[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0197635A - Continuous manufacture of glass fiber reinforced laminated plate for electrical use - Google Patents

Continuous manufacture of glass fiber reinforced laminated plate for electrical use

Info

Publication number
JPH0197635A
JPH0197635A JP62255385A JP25538587A JPH0197635A JP H0197635 A JPH0197635 A JP H0197635A JP 62255385 A JP62255385 A JP 62255385A JP 25538587 A JP25538587 A JP 25538587A JP H0197635 A JPH0197635 A JP H0197635A
Authority
JP
Japan
Prior art keywords
glass
resin liquid
curable resin
nonwoven fabric
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62255385A
Other languages
Japanese (ja)
Inventor
Minoru Isshiki
一色 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62255385A priority Critical patent/JPH0197635A/en
Publication of JPH0197635A publication Critical patent/JPH0197635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve the thicknesswise dimensional stability as well as the through-hole reliability, by specifying the time to laminate after impregnation of setting resin liquid into the glass non-woven fabric. CONSTITUTION:Glass cloth is arranged on both outside, and a glass non-woven fabric insite, which are impregnated with setting resin liquid. The time from impregnation of setting resin liquid to laminate is specified as 120 sec. or more, and an impregnating base material is carried and jointed, and the time to laminate a cover sheet and/or metal foil is specified as 5-120 sec. Since the impregnability and retainability of setting resin are affected by the viscosity of resin liquid and the basis weight of the glass non-woven fabric, the setting resin does not contain flux, and sets without generating volatile by-product. The viscosity is 0.1-15 poise at room temperature; likewise, the glass paper and glass mat of the glass non-woven fabric both have basis weight 10-200g/m<2>. The inorganic filler added to the setting resin is 50 times or less in weight.

Description

【発明の詳細な説明】 肢血豆立 本発明はガラス繊維強化電気用積層板の製造法に関する
。ここで電気用積層板とは、各種電気および電子部品の
基板として用いられる絶縁積層板や、印刷回路基板とし
て用も)る金属箔張り積層板を意味する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a glass fiber reinforced electrical laminate. Here, the electrical laminate refers to an insulating laminate used as a substrate for various electrical and electronic components, and a metal foil-clad laminate used as a printed circuit board.

′、および! r 特開昭55−4838.同56−98136等には電気
用積層板の連続製造法が開示されている。
',and! r Japanese Patent Publication No. 55-4838. No. 56-98136, etc., discloses a continuous manufacturing method for electrical laminates.

該方法は複数枚の基材を連続的に並行して搬送下、該基
材へ個別的に硬化性樹脂液を含浸し、含浸基材を積層し
て合体し、カバーシートおよび/または金属箔をラミネ
ートし、連続的に硬化させた後切断する等の連続工程よ
りなる。
This method involves individually impregnating a plurality of base materials with a curable resin liquid while continuously conveying them in parallel, stacking and combining the impregnated base materials, and forming a cover sheet and/or metal foil. It consists of a continuous process such as laminating, curing continuously, and cutting.

前記の連続法において用いるガラス不織布はガラスクロ
ス等に比較して密度が小さく、空隙率が高い。そのため
、硬化性樹脂液をガラス不織布に含浸し、含浸基材を積
層して合体し、ラミネートする工程において、基材を搬
送する時間が長いと含浸基材を搬送中に含浸した硬化性
樹脂液が基材より滴下して枯れ、樹脂液含浸不完全部分
に包埋された空気が膨張したり、架橋用単量体ガスが集
合膨張したりすることにより、硬化後の製品がふくれた
り、気泡等のボイドが残るため、耐熱性等の特性を低下
させる原因となる。硬化性樹脂液の粘度を高めればガラ
ス不織布での硬化性樹脂液の保持性は良くなるが、含浸
時間が長くなり、設備スペースが広くなる等の欠点をも
ち、かつ、高粘度の硬化性樹脂液の送液システムが複雑
となる。
The glass nonwoven fabric used in the continuous method has a lower density and a higher porosity than glass cloth or the like. Therefore, in the process of impregnating a glass nonwoven fabric with a curable resin liquid, stacking and combining the impregnated base materials, and laminating, if the time to transport the base materials is long, the curable resin liquid impregnated with the impregnated base material may drops from the base material and dries up, the air embedded in the incompletely impregnated area with the resin liquid expands, and the crosslinking monomer gas collectively expands, causing the cured product to swell and bubbles. Since voids such as these remain, they cause a decrease in properties such as heat resistance. Increasing the viscosity of the curable resin liquid improves the retention of the curable resin liquid in the glass nonwoven fabric, but it has disadvantages such as longer impregnation time and larger equipment space, and high viscosity curable resins The liquid delivery system becomes complicated.

