[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0196139A - Biodegradable copolymer complex making drug gradually releasable - Google Patents

Biodegradable copolymer complex making drug gradually releasable

Info

Publication number
JPH0196139A
JPH0196139A JP62254958A JP25495887A JPH0196139A JP H0196139 A JPH0196139 A JP H0196139A JP 62254958 A JP62254958 A JP 62254958A JP 25495887 A JP25495887 A JP 25495887A JP H0196139 A JPH0196139 A JP H0196139A
Authority
JP
Japan
Prior art keywords
drug
lactic acid
copolymer
valerolactone
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62254958A
Other languages
Japanese (ja)
Other versions
JPH0546328B2 (en
Inventor
Masaharu Asano
雅春 浅野
Masaru Yoshida
勝 吉田
Isao Kaetsu
嘉悦 勲
Hironobu Fukuzaki
裕延 福崎
Takao Okada
隆雄 岡田
Toru Mashita
真下 透
Eiju Yamanaka
山中 英寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Taki Chemical Co Ltd
Original Assignee
Japan Atomic Energy Research Institute
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Taki Chemical Co Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP62254958A priority Critical patent/JPH0196139A/en
Publication of JPH0196139A publication Critical patent/JPH0196139A/en
Publication of JPH0546328B2 publication Critical patent/JPH0546328B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

PURPOSE:To obtain the title copolymer which is used as a DDS base for living bodies with no side-effect and no limitation from view points of drug decomposition and release control, by direct dehydrative polycondensation of lactic acid and/or glycolic acid and gamma-butyrolactone. CONSTITUTION:A biodegradable copolymer is obtained by using (A) lactic acid and/or glycolic acid and (B) gamma-butyrolactone, delta-valerolactone and/or epsilon- caprolactone at a A/B molar ratio of 20/80-90/10 in a nitrogen atmosphere or under vacuum of 10-100mmHg at 150-250 deg.C for 2-30 hours. The copolymer is used as a base for DDS(drug discharge control system) and mixed with drugs to prepare a gradually releasable drug complex. The complex is applied to living bodies by pouring from cut opening or injection or spreading on the body.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、薬物に徐放性機能を付与した生体分解型コポ
リマー複合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a biodegradable copolymer complex that provides a sustained release function to a drug.

[従来の技術] 乳酸、グリコール酸等のポリマーは、生体分解性、生体
吸収性を有するために、従来より手術用縫合糸等の生体
分解性医用材料に応用されている。また、近年に於ては
生体への薬物投与を制御するための薬物放出制御システ
ム(DDS ; Drugdelivery syst
em)用の基剤として各種検討が行なわれている。
[Prior Art] Polymers such as lactic acid and glycolic acid are biodegradable and bioabsorbable, and have thus far been applied to biodegradable medical materials such as surgical sutures. In addition, in recent years, drug delivery systems (DDS) have been developed to control drug administration to living organisms.
Various studies are being conducted as base materials for em).

この様なりDS基剤としては、所定期間に一定量の薬物
を生体内部に放出する機能を有すると共に、生体に対し
ては基剤中に触媒、有機溶媒等の不純物を含まず、副作
用のない純粋な成分の基剤が望まれる。
In this way, the DS base has the function of releasing a certain amount of drug into the body over a predetermined period of time. A base of pure ingredients is desired.

従来より知られている基剤として、乳酸、グリコール酸
等のホモポリマーが知られている。しかし、乳酸、グリ
コール酸等のホモポリマーは高分子量化した製品が所望
される結果、通常、ラクチド、グリコリドを原料とし、
触媒を使用して重合が行われている。従ってこのものは
、不純物として残存する触媒の除去が必要であり、この
触媒除去のために有機溶媒が使用されるが、新たな問題
として、この有機溶媒の残存問題が発生する。また、高
分子量であるが故に基剤は固体状であり、従って、これ
と基剤とを混合する際には高温で基剤を溶融する必要が
あり、薬物の変性、分解等の問題を生じる。
As conventionally known bases, homopolymers such as lactic acid and glycolic acid are known. However, as homopolymers such as lactic acid and glycolic acid are desired to have high molecular weight products, they are usually made from lactide and glycolide as raw materials.
Polymerization is carried out using a catalyst. Therefore, in this method, it is necessary to remove the catalyst remaining as an impurity, and an organic solvent is used for removing the catalyst, but a new problem arises that the organic solvent remains. In addition, because of its high molecular weight, the base is solid, and therefore, when mixing it with the base, it is necessary to melt the base at high temperature, which causes problems such as denaturation and decomposition of the drug. .

一方、乳酸、グリコール酸を原料とし、無触媒下で脱水
重縮合を行い、低分子量のホモポリマーを得る方法は知
られており、このものは低分子量であるが故に、上述の
成形時の温度を低くすることが可能であり、薬物の分解
は抑制される。しかし、乳酸、グリコール酸のホモポリ
マーは、前述の高分子量のホモポリマーも同様であるが
、一般に結晶性であり、生体用DDS基剤としては次の
ような問題点がある。
On the other hand, a method is known in which lactic acid and glycolic acid are used as raw materials, and dehydration polycondensation is performed in the absence of a catalyst to obtain a low molecular weight homopolymer. It is possible to lower the drug and drug decomposition is suppressed. However, homopolymers of lactic acid and glycolic acid, as well as the above-mentioned high molecular weight homopolymers, are generally crystalline and have the following problems as DDS bases for living organisms.

先ず、この様な結晶性ポリマーは、生体内で不均一な分
解性を示すことにある。これは、結晶性ポリマーが結晶
性部分と非品性部分とから成り、非品性部分に比べて結
晶性部分は生体分解性が非常に悪いことに起因する。
First, such crystalline polymers exhibit non-uniform degradability in vivo. This is because the crystalline polymer consists of a crystalline portion and a non-quality portion, and the crystalline portion has much poorer biodegradability than the non-quality portion.

また、薬物は一般に結晶性部分よりも非品性部分に溶解
あるいは分散しており、従って、DDS基剤としてこれ
を用いた場合、非品性部分が先に分解し、薬剤の放出が
終了した後も、薬物を含有しない結晶性部分が残存し、
この現象はDDS基剤としては好ましくないものである
。この他、分子量を低下させることによりこの結晶性を
低下させる方法はある程度可能であるが、一般にこの場
合、分子量を数百以下とすることが必要である。
Additionally, drugs are generally dissolved or dispersed in the non-crystalline portion rather than the crystalline portion, so when this is used as a DDS base, the non-crystalline portion decomposes first and drug release is completed. Even after this, a crystalline portion that does not contain the drug remains,
This phenomenon is undesirable as a DDS base. In addition, it is possible to some extent to reduce the crystallinity by lowering the molecular weight, but in this case it is generally necessary to keep the molecular weight to several hundred or less.

