JPH0160177B2 - - Google Patents
Info
- Publication number
- JPH0160177B2 JPH0160177B2 JP8269982A JP8269982A JPH0160177B2 JP H0160177 B2 JPH0160177 B2 JP H0160177B2 JP 8269982 A JP8269982 A JP 8269982A JP 8269982 A JP8269982 A JP 8269982A JP H0160177 B2 JPH0160177 B2 JP H0160177B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- rubber
- oxygen
- treated
- fluorine gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007789 gas Substances 0.000 claims description 33
- 229920001971 elastomer Polymers 0.000 claims description 28
- 239000005060 rubber Substances 0.000 claims description 28
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 27
- 229910052731 fluorine Inorganic materials 0.000 claims description 27
- 239000011737 fluorine Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 14
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 10
- 229910001882 dioxygen Inorganic materials 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 238000004381 surface treatment Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 238000000635 electron micrograph Methods 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 229920002681 hypalon Polymers 0.000 description 2
- 229910001512 metal fluoride Inorganic materials 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- BVBMRJKFECUARX-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane-1,2-diol Chemical compound OC(Cl)(Cl)C(O)(Cl)Cl BVBMRJKFECUARX-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- -1 softeners Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/126—Halogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2321/00—Characterised by the use of unspecified rubbers
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Description
【発明の詳細な説明】
本発明は、成形ゴム材料の表面処理方法に関す
る。更に詳しくは、成形ゴム材料の表面をフツ素
ガスで処理することからなる成形ゴム材料の表面
処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface treatment of molded rubber materials. More specifically, the present invention relates to a method for treating the surface of a molded rubber material, which comprises treating the surface of the molded rubber material with fluorine gas.
従来から、各種の用途に用いられる成形ゴム材
料の表面特性、殊に粘着性や摩擦性などを改善さ
せるための多くの提案がなされている。そのよう
な材料表面の粘着防止作用や摩擦低減作用の耐久
性を向上させる一つの方法として、成形ゴム材料
の表面をフツ素ガスで処理することが、先に本発
明者らの1名によつて提案されている(特願昭55
−131829号、同55−133542号、同55−156577号、
同55−163971号、同56−23507号、同56−40576
号)。 Conventionally, many proposals have been made for improving the surface properties, particularly the adhesion and friction properties, of molded rubber materials used for various purposes. One of the present inventors previously proposed that the surface of a molded rubber material be treated with fluorine gas as a method for improving the durability of the anti-adhesive and friction-reducing effects on the surface of such materials. It has been proposed that
−131829, No. 55-133542, No. 55-156577,
No. 55-163971, No. 56-23507, No. 56-40576
issue).
これらのフツ素ガス処理方法においては、その
処理条件を限定することにより、それぞれ目的と
する効果は得られるものの、一般的にはなお次の
ような問題がなお存在することが認められた。 In these fluorine gas treatment methods, although the desired effects can be obtained by limiting the treatment conditions, it has been recognized that the following problems generally still exist.
(1) 成形ゴム材料表面のフツ素化処理層は、低粘
着性、低摩擦性の目的が十分に達せられるが、
その処理層の内側にある半処理層の粘着性およ
び摩擦抵抗性は、かえつて未処理のゴム材料の
それよりも増大すること
(2) そのために、フツ素ガス表面処理ゴム材料の
耐久性が問題となり、その材料を使用した場
合、一定時間経過後にはかえつて高粘着、高摩
擦の問題を生じること
本発明者らは、かかる現象の原因について種々
検討すべくモデル物質ゴム材料のフツ素ガス半処
理層の表面分析をX線電子スペクトルによつて行
なつたところ、この層の酸素含有量がフツ素ガス
処理層のそれと比較して少ないことが確認され
た。(1) Although the fluorinated layer on the surface of the molded rubber material satisfactorily achieves the objectives of low adhesion and low friction,
The tackiness and friction resistance of the semi-treated layer inside the treated layer are actually increased compared to those of the untreated rubber material (2). Therefore, the durability of the fluorine gas surface treated rubber material is increased. If the material is used, problems of high adhesion and high friction will occur after a certain period of time.The present inventors have investigated various causes of such phenomena by using the fluorine gas in the model rubber material. Surface analysis of the semi-treated layer by X-ray electron spectroscopy confirmed that the oxygen content of this layer was low compared to that of the fluorine gas treated layer.
