のフェライト粒の平均粒径が200μ
m以上の重量%でC: 0.05%以下、N:0.01
0%以下、Si:l1%以下、Mn : 1.5%以下
、P : 0.15%以下、S : 0.010%以下
、M:0.3%以下及び必要に応してBをB/Nで1.
5以下含み、残部がFeと不可避不純物よりなる鋼をA
r3変態点以下、500℃以上の温度域で少なくとも3
0%の圧延を行い、500℃以上の温度で仕上げたのち
、そのままあるいは熱延板焼鈍を行い、酸洗後通常の冷
間圧延、焼鈍を行うことを特徴とする鉄損が低く、磁束
密度の高い無方向性電磁鋼板を製造する方法を提供する
ものである。(Means for Solving the Problems) In order to solve the problems, the present invention provides a method in which the average grain size of ferrite grains before rolling below the ^r3 transformation point is 200 μm.
C: 0.05% or less, N: 0.01 in weight% of m or more
0% or less, Si: l1% or less, Mn: 1.5% or less, P: 0.15% or less, S: 0.010% or less, M: 0.3% or less, and if necessary, replace B with B. /N for 1.
5 or less, and the balance is Fe and unavoidable impurities.
At least 3 in the temperature range below r3 transformation point and above 500℃
After 0% rolling and finishing at a temperature of 500℃ or higher, it is either as-is or hot-rolled and annealed, followed by pickling and normal cold rolling and annealing.It has low iron loss and magnetic flux density. The present invention provides a method for manufacturing a non-oriented electrical steel sheet with high viscosity.
以下、本発明の構成要件の限定理由について説明する。The reasons for limiting the constituent elements of the present invention will be explained below.
なお、以下の誂明中の%は重量%である。In addition, % in the following description is weight %.
まず、本発明鋼の化学成分において、Cは鉄損改善のた
めには少ない方が好ましく、かつ時効による磁性劣化を
生じないためには0.005%以下が好ましい。しかし
、本発明法のプロセスではCが0.05%まで鉄損向上
の効果が確認されたので、C量の上限を0.05%とし
た。Si は鉄損改善の目的で添加するが、Si量が増
加するほど磁束密度が低くなると共に本発明の製造法に
より得られる鉄損の従来法で製造される時の鉄損に対す
る優位差が小さくなるばかりでなく本発明の主旨の一つ
である合金添加によるコスト高を抑制する意味からもS
i添加量の上限は1%とする。Nも鉄損改善のためには
少ない方がよく、本発明鋼では0.010%を条件とし
た。特にAjNの析出を抑制し鉄損を下げる場合はBを
添加してBNを析出させることが望ましいが、B/Nが
1.5超になると過剰Bが磁性を悪化させるので、B量
の上限をB/Nで1.5と定めた。本発明鋼でSi量が
少ない場合、鋼板が軟質になり過ぎ、打抜き作業が難し
くなるのを防ぐため強度を上げる目的でPを添加してい
る。Pの添加は鉄を員の改善にもなるが、0.15%を
超えると熱間加工性が悪化し、熱延割れなどが発生する
危険があるので上限を0.15%とした。MはSiと同
様鉄損改善の目的で添加してもよいが合金添加によるコ
スト高を抑制する意味から上限を0.31%とした。ま
た、MnはPと同様に強度増加のために添加するが、1
.5%を超えると変態点が低下し、焼鈍時にフェライト
−オーステナイト変態が生じやすくなり磁性の劣化がみ
られるので添加量の上限は165%とした。また、Sは
磁性向上に有害なMnS等の非金属介在物を生成するの
で0.010%以下にしなければ安定した磁性改善効果
が得られない。First, in the chemical composition of the steel of the present invention, a small amount of C is preferable in order to improve iron loss, and a preferable content is 0.005% or less in order to prevent magnetic deterioration due to aging. However, in the process of the present invention, the effect of improving iron loss was confirmed up to 0.05% of C, so the upper limit of the amount of C was set to 0.05%. Si is added for the purpose of improving iron loss, but as the amount of Si increases, the magnetic flux density decreases, and the difference in the iron loss obtained by the manufacturing method of the present invention over the iron loss obtained by the conventional method becomes smaller. Not only this, but also the S
The upper limit of the amount of i added is 1%. In order to improve iron loss, it is better to have a small amount of N, and in the steel of the present invention, the condition was 0.010%. In particular, when suppressing AjN precipitation and lowering iron loss, it is desirable to add B to precipitate BN, but if B/N exceeds 1.5, excess B deteriorates magnetism, so the upper limit of the B amount is The B/N was set at 1.5. When the amount of Si is small in the steel of the present invention, P is added for the purpose of