しかし、この場合にはポリマー末端の酸濃度が高くなり
、生体との接触時には炎症等の問題を引き起こし、また
生体分解性が早過ぎることで、徐放性基剤としての機能
が殆どないものとなる。
However, in this case, the acid concentration at the end of the polymer becomes high, causing problems such as inflammation when it comes into contact with living organisms, and biodegradation is too rapid, so it has almost no function as a sustained-release base. Become.

この様に、生体用DDS基剤としてのポリマーは、非品
性、あるいは結晶化度が低いことが望ましく、この点に
於いて乳酸、グリコール酸等のホモポリマーは、生体用
DDS基剤として通常、実用にそぐわないものである。
In this way, it is desirable that the polymer used as a DDS base for living organisms is of poor quality or has a low degree of crystallinity. , it is not suitable for practical use.

DDS基剤として乳酸、グリコール酸等のホモポリマー
からなる基剤の特に、徐放性制御面での欠点を解消する
ものとして、乳酸、グリコール酸等とラクトン類との共
重合体からなる基剤が知られている。(H,R,Kr1
chcldorf、 T、 Mang andJ、 M
、 Jontc、 Macromolcculcs、 
 17.2173〜2181(1984)) 、  (
H,R,Kr1cheldorf、 T、 Hang 
andJ、 M、 Jontc、 MakrorBol
、 Chc[11,+ 186.955〜97B(19
85)] この基剤は、先ずグリコール酸及び乳酸のオリゴマーの
解重合によって得られる環状ジエステルのグリコリド及
びラクチドを合成し、次いでそれらの環状ジエステルと
ラクトン類を触媒存在下で反応させることによって得る
ことができる。しかし、この基剤についても使用する触
媒の除去の問題、また除去に際して用いる有機溶媒の残
留の問題、更には基剤が高分子量体であるが故に薬物と
の高温溶融混合時の薬物の劣化の問題等については解決
されておらず、未だ優れた生体用DDS基剤が見出され
ていないのが現状である。
As a DDS base, a base made of a copolymer of lactic acid, glycolic acid, etc. and lactones can be used as a DDS base to overcome the drawbacks in terms of sustained release control, especially of a base made of a homopolymer such as lactic acid or glycolic acid. It has been known. (H, R, Kr1
chcldorf, T., Mang and J., M.
, Jontc, Macromolcculcs,
17.2173-2181 (1984)), (
H, R, Kr1cheldorf, T, Hang
and J, M, Jontc, MakrorBol
, Chc[11,+ 186.955~97B (19
85)] This base can be obtained by first synthesizing cyclic diesters glycolide and lactide obtained by depolymerizing oligomers of glycolic acid and lactic acid, and then reacting these cyclic diesters with lactones in the presence of a catalyst. Can be done. However, this base also has the problem of removal of the catalyst used, the problem of residual organic solvent used during removal, and furthermore, since the base is a high molecular weight substance, there is a risk of deterioration of the drug during high-temperature melt mixing with the drug. The current situation is that these problems have not been resolved and an excellent DDS base for biological use has not yet been found.

[発明が解決しようとする問題点] 本発明者らは前記問題点を解決すべく、生体用DDS基
剤として所望される、生体に対して副作用のない基剤で
あり、しかも薬物の分解、徐放性制御の問題に於いて用
途の制限がされることのない広範な用途に適用し得る優
れた基剤を得るべく鋭意研究を重ねた。
[Problems to be Solved by the Invention] In order to solve the above-mentioned problems, the present inventors have developed a base that is desired as a DDS base for living bodies, has no side effects on living bodies, and is capable of decomposing drugs. We have carried out extensive research in order to obtain an excellent base that can be used in a wide range of applications without any restrictions on sustained release control.

[問題点を解決するための手段] その結果、乳酸及び/又はグリコール酸とγ−プチロラ
クトン、δ−バレロラクトン及び/又はε−カプロラク
トンとを無触媒下で直接脱水重縮合することにより得ら
れた特定組成を何する数平均分子量が500〜5.00
0の範囲のコポリマーが生体用DDS基剤として優れる
ことを見出し、本発明を完成させるに至ったものである
[Means for solving the problem] As a result, a product obtained by direct dehydration polycondensation of lactic acid and/or glycolic acid and γ-butyrolactone, δ-valerolactone and/or ε-caprolactone in the absence of a catalyst. What is the specific composition and the number average molecular weight is 500 to 5.00?
The present inventors have discovered that copolymers in the range of 0 are excellent as DDS bases for living organisms, and have completed the present invention.

即ち、本発明は乳酸及び/又はグリコール酸とγ−ブチ
ロラクトン、δ−バレロラクトン及び/又はε−カプロ
ラクトンとを直接脱水重縮合し、乳酸及び/又はグリコ
ール酸(A)とγ−ブチロラクトン、δ−バレロラクト
ン及び/又はε−カプロラクトン(B)とのモル比が、
即ち、(A) /(B)モル比として20/80〜90
/ 10の範囲であって、且つ数平均分子量が500〜
5,000の範囲とした生体分解型コポリマーと薬物と
を混合してなる薬物に徐放性機能を付与した生体分解型
コポリマー複合体に関する。
That is, the present invention directly dehydrates and polycondenses lactic acid and/or glycolic acid with γ-butyrolactone, δ-valerolactone and/or ε-caprolactone, thereby producing lactic acid and/or glycolic acid (A), γ-butyrolactone, δ- The molar ratio with valerolactone and/or ε-caprolactone (B) is
That is, the (A)/(B) molar ratio is 20/80 to 90.
/10, and the number average molecular weight is 500 to
The present invention relates to a biodegradable copolymer composite in which a drug is mixed with a biodegradable copolymer having a molecular weight in the range of 5,000 and a drug, and a drug is given a sustained release function.

[作  用コ 以下、本発明を更に詳細に説明する。[Production use] The present invention will be explained in more detail below.

本発明は、先ず乳酸及び/又はグリコール酸とγ−ブチ
ロラクトン、δ−バレロラクトン及び/又はε−カプロ
ラクトンとを直接脱水重縮合することにより生体分解型
コポリマーを得る。
In the present invention, first, a biodegradable copolymer is obtained by direct dehydration polycondensation of lactic acid and/or glycolic acid and γ-butyrolactone, δ-valerolactone and/or ε-caprolactone.

乳酸の種類については特段限定はなく、D体、L体、D
L体のいずれのものであってもよい。
There is no particular limitation on the type of lactic acid, and there are D-form, L-form, and D-form.
It may be any of the L-forms.