こうした事実に基いて、酸素含有量が如何に表
面特性に影響するかという理論的解明はさてお
き、その対策を検討した結果、成形ゴム材料の表
面をフツ素ガスで処理する際、酸素ガス、酸素発
生化合物または200℃で1torr以上の蒸気圧を有す
る含酸素化合物の共存下で処理するときわめて有
効であることを見出した。即ち、このようにして
フツ素ガス処理された成形ゴム材料は、電子顕微
鏡による観察では半処理層に相当するような層は
ほぼ完全に消滅しており、それの耐久試験での合
格率が高まることが確認された。 Based on these facts, apart from theoretical elucidation of how oxygen content affects surface properties, we investigated countermeasures and found that when treating the surface of molded rubber materials with fluorine gas, It has been found that treatment in the coexistence of generated compounds or oxygen-containing compounds having a vapor pressure of 1 torr or more at 200°C is extremely effective. In other words, in the molded rubber material treated with fluorine gas in this way, when observed under an electron microscope, the layer equivalent to the semi-treated layer has almost completely disappeared, increasing the pass rate in the durability test. This was confirmed.
酸素ガスとしては、純粋の酸素ガスの他に、空
気なども使用することができ、一般にフツ素ガス
に対して酸素ガス(または換算)が約5〜50%程
度の割合で用いられる。酸素発生化合物として
は、金属フツ化物、水、Fe2O3、NiO、CaO、
MgOなどの化合物が、それから発生する酸素ガ
スとして、一般にフツ素ガスに対して約5〜50%
の割合で用いられる。これらの酸素発生化合物
は、フツ素ガスと反応して、次の如くに酸素ガス
を発生させる。 As the oxygen gas, air or the like can be used in addition to pure oxygen gas, and generally oxygen gas (or equivalent) is used at a ratio of about 5 to 50% to fluorine gas. Oxygen generating compounds include metal fluorides, water, Fe 2 O 3 , NiO, CaO,
The oxygen gas generated by compounds such as MgO is generally about 5 to 50% compared to fluorine gas.
used at a rate of These oxygen generating compounds react with fluorine gas to generate oxygen gas as follows.
H2O+2F2→2HF+F2O
Δ→2HF+F2+1/2O2
MO+F2→MF2+O2
(MO:金属酸化物)
これらの酸素発生化合物の中、金属フツ化物は
系中のフツ素ガスを消費しないために特に好まし
い。なぜならば、ゴム材料の表面処理の程度は、
しばしば全フツ素量で制御されることがあるから
である。 H 2 O+2F 2 →2HF+F 2 O Δ→2HF+F 2 +1/2O 2 MO+F 2 →MF 2 +O 2 (MO: Metal oxide) Among these oxygen-generating compounds, metal fluoride consumes fluorine gas in the system. Particularly preferred because it does not. This is because the degree of surface treatment of rubber materials is
This is because it is often controlled by the total amount of fluorine.
200℃で1torr以上の蒸気圧を有する含酸素化合
物としては、例えばCO2、COF2、CF3COF、ト
リオキサンなどが用いられ、これらはフツ素ガス
に対して一般にこれらの化合物から発生する酸素
ガスが約5〜50%程度となるような割合で用いら
れる。 Examples of oxygen-containing compounds that have a vapor pressure of 1 torr or more at 200°C include CO 2 , COF 2 , CF 3 COF, trioxane, etc., and these are generally more sensitive to the oxygen gas generated from these compounds than fluorine gas. is used at a ratio of about 5 to 50%.
このように、酸素ガス、酸素発生化合物または
特定の含酸素化合物は、フツ素ガスに対して上記
した如き割合で用いられるが、これ以下の割合で
は本発明の目的とするような効果が得られず、逆
にこれ以上ではフツ素化処理ができない。 As described above, oxygen gas, an oxygen-generating compound, or a specific oxygen-containing compound is used in the proportions described above with respect to fluorine gas, but if the proportion is lower than this, the effects aimed at by the present invention cannot be obtained. On the other hand, fluorination treatment cannot be performed if the amount exceeds this limit.