一方ガラスクロスは編織されているため、これらの組織
中に含浸樹脂液が充分浸透するには、ガラス不織布に比
して比較的長時間を要するがために、両者を満足させる
良好な含浸方法が望まれる。
On the other hand, since glass cloth is knitted and woven, it takes a relatively long time for the impregnating resin liquid to fully penetrate into its structure, compared to glass nonwoven fabric. Therefore, a good impregnation method that satisfies both needs is needed. desired.

龍夾方扶 そこで本発明は、ガラス不織布を含む基材を連続的に搬
送下、該基材へ硬化性樹脂液の含浸を行い、含浸した基
材を合体し、カバーシートおよび/または金属箔をラミ
ネートし、連続的に硬化させた後切断するガラス繊維強
化電気用積層板の連続製造法において、硬化性樹脂液を
含浸してからラミネートするまでの時間が5ないし12
0秒であることを特徴とするガラス繊維強化電気用積層
板の連続製造法を提供する。
Therefore, the present invention impregnates a base material containing a glass nonwoven fabric with a curable resin liquid while continuously conveying the base material, combines the impregnated base materials, and forms a cover sheet and/or metal foil. In a continuous manufacturing method for glass fiber reinforced electrical laminates, in which laminated sheets are laminated, continuously cured, and then cut, the time from impregnation with a curable resin liquid to lamination is 5 to 12 hours.
Provided is a continuous manufacturing method for a glass fiber reinforced electrical laminate, characterized in that the manufacturing time is 0 seconds.

圧棗旦公実隻煎様 本発明の実施に当たったは、ガラス不織布に硬化性樹脂
液を含浸する方法として、該基材の片面に硬化性樹脂液
を適量塗布して含浸するか、硬化性樹脂液中に該基材を
浸漬して両面から含浸させる方法があるが、いずれの方
法でもよい。該含浸基材を搬送して、合体し、カバーシ
ートおよび/または金属箔をラミネートするまでの時間
が5ないし120秒、より好ましくは10〜90秒であ
る。含浸時間が5秒未満では、含浸した含浸基材を合体
し、カバーシートおよび/または金属箔をラミネートす
る工程での設備スペースが狭すぎて操作しにくい。同時
に、硬化性樹脂液の該基材への含浸性が悪く、硬化後の
製品がふくれたり、気泡等のボイドが残るため、耐熱性
等の特性を低下させる原因となる。
To implement the present invention, the method of impregnating a glass nonwoven fabric with a curable resin liquid is to apply an appropriate amount of the curable resin liquid to one side of the base material and impregnate it, or to harden it. There is a method of immersing the base material in a liquid resin to impregnate it from both sides, but any method may be used. The time required for conveying the impregnated base material, combining it, and laminating the cover sheet and/or metal foil is 5 to 120 seconds, more preferably 10 to 90 seconds. If the impregnation time is less than 5 seconds, the space for equipment in the step of combining the impregnated base materials and laminating the cover sheet and/or metal foil is too small, making it difficult to operate. At the same time, the impregnation of the curable resin liquid into the base material is poor, and the product after curing swells and voids such as bubbles remain, which causes a decrease in properties such as heat resistance.

また含浸時間が120秒を超えると、逆に該基材に硬化
性樹脂液を含浸し、う主ネートするまでの設備が拡大し
、あるいは該基材の搬送が複雑になり操作性が悪くなる
。同時に硬化性樹脂液の該基材への保持性が悪くなるた
め、硬化後の製品に気泡等のボイドが残り、耐熱性等の
特性を低下させる原因となる。
In addition, if the impregnation time exceeds 120 seconds, the equipment needed to impregnate the base material with the curable resin liquid and embed the material will be expanded, or the transportation of the base material will become complicated, resulting in poor operability. . At the same time, the retention of the curable resin liquid on the base material deteriorates, and voids such as air bubbles remain in the cured product, which causes deterioration of properties such as heat resistance.