これらモノマーの使用割合については、直接脱水重縮合
後に得られるコポリマーが、乳酸及び/又はグリコール
酸(A)とγ−ブチロラクトン、δ−バレロラクトン及
び/又はε−カプロラクトン(B)とのモル比として、
即ち、(A) /(B)モル比が20/80〜90/1
0の範囲となるような割合で用いる。この場合に、この
モル比が90/10を上廻り、乳酸、グリコール酸が多
くなると、結晶仕度が高くなると共に、このものと薬物
とを混合したものは、不均一なマトリックスを形成する
ことより、薬物の放出速度が大きくなり過ぎ、基剤とし
て好ましくないものとなる。また反対に、モル比が20
/80を下廻り、δ−バレロラクトン等のラクトン類が
多くなると、乳酸、グリコール酸等のホモポリマーと同
様に、反応後に得られるコポリマーは結晶化度が高くな
り、基剤の徐放性が著しく低下することで好ましくない
Regarding the proportions of these monomers used, the copolymer obtained after direct dehydration polycondensation has a molar ratio of lactic acid and/or glycolic acid (A) to γ-butyrolactone, δ-valerolactone and/or ε-caprolactone (B). ,
That is, the (A)/(B) molar ratio is 20/80 to 90/1
Use the ratio so that it is in the range of 0. In this case, if this molar ratio exceeds 90/10 and the amount of lactic acid and glycolic acid increases, the degree of crystallization will increase, and a mixture of this substance and the drug will form a non-uniform matrix. , the drug release rate becomes too high, making it undesirable as a base. On the other hand, the molar ratio is 20
/80, and when the amount of lactones such as δ-valerolactone increases, the copolymer obtained after the reaction has a high degree of crystallinity, similar to homopolymers such as lactic acid and glycolic acid, and the sustained release properties of the base material are significantly reduced. This is not desirable as it decreases.

乳酸及び/又はグリコール酸とγ−ブチロラクトン、δ
−バレロラクトン及び/又はε−カプロラクトンとの直
接脱水重縮合反応は、無触媒下で窒素ガスを原料液中に
導入するか、あるいは10〜100 auaHg程度の
減圧下、温度150〜250 ℃で2〜30時間加熱反
応すればよいが、特段これらの条件に限定されるもので
はない。本発明では無触媒下で反応を行なうことが可能
であるがら、触媒の除去操作を必要とせず、従って得ら
れるコポリマーは、有機溶媒等の不純物を含有しない生
体用DDS基剤として好ましいものとなる。
Lactic acid and/or glycolic acid and γ-butyrolactone, δ
- Direct dehydration polycondensation reaction with valerolactone and/or ε-caprolactone can be carried out by introducing nitrogen gas into the raw material liquid without a catalyst, or at a temperature of 150 to 250 °C under a reduced pressure of about 10 to 100 auaHg. The heating reaction may be carried out for up to 30 hours, but is not particularly limited to these conditions. In the present invention, although it is possible to carry out the reaction without a catalyst, there is no need for a catalyst removal operation, and the resulting copolymer is therefore preferable as a DDS base for biological use since it does not contain impurities such as organic solvents. .

本発明に於いて殊に重要な点は、この様にして得られる
乳酸及び/又はグリコール酸とγ−ブチロラクトン、δ
−バレロラクトン及び/又はε−カプロラクトンとのコ
ポリマーの数平均分子量を500〜5,000とするこ
とである。
A particularly important point in the present invention is that the lactic acid and/or glycolic acid obtained in this way and γ-butyrolactone, δ
- The number average molecular weight of the copolymer with valerolactone and/or ε-caprolactone is 500 to 5,000.

このコポリマーの分子量がこの範囲を逸脱し、500を
下廻ると、後段で添加混合する薬物の放出が極端に早く
なり、徐放基剤としての機能が全く無いものとなる。ま
た逆に、数平均分子量が5.000を上廻ると、得られ
るコポリマーはゴム状となり、薬物との添加混合が困難
となる。
If the molecular weight of this copolymer deviates from this range and is less than 500, the release of the drug added and mixed in a later stage will be extremely rapid, and it will not function as a sustained release base at all. On the other hand, if the number average molecular weight exceeds 5.000, the resulting copolymer becomes rubbery and difficult to add and mix with a drug.

重縮合後のコポリマーは、原料の成分組成によっても異
なるが、通常ペースト状の形態であるから、後段におけ
る薬物の添加混合は常温で、あるいは若干の加熱下で混
合が可能である。
The copolymer after polycondensation differs depending on the component composition of the raw materials, but since it is usually in a paste form, the drug can be added and mixed in the latter stage at room temperature or under slight heating.

本発明では次いでこの様な生体分解型コポリマーと薬物
とを混合することにより複合体を得る。
In the present invention, a complex is then obtained by mixing such a biodegradable copolymer and a drug.

使用する薬物の種類は特に限定されず、ホルモン剤、抗
ヒスタミン剤、血圧降下剤、血管拡張剤、血管補強剤、
健胃消化剤、整腸剤、避妊剤、外皮用殺菌消毒剤、寄生
性皮膚疾患用剤、消炎剤、鎮痛剤、利胆剤、抗リウマチ
薬、強心剤、痔治療剤、便秘治療剤、ビタミン剤、各種
酵素製剤、ワクチン類、抗原虫剤、インターフェロン誘
起物質、駆虫剤、魚病薬、農薬、オーキシン、ジベレリ
ン、サイトカイニン、アブシジン酸等の植物ホルモン、
昆虫フェロモン等の薬物が使用できる。また、これら薬
物は天然物又は合成物のどちらであってもよい。
The types of drugs used are not particularly limited, and may include hormones, antihistamines, antihypertensives, vasodilators, vascular reinforcing agents,
Digestive agents for the stomach, intestinal regulation agents, contraceptives, disinfectants for the skin, agents for parasitic skin diseases, anti-inflammatory agents, analgesics, choleretic agents, antirheumatic drugs, cardiotonic agents, hemorrhoid treatment agents, constipation treatment agents, vitamin preparations, Various enzyme preparations, vaccines, antiprotozoal agents, interferon inducers, anthelmintics, fish disease drugs, pesticides, plant hormones such as auxin, gibberellin, cytokinin, abscisic acid,
Drugs such as insect pheromones can be used. Further, these drugs may be either natural products or synthetic products.