increasing strength to prevent the steel plate from becoming too soft and making punching work difficult. Addition of P also improves the strength of iron, but if it exceeds 0.15%, hot workability deteriorates and there is a risk of hot rolling cracking, etc., so the upper limit was set at 0.15%. Like Si, M may be added for the purpose of improving iron loss, but the upper limit was set to 0.31% in order to suppress the cost increase due to alloy addition. Also, like P, Mn is added to increase strength, but 1
.. If it exceeds 5%, the transformation point decreases, ferrite-austenite transformation tends to occur during annealing, and deterioration of magnetism is observed. Therefore, the upper limit of the addition amount was set at 165%. Furthermore, since S forms nonmetallic inclusions such as MnS that are harmful to improving magnetism, a stable effect of improving magnetism cannot be obtained unless the content is 0.010% or less.
次に加工条件の限定について述べる。Next, we will discuss limitations on processing conditions.
Ar3変態点(Ars(’C)=916 509C−6
4Mn+33Si+ 50AZ + 250P)以下で
行う圧延の前のフェライト粒の平均粒径を200μm以
上としたのは、この条件よりフェライト組織が細かくな
ると、最終製品の磁性が劣化するためである。Ar3 transformation point (Ars('C)=916 509C-6
The reason why the average grain size of the ferrite grains before rolling (4Mn+33Si+50AZ+250P) or less is set to 200 μm or more is because if the ferrite structure becomes finer than this condition, the magnetism of the final product will deteriorate.
本発明者らはAr、変態点以下の温度域で行う圧延の前
の粒径と圧延後の再結晶集合組織の関係を調べ、粒径が
ある大きさ以上になり、圧延温度がある範囲にあると、
磁性に好ましい(100)方位が強く発達することを見
いだした。The present inventors investigated the relationship between the grain size before rolling and the recrystallized texture after rolling in the Ar temperature range below the transformation point. If there,
It was found that the (100) orientation, which is favorable for magnetism, is strongly developed.
従来、粗大粒を圧延した場合に生成する再結晶粒の方位
は(110)方位が主体であると報告されているが、本
発明者らはこのような粗大粒組織の材料の圧延温度と再
結晶集合組織の関係を詳細に調べ、ある温度範囲で圧延
すると再結晶集合組織の主方位が(100)に近い方位
になることを見いだした。そして、この方位は冷延、焼
鈍を行った後も比較的強く残り、最終製品の磁性を向上
させることが分かった。Conventionally, it has been reported that the orientation of recrystallized grains generated when coarse grains are rolled is mainly the (110) orientation, but the present inventors investigated the rolling temperature and recrystallization of materials with such coarse grain structures. We investigated the relationship between the crystal textures in detail and found that when rolled in a certain temperature range, the main orientation of the recrystallized texture becomes close to (100). It was also found that this orientation remains relatively strong even after cold rolling and annealing, improving the magnetism of the final product.
すなわち、Ar3変態点以下で行う圧延の前のフェライ
ト粒径がその後の集合組織形成に大きな影響を与え、2
00μm以上の平均粒径のフェライト組織を圧延するこ
とが最終製品の磁性を向上させると考えられる。Ar3
変態点以下で行う圧延の前のフェライト粒の平均粒径を
200μm以上にする手段は、鋳造スラブを冷却して得
てもよいし、−度過冷されたスラブを再加熱して得ても
よい。In other words, the ferrite grain size before rolling below the Ar3 transformation point has a great influence on the subsequent texture formation, and 2
It is believed that rolling a ferrite structure with an average grain size of 00 μm or more improves the magnetism of the final product. Ar3
The means for making the average grain size of ferrite grains 200 μm or more before rolling below the transformation point may be obtained by cooling a cast slab, or by reheating a slab that has been supercooled by - good.