この含浸性と保持性は硬化性樹脂液の粘度と、ガラス不
織布の坪量により影響される。即ち、含浸用樹脂液の粘
度が低いほど含浸速度は速くなるが、逆に樹脂液の保持
性は悪くなり、樹脂枯れを起こしやすい。このとき樹脂
液の粘度は0.1ないし15ポイズ、より好ましくは1
〜10ボイズであり、これは主に硬化性樹脂液の種類、
架橋用単量体の種類、量または該樹脂液に充填する無機
充填材の種類、形状、量等による。
The impregnation and retention properties are influenced by the viscosity of the curable resin liquid and the basis weight of the glass nonwoven fabric. That is, the lower the viscosity of the impregnating resin liquid, the faster the impregnation speed, but on the contrary, the retention of the resin liquid becomes worse and resin wilt is more likely to occur. At this time, the viscosity of the resin liquid is 0.1 to 15 poise, more preferably 1
~10 voids, which mainly depends on the type of curable resin liquid,
It depends on the type and amount of the crosslinking monomer or the type, shape, amount, etc. of the inorganic filler filled in the resin liquid.

同様に、ガラス不織布の坪量が小さいほど、含浸速度は
速くなり、逆に樹脂液の保持性は悪(なるため樹脂枯れ
を起こしやすい。
Similarly, the smaller the basis weight of the glass nonwoven fabric, the faster the impregnation rate, and the worse the resin liquid retention (because the resin is more likely to dry up).

ガラスペーパーおよびガラスマットはいずれも坪量が1
0ないし200 g/rd、より好ましくは20〜10
0 g/rdが通している。一般にガラス不織布は密度
が小さ(坪量にほぼ比例して厚みが決まる。実質的に無
圧である連続製造法において、ガラス不織布の厚みが製
品の板厚みとほぼ1:1で対応し、従って、通常電気用
積層板としての板厚みがl、 5 顛を以下のものが多
いことからガラス不織布の坪量が規定される。すなわち
200 g/−のガラス不織布を1層用いた場合1.5
 mm tの板厚みの電気用積層板が得られる。また坪
量が200g/m2を超えると硬化性樹脂液の含浸性が
劣り、含浸不良による気泡が製品に発生する。一方坪量
10g/m2未満では硬化性樹脂液の保持性が劣るため
、樹脂枯れによる気泡が製品に発生する。
Both glass paper and glass mat have a basis weight of 1
0 to 200 g/rd, more preferably 20 to 10
0 g/rd is passing through. In general, glass nonwoven fabrics have a small density (thickness is determined approximately in proportion to basis weight. In a virtually pressureless continuous manufacturing method, the thickness of glass nonwoven fabrics corresponds approximately 1:1 to the thickness of the product plate, and therefore The basis weight of the glass nonwoven fabric is specified because the thickness of the electrical laminate is usually less than l, 5. In other words, when one layer of 200 g/- glass nonwoven fabric is used,
An electrical laminate with a thickness of mm t is obtained. Furthermore, if the basis weight exceeds 200 g/m2, the impregnating properties of the curable resin liquid will be poor, and bubbles will occur in the product due to poor impregnation. On the other hand, if the basis weight is less than 10 g/m2, the retention of the curable resin liquid will be poor, and bubbles will be generated in the product due to the resin drying up.

また積層板製造のための全体のプロセスおよび装置は、
ここで特記した事項を除いて、特開昭55−4838.
同56−98136に開示されたようなプロセスおよび
装置を使用することができる。特に、実質無圧で連続硬
化させる場合には設備等が簡単であり、好ましい。
Also the whole process and equipment for laminate production is
Except for matters noted here, Japanese Patent Application Laid-Open No. 55-4838.
56-98136 can be used. Particularly, continuous curing under virtually no pressure is preferable because the equipment and the like are simple.