次に、生体分解型コポリマーとこれらの薬物とを混合し
てなる本発明の複合体の製造例を示せば、例えば、乳酸
及び/又はグリコール酸とγ−ブチロラクトン、δ−バ
レロラクトン及び/又はε−カプロラクトンとを直接脱
水重縮合し、乳酸及び/又はグリコール酸(A)とγ−
ブチロラクトン、δ−バレロラクトン及び/又はε−カ
プロラクトン(B)とのモル比が、即ち、(A) /(
B)モル比として20/80〜90/10の範囲であっ
て、且つ数平均分子量が500〜5.000の範囲とし
た生体分解型コポリマーを適宜選択し、一定量を容器に
加え、通常これに前述の薬物の一定量をこれに添加し、
充分な混合を行なえばよい。また、コポリマーの加熱溶
融を必要とする際には、直接または水浴、あるいは恒温
槽で100℃以下に加熱しながら溶融し、混合を行なえ
ばよい。
Next, an example of manufacturing a complex of the present invention obtained by mixing a biodegradable copolymer and these drugs will be shown. For example, lactic acid and/or glycolic acid and γ-butyrolactone, δ-valerolactone and/or - Direct dehydration polycondensation with caprolactone, lactic acid and/or glycolic acid (A) and γ-
The molar ratio of butyrolactone, δ-valerolactone and/or ε-caprolactone (B) is (A)/(
B) Appropriately select a biodegradable copolymer with a molar ratio in the range of 20/80 to 90/10 and a number average molecular weight in the range of 500 to 5.000, add a certain amount to a container, and usually Add a certain amount of the aforementioned drug to this,
Sufficient mixing is sufficient. Further, when the copolymer needs to be heated and melted, the copolymer may be melted and mixed while being heated to 100° C. or less directly, in a water bath, or in a constant temperature bath.

この様にして得られる本発明の薬物に徐放性機能を付与
した生体分解型コポリマー複合体は、徐放特性に優れ、
不純物を含まないことより生体には副作用のない、また
ペースト状の形態であることから成形が容易であり、広
範な用途に適用し得る生体用DDS複合体として優れた
ものである。
The biodegradable copolymer composite obtained in this way, in which the drug of the present invention is given a sustained release function, has excellent sustained release properties,
Since it does not contain impurities, it has no side effects on living organisms, and since it is in a paste-like form, it is easy to mold, making it an excellent DDS composite for living organisms that can be applied to a wide range of applications.

具体的にその使用形態の例を示せば次の様なものが挙げ
られる。
Specific examples of its usage are as follows.

■ 先を尖端とした柔軟な容器に複合体を充填し、使用
時に生体の一部を切開して注入する方式(第8図参照) ■ シート状素材の表面に複合体を塗布し、湿布薬状に
して生体に張り付ける方式(第9図参照) ■ テフロン管等の管状容器に複合体を充填し、押し出
し、注射挿入が可能とした形状の注射器型ディスポーザ
ルタイプ方式(第10図参照) また、これらのものを殺菌処理するに際しては、放射線
源を用いて滅菌処理する方法が可能であり、その場合の
放射線照射の線源は複合体内部まで殺菌可能な線源の選
択が理想である。従って、その種類として Co 、 
   Cs等の透過力の強いγ線源及びβ線源を用い、
照射線量は5×10  rad 〜5 Xl06rad
が適切である。
■ A method in which the complex is filled into a flexible container with a pointed tip and injected by incising a part of the living body during use (see Figure 8). ■ The complex is applied to the surface of a sheet-like material and used as a poultice. (See Figure 9) ■ A syringe-type disposable type method in which the compound is filled into a tubular container such as a Teflon tube, extruded, and can be inserted by injection (See Figure 10) When sterilizing these items, it is possible to sterilize them using a radiation source, and in this case, it is ideal to select a radiation source that can sterilize the inside of the composite. Therefore, the types include Co,
Using a γ-ray source and a β-ray source with strong penetrating power such as Cs,
Irradiation dose is 5×10 rad ~5 Xl06 rad
is appropriate.

[実 施 例] 以下に本発明の実施例を掲げて更に説明を行なうが、本
発明はこれらに限定されるものではない。
[Examples] The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.

また、%は特に断わらない限り全て重量%を示す。Moreover, all percentages indicate weight % unless otherwise specified.

実施例 1〜4 L −乳酸(90%)とδ−バレロラクトン(100%
)の混合物〔L−乳酸/δ−バレロラクトン=30/7
0 (モル比))70gを200 ml容反応容器に入
れ、200 ml/m1nの割合で窒素ガスを混合液に
導入しながら、200℃で2時間(実施例1)、4時間
(実施例2)、8時間(実施例3)、16時間(実施例
4)反応させた。
Examples 1-4 L-lactic acid (90%) and δ-valerolactone (100%
) mixture [L-lactic acid/δ-valerolactone = 30/7
0 (molar ratio)) was placed in a 200 ml reaction vessel, and while introducing nitrogen gas into the mixture at a rate of 200 ml/ml, the mixture was heated at 200°C for 2 hours (Example 1) and 4 hours (Example 2). ), 8 hours (Example 3) and 16 hours (Example 4).

これらのコポリマーの100 mgに、薬物としてカル
シトニン(Calcitonin、骨粗しよう症治療薬
)を1mg添加し、均一となるまで混合を行い本発明の
コポリマー複合体を得た。
To 100 mg of these copolymers, 1 mg of calcitonin (an osteoporosis therapeutic drug) was added as a drug and mixed until homogeneous to obtain a copolymer complex of the present invention.

これら複合体の物性及びin vivo分解率を測定し
た。尚、in vivo分解率は、先ず複合体を軟膏容
器(内部テフロン加工)に充填し、これで切開したラッ
ト背中皮下部に複合体を注入した。次いで、複合体の埋
込から1週間口にラットを層殺し、残存している複合体
量を測定して注入量から分解率を算出した。
The physical properties and in vivo degradation rates of these complexes were measured. The in vivo decomposition rate was determined by first filling an ointment container (with Teflon coating inside) and injecting the complex into the lower part of the rat's back skin, which was incised. Next, rats were sacrificed in the mouth for one week after implantation of the composite, the amount of the remaining composite was measured, and the degradation rate was calculated from the amount injected.

これらの結果を第1表に示した。These results are shown in Table 1.

また比較のために、前記し一乳酸とδ−バレロラクトン
の混合物〔L−乳酸/δ−バレロラクトン−30/70
 (モル比))70gを同様に200 ml容反応容器
に入れ、200 ml/m1nの割合で窒素ガスを混合
液に導入しながら、200°Cで1時間反応させ、数平
均分子量が300のコポリマーを得た。
For comparison, a mixture of monolactic acid and δ-valerolactone [L-lactic acid/δ-valerolactone-30/70
(Mole ratio)) was similarly placed in a 200 ml reaction vessel, and reacted at 200°C for 1 hour while introducing nitrogen gas into the mixture at a rate of 200 ml/ml to form a copolymer with a number average molecular weight of 300. I got it.

(比較例1) 更に比較のために、L−乳酸とδ−バレロラクトンの高
分子量化したコポリマーを得た。
(Comparative Example 1) For further comparison, a high molecular weight copolymer of L-lactic acid and δ-valerolactone was obtained.