次に八、変態点以下で少なくとも30%の圧延をしなけ
ればならない理由は、Ar3変態点以下の圧延で最終製
品板の(111)強度が凍少し他の強度、特に(100
)強度があがり電磁特性が良くなりかつその効果が十分
表われる圧下率が30%以上であるからである。なお、
この効果は板厚表面層のせん断変形を少なくし、板厚方
向での集合組織を均一化することにより、より顕著にな
る。板厚表面層のせん断変形を少なくするためには熱延
ロールと鋼板の平均摩擦係数を0.2以下にすることが
好ましい。なお、この圧延温度の下限を500℃とした
のは、これ未満の温度では動的ひずみ時効が起こり、(
110)方位がふえ、それが最終製品板の(100)方
位の発達を妨げるばかりでなく変形抵抗も高くなるため
鋼板の形状不良等が発生し製造上難点があるためである
。8. The reason why at least 30% of rolling must be carried out below the transformation point is that rolling below the Ar3 transformation point freezes the (111) strength of the final product sheet, and other strengths, especially (100
) This is because the strength is increased and the electromagnetic properties are improved, and the rolling reduction ratio at which the effects are fully manifested is 30% or more. In addition,
This effect becomes more noticeable by reducing the shear deformation of the surface layer of the plate and making the texture uniform in the thickness direction. In order to reduce shear deformation of the plate thickness surface layer, it is preferable that the average coefficient of friction between the hot rolling roll and the steel plate is 0.2 or less. The lower limit of this rolling temperature was set at 500°C because dynamic strain aging occurs at temperatures below this.
This is because the 110) orientation increases, which not only hinders the development of the (100) orientation of the final product sheet, but also increases the deformation resistance, causing defects in the shape of the steel sheet, which poses manufacturing difficulties.
本発明法において熱延後、熱延ままの材料をそのまま冷
延工程に送っても、同成分の材料を従来のプロセスで製
造した場合より顕著な鉄損特性の向上が図られるが、こ
れに熱延板焼鈍を行うと鉄損特性の向上はより一層顕著
に現われ磁束密度も向上する。In the method of the present invention, even if the as-hot-rolled material is directly sent to the cold-rolling process after hot-rolling, the iron loss characteristics will be significantly improved compared to when a material with the same composition is manufactured using the conventional process. When hot-rolled sheet annealing is performed, the improvement in iron loss characteristics becomes even more remarkable, and the magnetic flux density also improves.
以上の製造条件で圧延した熱延板を冷延1焼鈍した材料
は従来の冷延、焼鈍材より低い鉄損を示し、セミプロセ
ス材でひずみ取り焼鈍を行った時に近い低い鉄損が達成
できる。Materials obtained by cold-rolling and annealing hot-rolled sheets rolled under the above manufacturing conditions exhibit lower iron loss than conventional cold-rolled and annealed materials, and can achieve low iron loss that is close to that of semi-processed materials subjected to strain relief annealing. .
また、本発明鋼を2〜10%のスキンバス圧延を行いセ
ミプロセス材として使用しひずみ取り焼鈍を行うと、従
来材より高磁束密度および、より低い鉄損が得られるの
でセミプロセス材として用いることは本発明の主旨に反
しない。In addition, if the steel of the present invention is subjected to 2 to 10% skin bath rolling and used as a semi-processed material, and then subjected to strain relief annealing, a higher magnetic flux density and lower iron loss can be obtained than conventional materials, so it can be used as a semi-processed material. This is not contrary to the gist of the present invention.
(実施例)
表1に本発明鋼と比較鋼の成分、プロセス条件、そして
製品板の磁気特性を示す。これらの材料は連続鋳造鋳片
を再加熱せずに、直接熱間圧延工程に送るか1350℃
から750℃の範囲で再加熱してから、連続熱延により
板厚3.0 mmの熱延板に仕上げ、その後冷延により
0.5 mmの最終板厚に仕上げた。冷延後の再結晶処
理は800〜900 ”C×2分の連続焼鈍によって行
った。熱延板焼鈍有の材料は800〜b
こした。Ar、変態点以下の圧延の前のフェライト粒の
粒径はリニアインターセプト法で求めた平均粒径である
。電磁特性はり、C両方向の鉄損−1,7,。(Example) Table 1 shows the components, process conditions, and magnetic properties of the product sheets of the steel of the present invention and comparative steel. These materials are manufactured by sending continuously cast slabs directly to the hot rolling process without reheating them, or by heating them at 1350°C.