ガラス不織布としては、太さ1〜2011mのガラス繊
維を水中に分散し、バインダーにアクリル樹脂、ポリビ
ニルアルコール、エポキシ樹脂、メラミン樹脂など用い
て湿式で抄造した長尺のシート状のガラスペーパー1、
またはフィラメントやチョツプドストランドのガラス繊
維を同様のバインダーを用いて乾式で抄造した長尺のシ
ート状のガラスマットであり、板厚に応じて1層もしく
は数層使用することができる。
The glass nonwoven fabric is a long sheet-shaped glass paper 1 made by dispersing glass fibers with a thickness of 1 to 2011 m in water and wet-forming using acrylic resin, polyvinyl alcohol, epoxy resin, melamine resin, etc. as a binder.
Alternatively, it is a long sheet-like glass mat made by dry-forming filament or chopped strand glass fibers using a similar binder, and can be used in one layer or in several layers depending on the plate thickness.

ガラス不織布を内側に配し、ガラスクロスを両外側に配
したガラスコンポジット材では寸法安定性を改善するた
め、特開昭62−89393に維持されているように、
コア層に無機充填材を高充填することが好ましく、本発
明においても、硬化性樹脂液に無機充填材を高充填する
か、あらかじめガラス不織布に無機充填材を付着させて
硬化性樹脂液を含浸させてもよい。
In order to improve the dimensional stability of a glass composite material in which a glass non-woven fabric is placed on the inside and glass cloth is placed on both sides, as maintained in JP-A-62-89393,
It is preferable that the core layer is highly filled with an inorganic filler, and in the present invention, either the curable resin liquid is highly filled with an inorganic filler, or the inorganic filler is attached to a glass nonwoven fabric in advance and impregnated with the curable resin liquid. You may let them.

無機充填材は水不溶性で、絶縁性のものが用いられる。The inorganic filler used is water-insoluble and insulating.

その例としては、シリカ、アルミナ、ジルコニア、二酸
化チタン、亜鉛華等の金属酸化物、水酸化マグネシウム
、水酸化アルミニウム等の金属水酸化物、タルク、カオ
リン、雲母、ワラストナイト、粘土鉱物等の天然鉱物、
炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、リ
ン酸カルシウム等の不溶性塩類等がある。無機充填材は
比重が大きい場合や形状が大きいものは沈降し易く、処
理する時扱いにくい。また処理後の積層板表面の凹凸も
太き(なり、外観不良の原因となる。従って形状として
はアスペクト比が小さく、粒径が10μm以下のものが
好ましい。
Examples include metal oxides such as silica, alumina, zirconia, titanium dioxide, and zinc white, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, talc, kaolin, mica, wollastonite, and clay minerals. natural minerals,
Examples include insoluble salts such as calcium carbonate, magnesium carbonate, barium sulfate, and calcium phosphate. Inorganic fillers that have a high specific gravity or a large shape tend to settle and are difficult to handle during processing. Further, the unevenness on the surface of the laminate after treatment becomes thick, which causes poor appearance. Therefore, the shape preferably has a small aspect ratio and a grain size of 10 μm or less.

ガラス不織布に無機充填材をあらかじめ有機バインダー
を用いて付着して後に硬化性樹脂液をを含浸すると樹脂
液の保持性が向上し、より好ましい。
It is more preferable to attach an inorganic filler to a glass nonwoven fabric in advance using an organic binder and then impregnate it with a curable resin liquid, since this improves the retention of the resin liquid.

有機バインダーとしては、エポキシ樹脂、メラミン樹脂
、ボ゛リビニルアルコール、アクリル樹脂などがある。
Examples of the organic binder include epoxy resin, melamine resin, polyvinyl alcohol, and acrylic resin.

不織布基材への無機充填材の付着量は、不織布100重
量部あたり50ないし700重量部、好ましくは100
ないし600重量部、より好ましくは200ないし50
0重量部である。この付着量は無機充填材による寸法安
定性向上効果と、含浸樹脂液の処理した基材への含浸性
との間のバランスを考慮したものである。
The amount of inorganic filler adhered to the nonwoven fabric base material is 50 to 700 parts by weight, preferably 100 parts by weight per 100 parts by weight of the nonwoven fabric.
600 parts by weight, more preferably 200 to 50 parts by weight
It is 0 parts by weight. This amount of adhesion is determined in consideration of the balance between the dimensional stability improvement effect of the inorganic filler and the impregnating property of the impregnating resin liquid into the treated substrate.