方法は、L−ラクチド(100%)と前記δ−バレロラ
クトンの混合物〔L−乳酸/δ−バレロラクトン=30
/70 (モル比)換算値〕の5gを20m1容ガ、ラ
スアンプルに入れ、触媒としてオクタン酸スズをL−ラ
クチドとδ−バレロラクトンの合計重量に対して0.1
%添加し、容器を密閉して凍結脱気を3回繰り返した後
、I X 10−4mm11gに減圧下、200℃で4
時間反応させた。得られたコポリマーをクロロホルムに
溶解し、続いて多量のメタノール中に析出させた後、3
0℃で真空乾燥を行ない、室温でゴム状のコポリマーを
得た。(比較例2)比較例1、比較例2で得たコポリマ
ーについて、実施例1〜4と同様に、薬物としてカルシ
トニンを添加混合して得た複合体の物性及びin vf
vo分解率を測定した。結果を第1表に示した。
The method involves using a mixture of L-lactide (100%) and the above δ-valerolactone [L-lactic acid/δ-valerolactone = 30
/70 (mole ratio) conversion value] was placed in a 20 ml glass ampoule, and tin octoate was added as a catalyst at 0.1% relative to the total weight of L-lactide and δ-valerolactone.
%, the container was sealed, and freeze-degassing was repeated three times, and then 11 g of I
Allowed time to react. After dissolving the resulting copolymer in chloroform and subsequent precipitation in a large amount of methanol, 3
Vacuum drying was carried out at 0°C to obtain a rubbery copolymer at room temperature. (Comparative Example 2) Regarding the copolymers obtained in Comparative Examples 1 and 2, the physical properties and in vf of a composite obtained by adding and mixing calcitonin as a drug in the same manner as in Examples 1 to 4.
The vo decomposition rate was measured. The results are shown in Table 1.

実施例 5〜8 L −乳酸(90%)とδ−バレロラクトン(100%
)を混合モル比(L−乳酸/δ−バレロラクトンモル比
)がそれぞれ20/80 (実施例5) 、50150
(実施例6) 、70/30 (実施例7) 、90/
10 (実施例8)となるように混合し、その50gを
各200m1容反応容器に入れた。また比較のため、次
の条件により同様に試験を行なった。
Examples 5-8 L-lactic acid (90%) and δ-valerolactone (100%)
) at a mixing molar ratio (L-lactic acid/δ-valerolactone molar ratio) of 20/80 (Example 5) and 50150, respectively.
(Example 6), 70/30 (Example 7), 90/
10 (Example 8), and 50 g of the mixture was placed in each 200 ml reaction vessel. For comparison, a similar test was conducted under the following conditions.

L−乳酸とδ−バレロラクトンを混合モル比(L−乳酸
/δ−バレロラクトンモル比)がそれぞれ10/90と
したもの50gについて(比較例3)、L−乳酸のホモ
ポリマーを得るためにL−乳酸(90%)の70gにつ
いて(比較例4)、δ−バレロラクトンのホモポリマー
を得るためにδ−バレロラクトン(100%)の60g
と水10gについて(比較例5)、これらをそれぞれ同
様に各200 ml容反応容器に入れた。
In order to obtain a homopolymer of L-lactic acid for 50 g of L-lactic acid and δ-valerolactone at a mixing molar ratio (L-lactic acid/δ-valerolactone molar ratio) of 10/90 (Comparative Example 3), For 70 g of L-lactic acid (90%) (comparative example 4), 60 g of δ-valerolactone (100%) to obtain a homopolymer of δ-valerolactone
and 10 g of water (Comparative Example 5) were similarly placed in each 200 ml reaction vessel.

実施例及び比較例として調製したこれらの液に、窒素ガ
スを200 ml/ff1inの割合で導入しながら、
200℃で10時間の反応を行ない、コポリマー及びホ
モポリマーを得た。
While introducing nitrogen gas at a rate of 200 ml/ff1in into these solutions prepared as Examples and Comparative Examples,
The reaction was carried out at 200° C. for 10 hours to obtain a copolymer and a homopolymer.

これらポリマーの100 mgに、薬物としてカルシト
ニンを1mg添加し、均一となるまで混合を行い本発明
のコポリマー複合体を得た。
1 mg of calcitonin as a drug was added to 100 mg of these polymers, and the mixture was mixed until homogeneous to obtain a copolymer complex of the present invention.

これら複合体の物性及び1n vivo分解率を測定し
た。
The physical properties and 1n vivo degradation rate of these complexes were measured.

尚、in vivo分解率は次の方法により求めた。Incidentally, the in vivo decomposition rate was determined by the following method.

先ず所定量の複合体をテフロンチューブ(内径2mmφ
、長さ50mm)内に充填し、100 kg/cJの圧
力下、70℃で成形処理した。この処理によって、テフ
ロンチューブに充填された複合体は内径2關φのロッド
状となった。次に、この状態で尖端としたチューブ先端
をラット背中皮下部に挿入し、ステンレス棒状の押出器
で注射挿入状態で複合体を挿入した。
First, put a predetermined amount of the composite into a Teflon tube (inner diameter 2mmφ).
, length 50 mm) and molded at 70° C. under a pressure of 100 kg/cJ. Through this treatment, the composite filled in the Teflon tube became rod-shaped with an inner diameter of 2 mm. Next, in this state, the pointed end of the tube was inserted into the lower skin of the rat's back, and the composite was inserted in the injection state using a stainless steel rod-shaped extruder.

複合体の埋込から2週間口にラットを層殺し、残存して
いる複合体量を測定して注入量から分ル1串を算出した
Two weeks after implantation of the composite, the rats were sacrificed by mouth, the amount of the remaining composite was measured, and one skewer was calculated from the injection amount.

これらの結果を第2表に示した。These results are shown in Table 2.

実施例 9〜11 実施例4のL−乳酸に代えて90%D−乳酸(実施例9
)、90%DL−乳酸(実施例10)及び100%グリ
コール酸(実施例11)を用いて同様にコポリマーを合
成した。
Examples 9 to 11 90% D-lactic acid (Example 9) was used instead of L-lactic acid in Example 4.
), 90% DL-lactic acid (Example 10) and 100% glycolic acid (Example 11).

得られたコポリマーの100 mgに、薬物としてカル
シトニンを1■添加し、均一となるまで混合を行なった
。この様にして得た複合体の物性を測定し、結果を第3
表に示した。またラット中のin vivo分解率を所
定逓伝に測定し、分解率の変化を第1図に示した。
One portion of calcitonin as a drug was added to 100 mg of the obtained copolymer, and the mixture was mixed until homogeneous. The physical properties of the composite thus obtained were measured, and the results were reported in a third
Shown in the table. In addition, the in vivo degradation rate in rats was measured at regular intervals, and the changes in the degradation rate are shown in FIG.

実施例 12〜13 実施例7のδ−バレロラクトンに代えて100%γ−ブ
チロラクトン(実施例12) 、100%ε−カプロラ
クトン(実施例13)を用いて同様にコポリマーを合成
した。
Examples 12 to 13 Copolymers were similarly synthesized using 100% γ-butyrolactone (Example 12) and 100% ε-caprolactone (Example 13) in place of δ-valerolactone in Example 7.