After reheating at a temperature of 750° C., continuous hot rolling was performed to obtain a hot rolled sheet with a thickness of 3.0 mm, and then cold rolling was performed to obtain a final sheet thickness of 0.5 mm. The recrystallization treatment after cold rolling was carried out by continuous annealing at 800 to 900" C x 2 minutes. The material with hot-rolled plate annealing was subjected to 800 to 100 cm. The particle size is the average particle size determined by the linear intercept method.Electromagnetic characteristics: Iron loss in both directions: -1,7.
および磁束密度B、。を示した。また、熱延時に潤滑圧
延をした時のAr=〜500 ’Cの圧延の平均摩擦係
数は0.2以下を示し、無潤滑状態では約0.28を示
した。この摩擦係数は実測した先進率より計算で求めた
値である。and magnetic flux density B,. showed that. Further, the average friction coefficient of rolling at Ar=~500'C when lubricated rolling was performed during hot rolling was 0.2 or less, and about 0.28 in the non-lubricated state. This friction coefficient is a value calculated from the actually measured advance rate.
表1の実施例のNo、 1からNo、14は極低炭素鋼
でSi量は0.02%以下と低い。この鋼種で本発明法
によって得られた鉄損値は6 W/kg前後と比較鋼N
α7にみられる従来の方法によって得られる値8.6W
/kg前後と比べて著しく向上している。なお、熱延板
焼鈍と潤滑圧延が鉄損の向上に寄与しているのが認めら
れる。Examples No. 1 to No. 14 in Table 1 are ultra-low carbon steels with a low Si content of 0.02% or less. The iron loss value obtained by the method of the present invention for this steel type is around 6 W/kg, which is about 6 W/kg for comparison steel N.
The value obtained by the conventional method found in α7 is 8.6W
This is a marked improvement compared to around /kg. It is recognized that hot-rolled sheet annealing and lubricated rolling contribute to improving iron loss.
実施例Nα6.8.10はオーステナイト域で圧延を行
い、Ar3変態点以下の圧延の前のフェライト粒径を変
化させたものであるが、粒径が200−未満で鉄損も大
きくなり磁束密度の異方性も大−きくなる。Example Nα6.8.10 was rolled in the austenite region and the ferrite grain size before rolling below the Ar3 transformation point was changed, but when the grain size is less than 200-, the iron loss increases and the magnetic flux density decreases. The anisotropy also increases.
実施例k11.12は、薄スラブ材の例でスラブ厚はそ
れぞれ6nm+と4IllIlである。 ゛また、実
施例N+lL5はCC−DR工程で熱延した材料である
。一方kl〜4,9.13〜15は870 ’Cで4時
間再加熱した後圧延を行ったものである。Examples k11.12 are examples of thin slab materials, and the slab thicknesses are 6 nm+ and 4IllIl, respectively.゛Also, Example N+lL5 is a material hot-rolled in the CC-DR process. On the other hand, kl~4, 9.13 to 15 were rolled after being reheated at 870'C for 4 hours.
実施例k13,14はBをB/Nが約1になるように添
加したものであるが、熱延がAr3変態点を超える温度
で行われる従来法で製造される比較鋼(Nα14)に比
べ、本発明鋼(Nα13)が優れた電磁特性を示すこと
が分かる。また、実施例Nα15゜16はStを0.8
%添加した例で、本発明鋼No、 15の鉄損は極低炭
素鋼の場合より優れているが、本発明法による鉄損の向
上効果は極低炭素鋼の場合はど顕著ではない。In Examples k13 and 14, B was added so that the B/N was approximately 1, but compared to the comparative steel (Nα14) produced by the conventional method in which hot rolling is carried out at a temperature exceeding the Ar3 transformation point. , it can be seen that the steel of the present invention (Nα13) exhibits excellent electromagnetic properties. In addition, in Example Nα15°16, St is 0.8
%, the iron loss of invention steel No. 15 is superior to that of ultra-low carbon steel, but the effect of improving iron loss by the method of the invention is not as remarkable in the case of ultra-low carbon steel.