有機バインダーの使用量は、無機充填材100重量部あ
たり1ないし60重量部、好ましくは2ないし40重量
部である。この量は無機充填材を不織布基材へ粉落ちし
ない程度に過不足なく付着させる量であればよい。
The amount of organic binder used is 1 to 60 parts by weight, preferably 2 to 40 parts by weight per 100 parts by weight of inorganic filler. This amount may be any amount that allows the inorganic filler to be adhered to the nonwoven fabric substrate in just the right amount and not enough to prevent powder from falling.

不織布基材への付着方法は任意であるが、無機充填材と
バインダーとを媒体、例えば水に分散して分散液をつく
り、浸漬、塗布等によって分散液を基材へ供給し、乾燥
して媒体を除去することによって実施することができる
。不織布、特にガラスペーパーは密度が小さ(、引張り
強さ等の機械的強度が十分でないため連続製造法では切
断などのトラブルが発生し易いが、この処理において適
当なバインダーを選択することによって引張り強さを補
強し、切断などのトラブルを避けることができる。
Although the method of adhering to the nonwoven fabric substrate is arbitrary, the inorganic filler and binder are dispersed in a medium such as water to create a dispersion, the dispersion is supplied to the substrate by dipping, coating, etc., and then dried. This can be done by removing the medium. Nonwoven fabrics, especially glass paper, have a low density (and do not have sufficient mechanical strength such as tensile strength, so problems such as cutting are likely to occur in continuous manufacturing methods. However, by selecting an appropriate binder in this process, tensile strength can be increased. This helps prevent problems such as cutting.

連続製造法の特徴の一つは、それ自身液状で硬化に際し
反応副生成物を発生しない硬化性樹脂液を基材の含浸用
に使用することである。このような樹脂としては、不飽
和ポリエステル樹脂、エポキシ樹脂、エポキシアクリレ
ート樹脂、ポリエステルアクリレート樹脂、ウレタンア
クリレート樹脂、スピラン樹脂、ジアリルフタレート樹
脂等がある。
One of the features of the continuous production method is that a curable resin liquid that is liquid itself and does not generate reaction by-products upon curing is used for impregnating the substrate. Such resins include unsaturated polyester resins, epoxy resins, epoxy acrylate resins, polyester acrylate resins, urethane acrylate resins, spiran resins, diallyl phthalate resins, and the like.

本発明によれば、この含浸用樹脂100重量部あたり前
述した無機充填材を50重量部以下、好ましくは10な
いし4o重量部添加することができる。これにより厚み
方向の寸法安定性がさらに改善され、スルーホール信頼
性が向上する。
According to the present invention, the above-mentioned inorganic filler can be added in an amount of 50 parts by weight or less, preferably 10 to 4 parts by weight, per 100 parts by weight of the impregnating resin. This further improves dimensional stability in the thickness direction and improves through-hole reliability.

以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

実施例 基材層の雨量外側層に厚さ18011m、坪量210g
/m2のガラスクロスを使用し、中間に坪量40 gl
rdのガラスペーパーを3層用い、エポキシ系接着剤を
厚み40μmに塗布した厚み18μmの銅箔を両面に張
った厚み1.6 wの両面銅箔張り不飽和ポリエステル
積層板を連続法によって製造した。
Example base material layer: Rainfall outer layer has a thickness of 18011 m and a basis weight of 210 g.
/m2 glass cloth with a basis weight of 40g in the middle
A 1.6 W double-sided copper foil-covered unsaturated polyester laminate was manufactured by a continuous method using three layers of RD glass paper and 18 μm thick copper foil coated with epoxy adhesive to a thickness of 40 μm on both sides. .

含浸用樹脂液としては、難燃性不飽和ポリエステル樹脂
100重量部(ブロム含量14重量%)、三酸化アンチ
モン4重量部、過酸化ベンゾイル1重量部、炭酸カルシ
ウム35重量部を均一に混和した液状樹脂を用いた。
The resin liquid for impregnation was a liquid obtained by uniformly mixing 100 parts by weight of a flame-retardant unsaturated polyester resin (bromine content: 14% by weight), 4 parts by weight of antimony trioxide, 1 part by weight of benzoyl peroxide, and 35 parts by weight of calcium carbonate. Using resin.