得られたコポリマーを、X線回折によりその性質を調べ
た結果、全て非品性であった。
The properties of the obtained copolymers were examined by X-ray diffraction, and all of them were found to be of poor quality.

これらコポリマーの100 mgに、薬物としてカルシ
トニンを1mg添加し、均一となるまで混合を行なった
。この様にして得た複合体の物性及びラット中の埋入か
ら一週間目のin vivo分解率を測定し、結果を第
4表に示した。
1 mg of calcitonin as a drug was added to 100 mg of these copolymers and mixed until uniform. The physical properties of the composite thus obtained and the in vivo decomposition rate one week after implantation in rats were measured, and the results are shown in Table 4.

実施例14〜19 実施例8と同様に合成した(L−乳酸/δバレロラクト
ンモル比87/ 13)コポリマーの45mgと薬物と
して天然黄体形成ホルモン放出ホルモン(lutein
lzing hormone releasing h
ormone 、以下、LH−RHと略記する。尚、天
然LH−RHのアミノ酸配列はpGlu−Hls−Tr
p−5er−Tyr−Gly−Leu−Arg−Pro
−Gly−NH2である)の5mg(実施例14)を、
また同様にLH−RH類似物質である(Gly−OH”
)−L H−RHの5mg(実施例15)、[D −A
la6] −LH−RHの5mg(実施例16)、CD
 −Phe2、D−Ala6)−LH−RHの5mg(
実施例17)、(Ac −D−Pcl−Phe  、D
−Trp3、D−1,2 Arg6、D−Ala”)−LH−RHの5mg(実施
例18)、(dcs −Gly”、D−Leu8)−L
H−RHの5mg(実施例19)を、それぞれガラス製
試験管中に入れ、温度70℃で3分間混合攪拌した。
Examples 14 to 19 45 mg of a copolymer (L-lactic acid/δ valerolactone molar ratio 87/13) synthesized in the same manner as in Example 8 and natural luteinizing hormone-releasing hormone (lutein) as a drug.
lzing hormone releasing h
ormone, hereinafter abbreviated as LH-RH. The amino acid sequence of natural LH-RH is pGlu-Hls-Tr.
p-5er-Tyr-Gly-Leu-Arg-Pro
-Gly-NH2) (Example 14),
Similarly, it is a substance similar to LH-RH (Gly-OH”
)-L H-RH (Example 15), [D-A
la6] -LH-RH (Example 16), CD
-Phe2, D-Ala6)-LH-RH 5mg (
Example 17), (Ac-D-Pcl-Phe, D
-Trp3, D-1,2 Arg6, D-Ala”)-LH-RH (Example 18), (dcs-Gly”, D-Leu8)-L
5 mg of H-RH (Example 19) was placed in each glass test tube, and mixed and stirred at a temperature of 70° C. for 3 minutes.

コポリマーと薬物はこの条件下ですばやく溶融し、均一
な複合体が得られた。複合体を冷却後、これをディスポ
ーザルタイプのテフロン管(内径2mmφ、長さ60m
m)内に充填し、100 kg/crIの圧力下、温度
50℃で2分間成形処理した。この処理によって、テフ
ロンチューブに充填された複合体は内径2mmφ、長さ
15mmのロッド状となった。
The copolymer and drug melted quickly under these conditions, resulting in a homogeneous complex. After cooling the composite, it was placed in a disposable type Teflon tube (inner diameter 2mmφ, length 60m).
m) and molded for 2 minutes at a temperature of 50° C. under a pressure of 100 kg/crI. Through this treatment, the composite filled in the Teflon tube became rod-shaped with an inner diameter of 2 mmφ and a length of 15 mm.

この成形した複合体を殺菌処理するため、窒素雰囲気中
、−78℃(ドライアイス−メタノール)の温度で60
Co線源からのγ線をI Xl06R/hの線量率で3
時間照射した。
In order to sterilize this molded composite, it was heated at -78°C (dry ice-methanol) in a nitrogen atmosphere for 60°C.
γ-rays from a Co source at a dose rate of IXl06R/h
Irradiated for hours.

この様に処理して得た本発明複合体の薬物(生理活性物
質)のin vivo放出量を測定した。方法は、複合
体をウィスター系ラット(雄、体重400〜500g)
の背中皮下部にディスポーザルタイプテフロン管の先端
を挿入し、充填している複合体をテフロン棒で全量押出
し挿入した。
The in vivo release amount of the drug (physiologically active substance) from the complex of the present invention obtained by the above treatment was measured. The method involved administering the complex to Wistar rats (male, weight 400-500 g).
The tip of a disposable Teflon tube was inserted into the lower back skin of the patient, and the entire amount of the filled composite was extruded using a Teflon rod.

所定時間の経過後、ラットを層殺し、複合体を摘出して
残存する薬物量を測定して注入量から薬物放出率を算出
した。
After a predetermined period of time had elapsed, the rats were sacrificed, the complex was extracted, the amount of remaining drug was measured, and the drug release rate was calculated from the injected amount.

この様にして、各薬物について所定期間毎の薬物放出量
を測定し、その結果を第2図に示した。
In this way, the amount of drug released for each drug was measured at each predetermined period, and the results are shown in FIG.

更に、薬物(生理活性物質)の薬理作用をラット100
g体重当りの前立腺複葉の重量(mg/100gbw)
で求め、その結果を第3図に示した。
Furthermore, the pharmacological effects of drugs (physiologically active substances) were evaluated in rats.
Prostate compound weight per g body weight (mg/100gbw)
The results are shown in Figure 3.

実施例 20 実施例12と同様に合成した(L−乳酸/γ−ブチロラ
クトンモル比78/ 22)コポリマーの1gと薬物と
してエストラマスチン(Estramustinc、制
癌剤)の100 mgを塩化メチレンの10m1に完全
に溶解させた。この薬物とコポリマーを含有する塩化メ
チレン溶液を、1%ポリビニルアルコール水溶液の20
0 ml中に400rpmで撹拌下、スポイトで滴下し
、滴下終了後、更に室温で24時間攪拌した。この操作
によって、薬物としてエストラマスチンを含む本発明の
複合体は、微粒子状(30〜50μm)となった。この
微粒子状複合体を数日間水洗し、これを凍結乾燥した後
、動物実験に供した。
Example 20 1 g of a copolymer (L-lactic acid/γ-butyrolactone molar ratio 78/22) synthesized in the same manner as in Example 12 and 100 mg of estramustin (anticancer drug) as a drug were completely added to 10 ml of methylene chloride. Dissolved. A methylene chloride solution containing this drug and copolymer was mixed with a 1% polyvinyl alcohol aqueous solution at 20%
0 ml using a dropper while stirring at 400 rpm, and after the dropwise addition was completed, the mixture was further stirred at room temperature for 24 hours. Through this operation, the complex of the present invention containing estramastine as a drug was made into fine particles (30 to 50 μm). This particulate composite was washed with water for several days, freeze-dried, and then subjected to animal experiments.