これらの共存下に、フツ素ガスまたはそれをヘ
リウム、アルゴン、窒素、四フツ化炭素、六フツ
化硫黄などで希釈した混合ガスによつて、常圧乃
至加圧下(〜約20気圧)または減圧下(〜約1/
100気圧)の圧力条件下で、成形ゴム材料は処理
される。 In the coexistence of these, fluorine gas or a mixed gas of fluorine gas diluted with helium, argon, nitrogen, carbon tetrafluoride, sulfur hexafluoride, etc. is used under normal pressure to increased pressure (~20 atmospheres) or reduced pressure. Lower (~about 1/
The molded rubber material is processed under pressure conditions (100 atmospheres).
用いられる処理温度の範囲としては、一般に約
−20〜250℃、好ましくは約20〜250℃の範囲が用
いられる。この温度範囲内でも、特にフツ素化さ
れ易いゴム材料、例えば常温でも反応が過度に進
行し易い天然ゴム、イソブチレンゴム、イソブレ
ンゴムなどの場合にあつては、より低い温度範
囲、例えば+5℃〜−20℃程度の温度範囲で処理
することが望ましい。 The treatment temperature range used is generally from about -20 to 250°C, preferably from about 20 to 250°C. Even within this temperature range, in the case of rubber materials that are particularly susceptible to fluorination, such as natural rubber, isobutylene rubber, and isobrene rubber, which tend to undergo excessive reaction even at room temperature, the temperature range is lower, for example, +5°C to - It is desirable to process at a temperature range of about 20°C.
フツ素化表面処理される成形ゴム材料は、天然
ゴムまたはアクリロニトリル−ブタジエン共重合
ゴム、スチレン−ブタジエン共重合ゴム、クロロ
プレンゴム、イソプレンゴムなどの共役ジエン系
ゴム、アクリルゴム、エチレン−プロピレン−
(ジエン)共重合ゴム、ブチルゴム、エピクロル
ヒドリンゴム、クロルスルホン化ポリエチレン
(ハイパロン)、フツ素ゴムなどの各種合成ゴム
に、加硫剤その他の配合物、例えば補強剤、充填
剤、軟化剤、可塑剤、老化防止剤、加工助剤など
を必要に応じて配合したゴム配合物の加硫成形物
であり、表面処理前に前処理を施したものであつ
てもよい。前処理では、成形物表面に付着してい
る離型剤、可塑剤などをゴムの種類に応じた洗浄
剤で洗浄する。洗浄剤としては、トリクレン、パ
ークロルエチレン、アルコール、四塩化炭素など
の有機溶剤が用いられ、洗浄後はこれらの有機溶
剤を十分に乾燥し、除去する。 Molded rubber materials subjected to fluorinated surface treatment include natural rubber, conjugated diene rubbers such as acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, chloroprene rubber, and isoprene rubber, acrylic rubber, and ethylene-propylene rubber.
Various synthetic rubbers such as (diene) copolymer rubber, butyl rubber, epichlorohydrin rubber, chlorosulfonated polyethylene (Hypalon), and fluorocarbon rubber are added with vulcanizing agents and other compounds, such as reinforcing agents, fillers, softeners, and plasticizers. It is a vulcanized molded product of a rubber compound blended with anti-aging agents, processing aids, etc. as necessary, and may be pretreated before surface treatment. In pretreatment, mold release agents, plasticizers, etc. adhering to the surface of the molded product are cleaned with a cleaning agent appropriate for the type of rubber. As the cleaning agent, organic solvents such as tricrene, perchloroethylene, alcohol, and carbon tetrachloride are used, and after cleaning, these organic solvents are thoroughly dried and removed.