実施例17.18はCIo、04%の低炭素鋼の例で、
C量の増加により鉄損が大きくなるが、本発明のプロセ
スを通ることにより鉄損が向上することが確認できる。Examples 17 and 18 are examples of CIo, 04% low carbon steel;
Although the iron loss increases as the amount of C increases, it can be confirmed that the iron loss is improved by passing through the process of the present invention.
実施例19.20はMnを添加した試料、Nα21゜2
2はPを添加した試料の例であるが両例共本発明法に従
う圧延プロセスで鉄…が向上するのが分る。Example 19.20 is a sample with Mn added, Nα21°2
2 is an example of a sample to which P was added, and it can be seen that in both cases the iron content is improved by the rolling process according to the method of the present invention.
(発明の効果)
本発明の方法によれば、同等の電磁特性を得るのに合金
元素(特にSi:ii)を大幅に低減できるばかりでな
く、従来、同成分ではセミプロセス(フルプロセス後ス
キンパス圧延を行い、ユーザーで最終的なひずみ取り焼
鈍を行う)でしか得られなかったような優れた電磁特性
を得ることができ、また本発明によれば通響の冷延鋼板
並の成分系で磁束密度が高く鉄損の低い無方向性電磁鋼
板を経済的に製造することができるので産業上袢益する
ところが大である。(Effects of the Invention) According to the method of the present invention, not only can alloying elements (particularly Si:ii) be significantly reduced to obtain equivalent electromagnetic properties, but also the amount of alloying elements (particularly Si: ii) can be significantly reduced. It is possible to obtain excellent electromagnetic properties that could only be obtained by rolling and final strain relief annealing by the user, and according to the present invention, the composition system is comparable to that of Tsukyo's cold rolled steel sheets. Since non-oriented electrical steel sheets with high magnetic flux density and low core loss can be manufactured economically, there are great industrial benefits.
Claims (3)
粒の平均粒径が200μm以上の重量%でC:0.05
%以下、N:0.010%以下、Si:1%以下、Mn
:1.5%以下、P:0.15%以下、S:0.010
%以下、Al:0.3%以下で残部がFeと不可避不純
物よりなる鋼をAr_3変態点以下、500℃以上の温
度域で少なくとも30%の圧延を行い、500℃以上の
温度で仕上げたのち、そのままあるいは熱延板焼鈍を行
い、酸洗後通常の冷間圧延、焼鈍を行うことを特徴とす
る優れた鉄損特性を有する無方向性電磁鋼板の製造方法
。(1) C: 0.05 in weight% of ferrite grains with an average grain size of 200 μm or more before rolling below the Ar_3 transformation point
% or less, N: 0.010% or less, Si: 1% or less, Mn
: 1.5% or less, P: 0.15% or less, S: 0.010
% or less, Al: 0.3% or less, the balance consisting of Fe and unavoidable impurities, after rolling at least 30% in a temperature range of 500°C or higher below the Ar_3 transformation point and finishing at a temperature of 500°C or higher. A method for producing a non-oriented electrical steel sheet having excellent core loss properties, which comprises: directly or hot-rolled sheet annealing, followed by pickling followed by ordinary cold rolling and annealing.
、Ar_3変態点以下、500℃以上の温度域で少なく
とも30%の圧延を行い、500℃以上の温度で仕上げ
たのち、そのままあるいは熱延板焼鈍を行い、酸洗後通
常の冷間圧延、焼鈍を行うことを特徴とする優れた鉄損
特性を有する無方向性電磁鋼板の製造方法。(2) The steel according to claim 1, which contains B in B/N of 1.5 or less, is rolled by at least 30% in a temperature range of below Ar_3 transformation point and 500°C or above, and finished at a temperature of 500°C or above. A method for producing a non-oriented electrical steel sheet having excellent iron loss characteristics, which is characterized in that the sheet is then subjected to annealing as it is or hot-rolled, and after pickling, ordinary cold rolling and annealing are performed.