動物実験の方法は、微粒子状複合体の100mgを生理
食塩水1mlに懸濁もしくは分散させ、これを注射器で
ラット背中皮下部に全量注入した。薬物の薬理作用をラ
ット100g体重当りの前立腺複葉の重ffi (mg
/ 100gbv)で求め、その結果を第4図に示した
In the animal experiment, 100 mg of the particulate complex was suspended or dispersed in 1 ml of physiological saline, and the entire amount was injected into the lower skin of a rat's back using a syringe. The pharmacological action of the drug was determined by calculating the weight of the compound prostate per 100 g of rat body weight ffi (mg
/100gbv), and the results are shown in FIG.

実施例 21〜26 実施例13と同様に合成した(L−乳酸/ε−カプロラ
クトンモル比69/ 31)コポリマーの1gと薬物と
してセファロチン(Cephalothin、 (抗生
物質)〕のloOmg (実施例21)を、また同様に
ゲンタマイシン[Gentamicln、 (抗生物質
)〕の1100mg実施例22)、インダシン[Ind
acin、 (解熱剤)]の1100mg(実施例23
)、インドメタシンClndomethacin、  
(抗炎症剤)〕の1100mg(実施例24)、フエノ
バルビトン(Phcnobarbiton、 (強心剤
)〕の1100mg(実施例25)、カフェイン(Ca
ffcin。
Examples 21 to 26 1 g of a copolymer (L-lactic acid/ε-caprolactone molar ratio 69/31) synthesized in the same manner as in Example 13 and loOmg of Cephalothin (antibiotic) as a drug (Example 21) Similarly, 1100 mg of gentamicin [Example 22), indacin [Ind.
acin, (antipyretic agent)] (Example 23)
), Indomethacin,
(Anti-inflammatory agent)] (Example 24), 1,100 mg of Phcnobarbitone (Carotonic agent) (Example 25), caffeine (Ca
ffcin.

(鎮痛剤)〕の1100mg(実施例26)をそれぞれ
温度80℃で加温しながら混合した。これらの複合体を
注射器を用い、それぞれ一方を封じた透析セロハンチュ
ーブ中に充填した。
(Analgesic)] (Example 26) were mixed while heating at a temperature of 80°C. These complexes were filled into dialysis cellophane tubes each sealed at one end using a syringe.

薬物のin vitro放出試験をメンプラン拡散法(
第5図参照)により行い、結果を第5表に示した。
The in vitro drug release test was performed using the Memplan diffusion method (
(see FIG. 5), and the results are shown in Table 5.

第    5    表 実施例 27 実施例13と同様に合成したコポリマーの1gと〔フト
ラフール()’toraful、  (制癌剤))の0
.1gを混合した。この本発明の複合体を用い、In 
viv。
Table 5 Example 27 1 g of the copolymer synthesized in the same manner as in Example 13 and 0 of [toraful, (anticancer drug)]
.. 1 g was mixed. Using this complex of the present invention, In
viv.

によるフトラフールの血中濃度を測定した。The blood concentration of ftorafur was measured.

方法は、上記複合体を浣腸状容器に充填し、これを雑犬
(体重10kg)の肛門から全量注入し、所定期間毎に
フトラフールの血中濃度を測定した。
The method involved filling the above complex into an enema-like container, injecting the entire amount through the anus of a mongrel dog (weight 10 kg), and measuring the blood concentration of ftorafur at predetermined intervals.

結果を第6図に示した。The results are shown in Figure 6.

実施例 28 実施例13と同様に合成したコポリマーと薬物としてエ
ストラサイト(Estracyt、  (制癌剤)〕を
混合した本発明の複合体を用い、in vivoによる
エストラサイトの血中濃度を測定した。
Example 28 Using a complex of the present invention in which a copolymer synthesized in the same manner as in Example 13 was mixed with Estracyt (anticancer drug) as a drug, the blood concentration of estracyte was measured in vivo.

方法は、上記複合体の0.5g (エストラサイト50
mg相当)を浣腸状容器に充填し、これをうさぎ(体重
4kg)の肛門から全量注入し、所定時間毎にエストラ
サイトの血中濃度を測定した。
The method involves adding 0.5 g of the above complex (Estracyte 50
(mg equivalent) was filled into an enema-like container, and the entire amount was injected through the anus of a rabbit (weight 4 kg), and the blood concentration of estracyte was measured at predetermined intervals.

結果を第7図に示した。The results are shown in Figure 7.

実施例 29〜31 実施例10と同様に合成した(DL−乳酸/δ−バレロ
ラクトンモル比30/ 70)コポリマー(数平均分子
ffi 2200)の0.5gと薬物としてカルシトニ
ンの100mg (実施例29)を、また同様にテスト
ステロン[Tc5tostcronc、  (ホルモン
剤)〕の100■(実施例30)、天然LH−RHの1
00mg(実施例31)をそれぞれ温度80℃で加温し
ながら混合した。これらの複合体を布地素材に塗布し、
これをヘアーレスマウス(体重100g)の背中表皮に
貼付けた。
Examples 29 to 31 0.5 g of a (DL-lactic acid/δ-valerolactone molar ratio 30/70) copolymer (number average molecular ffi 2200) synthesized in the same manner as in Example 10 and 100 mg of calcitonin as a drug (Example 29 ), 100 μg of testosterone [Tc5tostcronc, (hormone agent)] (Example 30), and 1 μg of natural LH-RH.
00 mg (Example 31) were mixed while heating at a temperature of 80°C. These complexes are applied to textile materials,
This was applied to the back epidermis of a hairless mouse (weight 100 g).

所定期間毎にマウスを層殺し、マウス血中の薬物濃度を
測定した。
The mice were sacrificed at predetermined intervals, and the drug concentration in the blood of the mice was measured.

結果を第6表に示した。The results are shown in Table 6.