フツ素ガスまたはそれと不活性ガスとの混合ガ
スで処理された成形ゴム材料は、その表面に付着
しているフツ素ガスを除去するために、直ちに炭
酸アルカリ金属塩水溶液中に浸漬して洗浄され
る。炭酸アルカリ金属塩水溶液としては、炭酸ナ
トリウム、炭酸カリウム、炭酸水素ナトリウム、
炭酸水素カリウムなどが約5〜20%程度の隠度の
水溶液として用いられる。浸漬処理は、約10〜
100℃の温度で約5〜30分間、好ましくは約10〜
15分間行われ、その後水で約10〜15分間程度洗浄
し、温風下で乾燥させる。 Molded rubber materials treated with fluorine gas or a mixture of fluorine gas and an inert gas are immediately immersed in an aqueous solution of alkali metal carbonate and cleaned in order to remove the fluorine gas adhering to the surface. Ru. Examples of aqueous alkali metal carbonate solutions include sodium carbonate, potassium carbonate, sodium hydrogen carbonate,
Potassium hydrogen carbonate is used as an aqueous solution with a hidden degree of about 5 to 20%. The soaking process takes about 10~
At a temperature of 100℃ for about 5-30 minutes, preferably about 10-30 minutes
It is done for 15 minutes, then washed with water for about 10-15 minutes and dried under warm air.
次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.
実施例 1
容量約40の密閉した反応容器に、第1図に図
示される如き中心線断面形状を有するフツ素ゴム
製パルプ7を約350個仕込み、ここにフツ素ガス
27.1容量%、酸素ガス3.3容量%および窒素ガス
69.6容量%よりなる混合ガス約40を充満させ、
190〜200℃で約4時間処理した。処理後、5%炭
酸ナトリウム水溶液および水でバルブを洗浄し、
乾燥した。Example 1 Approximately 350 pieces of fluorine rubber pulp 7 having a centerline cross-sectional shape as shown in FIG.
27.1% by volume, 3.3% by volume of oxygen gas and nitrogen gas
Filled with about 40% mixed gas consisting of 69.6% by volume,
It was treated at 190-200°C for about 4 hours. After treatment, wash the valve with 5% sodium carbonate aqueous solution and water,
Dry.
このフツ素ゴムバルブ4個について、下記に示
すような耐久試験(振動開弁テスト)を行なつた
ところ、開弁したバルブは4個、開弁しないバル
ブは0個であつた。 When the four fluororubber valves were subjected to a durability test (vibration valve opening test) as shown below, 4 valves opened and 0 valves did not open.
金具1、ケースナツト2、スプリングガイド
3、ポペツトシート4、コイルスプリング5およ
びポペツト押え6よりなり、図示された如くに組
立てられた加振機の内部をケースナツト側から減
圧に引張り、ある減圧度のところに達すると、コ
イルスプリングのばねの押付力が大気圧に負け
て、ポペツトシートが開いて空気がそこに流入す
るようになつている。このような加振機のポペツ
トシート側開口部にバルブ7を嵌装挾着させ、毎
分200の空気を流した状態で、加振機の軸方向
に20G、それの半径方向に20G、振動数200ヘル
ツで107回加振後、バルブを作動させ、それが開
弁するか否かを調べる。
The interior of the vibrator, which is assembled as shown in the figure and is composed of a metal fitting 1, a case nut 2, a spring guide 3, a poppet seat 4, a coil spring 5, and a poppet holder 6, is pulled to a reduced pressure from the case nut side, and is brought to a certain degree of reduced pressure. When this happens, the pressing force of the coil spring is overcome by atmospheric pressure, and the poppet seat opens, allowing air to flow into it. The valve 7 is fitted into the opening on the poppet seat side of such a vibrator, and with air flowing at 200 rpm, the vibration frequency is 20G in the axial direction of the vibrator, 20G in the radial direction of the vibrator, and 20G in the radial direction of the vibrator. After 107 vibrations at 200 Hz, activate the valve and check whether it opens or not.
実施例 2
実施例1において、フツ素ガス25.0容量%、酸
素ガス10.0容量%および窒素ガス65.0容量%より
なる混合ガスの同量が用いられた。耐久試験の結
果は、開弁したバルブが4個、開弁しないバルブ
が0個であつた。Example 2 In Example 1, the same amount of a mixed gas consisting of 25.0% by volume of fluorine gas, 10.0% by volume of oxygen gas and 65.0% by volume of nitrogen gas was used. As a result of the durability test, 4 valves opened and 0 valves did not open.