0%以上の圧延を、潤滑を施し、ロールと鋼板の平均摩
擦係数を0.2以下として行う請求項1または2記載の
優れた鉄損特性を有する無方向性電磁鋼板の製造方法。(3) 3 in the temperature range below Ar_3 transformation point and above 500℃
3. The method for producing a non-oriented electrical steel sheet having excellent iron loss characteristics according to claim 1 or 2, wherein the rolling is performed by 0% or more with lubrication and with an average friction coefficient between the roll and the steel sheet of 0.2 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63258157A JPH0723509B2 (en) | 1988-10-13 | 1988-10-13 | Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63258157A JPH0723509B2 (en) | 1988-10-13 | 1988-10-13 | Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02104619A true JPH02104619A (en) | 1990-04-17 |
JPH0723509B2 JPH0723509B2 (en) | 1995-03-15 |
Family
ID=17316322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63258157A Expired - Lifetime JPH0723509B2 (en) | 1988-10-13 | 1988-10-13 | Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0723509B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997020956A1 (en) * | 1995-12-05 | 1997-06-12 | Nippon Steel Corporation | Process for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss |
WO2001002611A1 (en) * | 1999-07-05 | 2001-01-11 | Thyssen Krupp Stahl Ag | Method for producing non-grain oriented electric sheet steel |
JP2009149993A (en) * | 1999-07-05 | 2009-07-09 | Thyssenkrupp Stahl Ag | Method for producing non-oriented electrical steel sheet |
-
1988
- 1988-10-13 JP JP63258157A patent/JPH0723509B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997020956A1 (en) * | 1995-12-05 | 1997-06-12 | Nippon Steel Corporation | Process for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss |
WO2001002611A1 (en) * | 1999-07-05 | 2001-01-11 | Thyssen Krupp Stahl Ag | Method for producing non-grain oriented electric sheet steel |
JP2009149993A (en) * | 1999-07-05 | 2009-07-09 | Thyssenkrupp Stahl Ag | Method for producing non-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JPH0723509B2 (en) | 1995-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5724824B2 (en) | Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction | |
JP2006501361A5 (en) | ||
KR100771253B1 (en) | Method for producing non grain-oriented electric sheets | |
JP2016003371A (en) | Non-oriented magnetic steel sheet having good entire circumferential magnetic property | |
WO2019062732A1 (en) | Cold-rolled magnetic lamination steel with excellent magnetic properties and manufacturing method therefor | |
KR20020035827A (en) | Method for producing non-grain oriented electric sheet steel | |
JP5644154B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4422220B2 (en) | Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same | |
JPH03229820A (en) | Production of nonoriented silicon steel sheet | |
JPH02104619A (en) | Production of non-oriented magnetic steel sheet having excellent iron loss characteristic | |
JP7245325B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JPH02104620A (en) | Production of non-oriented magnetic steel sheet having low iron loss | |
JP2990214B2 (en) | Alloyed molten Zn-plated steel sheet of ultra-low C-base thin hot rolled sheet excellent in workability and method for producing the same | |
JPH0657332A (en) | Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss | |
JPH0797628A (en) | Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss | |
JP2680519B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPS5856023B2 (en) | Cold-rolled steel sheet with excellent deep drawability | |
CN112921164B (en) | Low-iron-loss high-permeability non-oriented electrical steel and production method thereof | |
JPH0419295B2 (en) | ||
JPH01116031A (en) | Manufacture of hot rolled high si-high carbon steel sheet having superior toughness | |
JPS62284016A (en) | Production of non-oriented electrical steel sheet having excellent electromagnetic characteristic | |
JP4332960B2 (en) | Manufacturing method of high workability soft cold-rolled steel sheet | |
KR20240059420A (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP3471407B2 (en) | Manufacturing method of hot rolled steel sheet with excellent workability | |
JPH01139721A (en) | Manufacture of semiprocessing non-oriented magnetic steel sheet having low iron loss and high magnetic permeability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080315 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090315 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090315 Year of fee payment: 14 |