第    6    表Chapter 6 Table

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例9〜11で製造された本発明複合体の
コポリマーの生体内分解率と生体埋入期間との関係を示
すグラフである。 第2図は、実施例14〜19で製造された本発明複合体
の生理活性物質の生体内放出量と生体埋入期間との関係
を示すグラフである。 第3図は、実施例14〜19で製造された本発明複合体
から放出されたホルモンの薬理作用(前立腺複葉の重合
で表わす)と生体埋入期間との関係を示すグラフである
。 第4図は、実施例20で製造された本発明複合体から放
出されたホルモンの薬理作用(前立腺複葉の重量で表わ
す)と生体埋入期間との関係を示すグラフである。 第5図は、実施例21〜26で用いたメンプラン拡散法
によるin vitro放出試験装置の概略図である。 第6図及び第7図は、実施例27及び実施例28で製造
された本発明複合体から放出されたホルモンの薬理作用
(前立腺複葉の重合て表わす)と生体埋入期間との関係
を示すグラフである。 第8図、第9図及び第10図は、本発明の複合体を生体
内に挿入するための挿入具の具体例をそれぞれ示す。 1・・・選析セロハンチューブ 2・・・サンプル      3・・・ポンプ4・・・
37℃生理食塩水(1000ml)5・・・複合体  
     6・・・適当な素材7・・・先を尖端とした
テフロン加工の柔軟な容器8・・・注射器型ディスポー
ザー
FIG. 1 is a graph showing the relationship between the biodegradation rate of the copolymers of the composites of the present invention produced in Examples 9 to 11 and the period of in vivo implantation. FIG. 2 is a graph showing the relationship between the in-vivo release amount of the physiologically active substance of the composites of the present invention manufactured in Examples 14 to 19 and the in-vivo implantation period. FIG. 3 is a graph showing the relationship between the pharmacological action of hormones released from the composites of the present invention produced in Examples 14 to 19 (represented by polymerization of prostatic compound) and the period of in vivo implantation. FIG. 4 is a graph showing the relationship between the pharmacological action of the hormone released from the composite of the present invention produced in Example 20 (expressed by the weight of the compound prostate gland) and the period of in vivo implantation. FIG. 5 is a schematic diagram of an in vitro release test apparatus using the Menplan diffusion method used in Examples 21 to 26. Figures 6 and 7 show the relationship between the pharmacological action of the hormones released from the composites of the present invention produced in Examples 27 and 28 (represented by the polymerization of the prostatic compound) and the period of in-vivo implantation. It is a graph. FIG. 8, FIG. 9, and FIG. 10 each show a specific example of an insertion tool for inserting the composite of the present invention into a living body. 1...Selection cellophane tube 2...Sample 3...Pump 4...
37℃ physiological saline (1000ml) 5... complex
6... Suitable material 7... Teflon-treated flexible container with a pointed tip 8... Syringe-shaped disposer

Claims (1)

【特許請求の範囲】[Claims] 乳酸及び/又はグリコール酸とγ−ブチロラクトン、δ
−バレロラクトン及び/又はε−カプロラクトンとを直
接脱水重縮合し、乳酸及び/又はグリコール酸(A)と
γ−ブチロラクトン、δ−バレロラクトン及び/又はε
−カプロラクトン(B)とのモル比が、即ち、(A)/
(B)モル比として20/80〜90/10の範囲であ
って、且つ数平均分子量が500〜5,000の範囲と
した生体分解型コポリマーと薬物とを混合してなる薬物
に徐放性機能を付与した生体分解型コポリマー複合体。
Lactic acid and/or glycolic acid and γ-butyrolactone, δ
- direct dehydration polycondensation of valerolactone and/or ε-caprolactone, lactic acid and/or glycolic acid (A) and γ-butyrolactone, δ-valerolactone and/or ε-caprolactone;
- the molar ratio with caprolactone (B) is (A)/
(B) A drug prepared by mixing a biodegradable copolymer with a molar ratio in the range of 20/80 to 90/10 and a number average molecular weight in the range of 500 to 5,000, and a drug with sustained release properties. A functionalized biodegradable copolymer complex.
JP62254958A 1987-10-09 1987-10-09 Biodegradable copolymer complex making drug gradually releasable Granted JPH0196139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254958A JPH0196139A (en) 1987-10-09 1987-10-09 Biodegradable copolymer complex making drug gradually releasable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254958A JPH0196139A (en) 1987-10-09 1987-10-09 Biodegradable copolymer complex making drug gradually releasable

Publications (2)

Publication Number Publication Date
JPH0196139A true JPH0196139A (en) 1989-04-14
JPH0546328B2 JPH0546328B2 (en) 1993-07-13

Family

ID=17272227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254958A Granted JPH0196139A (en) 1987-10-09 1987-10-09 Biodegradable copolymer complex making drug gradually releasable

Country Status (1)

Country Link
JP (1) JPH0196139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213600A (en) * 2005-02-01 2006-08-17 Kawasumi Lab Inc Sustained release system of medicine
JP2011502008A (en) * 2007-10-31 2011-01-20 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Biodegradable polymeric materials for controlled release of hydrophobic drugs from implantable devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213600A (en) * 2005-02-01 2006-08-17 Kawasumi Lab Inc Sustained release system of medicine
JP2011502008A (en) * 2007-10-31 2011-01-20 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Biodegradable polymeric materials for controlled release of hydrophobic drugs from implantable devices

Also Published As

Publication number Publication date
JPH0546328B2 (en) 1993-07-13

Similar Documents

Publication Publication Date Title
CN101365423B (en) Sustained release small molecule drug formulation
JP3614820B2 (en) Liquid composition of biodegradable block copolymer for drug delivery system and method for producing the same
US6432438B1 (en) Biodegradable vehicle and filler
CN1283215C (en) Biodegradable carriers and delivery systems for biologically active substances
US10047193B2 (en) Sustained release polymer
DK1824460T3 (en) Stabilized polymeric delivery system
TWI718168B (en) Liquid polymer delivery system for extended administration of drugs
US20040018238A1 (en) Biodegradable vehicles and delivery systems of biolgically active substances
MX2014015902A (en) Biodegradable drug delivery for hydrophobic compositions.
US20040101557A1 (en) High viscosity liquid controlled delivery system and medical or surgical device
JP2009506101A (en) Extended release formulation containing anastrozole
JP3351523B2 (en) Improved sustained release system for sustained release of pharmaceutically and / or biologically useful substances from a depot carrier material
JP2000509403A (en) Pharmaceutical compositions for sustained release of insoluble active ingredients
KR100979217B1 (en) Temozolomide Controlled Release System
TWI399224B (en) Solid sustained-release formulation comprising triptorelin acetate
JPH0196139A (en) Biodegradable copolymer complex making drug gradually releasable
JP2005507385A (en) Biodegradable implant comprising polylactide polymer and LH-RH analogue
CN1206001C (en) Biodegradable Carriers and Biodegradable Delivery Systems
JPH0547525B2 (en)
CN113476418A (en) Subcutaneous implanted rod for long-acting blood pressure reduction and preparation method thereof
CN101134012A (en) Method for producing injectable drug administration preparations using mixed polyacid anhydride as the carrier for middle-size or small molecule medicament and application thereof
JPS63218632A (en) Method for producing a biodegradable copoly(glucolic acid/L-lactic acid) complex that imparts sustained release function to hormones
JPH03109419A (en) Lactone polymers and sustained release bases
JPS63203610A (en) Multi-component long-acting pharmaceutical formulation for implants
JPH0539347A (en) Biodegradable polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 15