各基材をガラスクロスを雨量外側に、ガラスペーパーを
内側に配して連続的に+a送しながら、個別的に前記樹
脂液を含浸させた後合体し、両面に銅箔をラミネートし
た後、トンネル型硬化炉を連続的に通過させて、100
℃で15分間、150℃で10分間熱硬化させた。ここ
で樹脂液の粘度は30℃で8.5ポイズであり、その粘
度で含浸を行った。また、樹脂液を各基材に含浸して後
ラミネートするまでの時間が28秒ないし31秒であっ
た。
Each base material is individually impregnated with the resin liquid while continuously feeding +a with glass cloth on the outside and glass paper on the inside, and then combined, and after laminating copper foil on both sides, Continuously passing through a tunnel type curing furnace, 100
It was heat cured at 150°C for 15 minutes and 150°C for 10 minutes. The viscosity of the resin liquid here was 8.5 poise at 30°C, and the impregnation was performed at that viscosity. Further, the time from impregnating each base material with the resin liquid to post-laminating was 28 seconds to 31 seconds.

比較例1 樹脂液を各基材に含浸して後ラミネートするまでの時間
が152秒ないし165秒であるほかは、実施例と同じ
操作によって厚さ1.6鶴の両面銅張り積層板を製造し
た。
Comparative Example 1 A double-sided copper-clad laminate with a thickness of 1.6 mm was manufactured by the same procedure as in Example, except that the time from impregnating each base material with resin liquid to post-laminating was 152 seconds to 165 seconds. did.

実施例および比較例の積層板の外観と性能を下表に示す
The appearance and performance of the laminates of Examples and Comparative Examples are shown in the table below.

(以下余白) スルーホール信頼性の評価方法: 両面銅スルーホール直′□径1鶴φ×200穴を直列に
接続したサンプルを20℃で20秒、260℃で10秒
浸漬するサイクルをくり返し、高温中での電気抵抗値の
変化率が10%をこえるまでのサイクル回数で表す。
(Leaving space below) Method for evaluating through-hole reliability: Samples with double-sided copper through-holes (diameter 1 φ x 200 holes) connected in series were immersed for 20 seconds at 20°C and 10 seconds at 260°C. It is expressed as the number of cycles until the rate of change in electrical resistance value exceeds 10% at high temperatures.

Claims (6)

【特許請求の範囲】[Claims] (1)少なくとも1層のガラス不織布を含む基材を連続
的に搬送下、該基材へ硬化性樹脂液の含浸を行い、含浸
した基材を合体し、カバーシートおよび/または金属箔
をラミネートし、連続的に硬化させた後切断するガラス
繊維強化電気用積層板の連続製造法において、ガラス不
織布へ硬化性樹脂液を含浸してからラミネートするまで
の時間が5ないし120秒であることを特徴とするガラ
ス繊維強化電気用積層板の連続製造法。
(1) While continuously conveying a base material containing at least one layer of glass nonwoven fabric, impregnate the base material with a curable resin liquid, combine the impregnated base materials, and laminate a cover sheet and/or metal foil. However, in the continuous manufacturing method of glass fiber reinforced electrical laminates in which the glass fiber reinforced electrical laminates are continuously cured and then cut, the time from impregnation of the glass nonwoven fabric with the curable resin liquid to lamination is 5 to 120 seconds. A continuous manufacturing method for glass fiber reinforced electrical laminates.
(2)両外側にガラスクロスを、内側にガラス不繊布を
配して硬化性樹脂液を含浸させるとき、該ガラスクロス
に硬化性樹脂液を含浸してからラミネートするまでの時
間が120秒以上であり、かつ該ガラス不織布へ含浸し
てからラミネートするまでの時間が5ないし120秒で
ある第1項記載の方法。
(2) When placing glass cloth on both outside sides and glass nonwoven cloth on the inside and impregnating them with a curable resin liquid, the time from impregnating the glass cloth with the curable resin liquid until lamination is at least 120 seconds. 2. The method according to claim 1, wherein the time from impregnating the glass nonwoven fabric to laminating it is 5 to 120 seconds.
(3)硬化性樹脂液が溶剤を含まず、かつ揮発性副生物
を発生することなく硬化し得る樹脂液であり、かつその
粘度が常温で0.1ないし15ポイズである第1項また
は第2項記載の方法。
(3) Item 1 or 2, wherein the curable resin liquid does not contain a solvent and can be cured without generating volatile by-products, and has a viscosity of 0.1 to 15 poise at room temperature. The method described in Section 2.
(4)硬化性樹脂液中に無機充填材を50重量部以下含
む第1項ないし第3項のいずれかに記載の方法。
(4) The method according to any one of Items 1 to 3, wherein the curable resin liquid contains 50 parts by weight or less of an inorganic filler.
(5)ガラス不織布がガラスペーパーであり、坪量が1
0ないし200g/m^2である第1項ないし第4項の
いずれかに記載の方法。
(5) The glass nonwoven fabric is glass paper, and the basis weight is 1
The method according to any one of items 1 to 4, wherein the amount is 0 to 200 g/m^2.
(6)ガラス不織布がガラスマットであり、坪量が10
ないし200g/m^2である第1項ないし第4項のい
ずれかの方法。
(6) The glass nonwoven fabric is a glass mat, and the basis weight is 10
or 200 g/m^2.
JP62255385A 1987-10-09 1987-10-09 Continuous manufacture of glass fiber reinforced laminated plate for electrical use Pending JPH0197635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255385A JPH0197635A (en) 1987-10-09 1987-10-09 Continuous manufacture of glass fiber reinforced laminated plate for electrical use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255385A JPH0197635A (en) 1987-10-09 1987-10-09 Continuous manufacture of glass fiber reinforced laminated plate for electrical use

Publications (1)

Publication Number Publication Date
JPH0197635A true JPH0197635A (en) 1989-04-17

Family

ID=17278024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255385A Pending JPH0197635A (en) 1987-10-09 1987-10-09 Continuous manufacture of glass fiber reinforced laminated plate for electrical use

Country Status (1)

Country Link
JP (1) JPH0197635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318640A (en) * 1992-05-19 1993-12-03 Sumitomo Bakelite Co Ltd Laminated sheet
JPH09109322A (en) * 1995-10-23 1997-04-28 Matsushita Electric Works Ltd Manufacture of laminated board
US20150027994A1 (en) * 2013-07-29 2015-01-29 Siemens Energy, Inc. Flux sheet for laser processing of metal components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318640A (en) * 1992-05-19 1993-12-03 Sumitomo Bakelite Co Ltd Laminated sheet
JPH09109322A (en) * 1995-10-23 1997-04-28 Matsushita Electric Works Ltd Manufacture of laminated board
US20150027994A1 (en) * 2013-07-29 2015-01-29 Siemens Energy, Inc. Flux sheet for laser processing of metal components

Similar Documents

Publication Publication Date Title
US4587161A (en) Copper-clad polyester-epoxy-glass fiber laminates using zinc-coated copper
US3940534A (en) Electrical laminate
US4803022A (en) Method of continuously bonding and curing a zinc-coated metal-clad polyester-epoxy-glass fiber laminate
JPH0197635A (en) Continuous manufacture of glass fiber reinforced laminated plate for electrical use
JPH06257042A (en) Glass nonwoven fabric
JP2004204604A (en) Composite panel and its manufacturing method
JPS62268631A (en) Manufacture of glass-fiber reinforced electrical laminate
JPH05318640A (en) Laminated sheet
JPH05309781A (en) Electric laminated sheet
JPH05245974A (en) Laminated sheet
JP3275496B2 (en) Manufacturing method of metal foil-clad laminate
JPH0197634A (en) Continuous manufacture of laminated plate for glass fiber reinforcing electricity
JPH0655655A (en) Manufacture of laminated sheet
JPH04309284A (en) Manufacture of glass cloth-reinforced laminated board for electrode use
JPH05124148A (en) Laminated sheet and production thereof
JPH04262321A (en) Manufacture of glass cloth reinforced electrical laminated plate
JPH04325234A (en) Manufacture of glass cloth-reinforced electric laminated board
JPH0382195A (en) Electric laminated board
JPH0771839B2 (en) Laminated board manufacturing method
JPH03218831A (en) Manufacture of glass cloth reinforced electric laminated sheet
JPH06234130A (en) Preparation of laminated sheet and copper-plated laminated sheet
JPH0590719A (en) Manufacture of glass fiber reinforced laminate plate for electrical use
JPH06315998A (en) Production of laminated sheet
JPH10182985A (en) Resin composition for laminated plate and laminated plate
JPH04358806A (en) Manufacture of prepreg