実施例 3
実施例1において、フツ素ガス31.3容量%およ
び窒素ガス68.7容量%よりなる混合ガスの同量を
用い、更に反応容器の器壁にFe2O36gを均一に
付着させ、フツ素ガス処理を行なつた。耐久試験
の結果は、開弁したバルブが4個、開弁しないバ
ルブが0個であつた。Example 3 In Example 1, the same amount of a mixed gas consisting of 31.3% by volume of fluorine gas and 68.7% by volume of nitrogen gas was used, and 6g of Fe 2 O 3 was evenly deposited on the wall of the reaction vessel. Gas treatment was performed. As a result of the durability test, 4 valves opened and 0 valves did not open.
実施例 4
実施例1において、フツ素ガス29.2容量%、窒
素ガス64.2容量%およびCOF2ガス6.6容量%より
なる混合ガスの同量が用いられた。耐久試験の結
果は、開弁したバルブが4個、開弁しないバルブ
が0個であつた。Example 4 In Example 1, the same amount of a gas mixture consisting of 29.2% by volume of fluorine gas, 64.2% by volume of nitrogen gas and 6.6% by volume of COF 2 gas was used. As a result of the durability test, 4 valves opened and 0 valves did not open.
比較例
実施例1において、フツ素ガス31.3容量%およ
び窒素ガス68.7容量%よりなる混合ガスの同量が
用いられた。耐久試験の結果は、開弁したバルブ
が2個、開弁しないバルブが2個であつた。Comparative Example In Example 1, the same amount of a gas mixture consisting of 31.3% by volume of fluorine gas and 68.7% by volume of nitrogen gas was used. As a result of the durability test, two valves opened and two valves did not open.
上記実施例1および比較例でフツ素ガス処理さ
れたバルブの表面および断面の組織構造を示す電
子顕微鏡写真が、第2〜15図に示されている。 Electron micrographs showing the surface and cross-sectional structures of the bulbs treated with fluorine gas in Example 1 and Comparative Example are shown in FIGS. 2 to 15.
第2図:比較例で処理されたバルブ表面(500倍)
第3図:比較例で処理されたバルブ表面(2000
倍)
第4図:比較例で処理されたバルブ断面(500倍)
第5図: 〃 (2000倍)
第5図の左下から右上にかけて、表面、粘子
層、粘着層および未処理層からなる。Figure 2: Valve surface treated with comparative example (500x) Figure 3: Valve surface treated with comparative example (2000x
Figure 4: Cross section of the bulb treated with the comparative example (500x) Figure 5: (2000x) From the bottom left to the top right of Figure 5, it consists of the surface, sticky layer, adhesive layer, and untreated layer. .
第6図:実施例1で処理されたバルブ表面(500
倍)
第7図:実施例1で処理されたバルブ表面(2000
倍)
第8図:実施例1で処理されたバルブ断面(500
倍)
第9図:実施例1で処理されたバルブ断面(2000
倍)
第9図の右下から左上にかけて、表面、粘子層
および未処理層からなる。Figure 6: Valve surface treated in Example 1 (500
Figure 7: Valve surface treated in Example 1 (2000
Figure 8: Cross section of the valve treated in Example 1 (500
Figure 9: Cross section of the valve treated in Example 1 (2000
From the lower right to the upper left in Figure 9, the surface, mucilage layer, and untreated layer are comprised.
第2〜5図および第6〜9図の対比から、バル
ブ表面には実施例1のものの方が粒子状物が数多
く存在していることが分り、またバルブ断面につ
いては、実施例1のものには粘着層が観察されな
い。 From the comparison between Figures 2 to 5 and Figures 6 to 9, it can be seen that there are more particulate matter on the bulb surface in Example 1 than in Example 1. No adhesive layer was observed.
第10〜12図:耐久試験後の第3〜5図に対応
するバルブの表面または断面
第12図の左上は表面であり、他の部分は粘着
層からなる。Figures 10 to 12: Surface or cross section of the bulb corresponding to Figures 3 to 5 after the durability test The upper left part of Figure 12 is the surface, and the other parts are made of adhesive layers.
第13〜15図:耐久試験後の第7〜9図に対応
するバルブの表面または断面
第15図の下から上にかけて、表面、粘子層お
よび未処理層からなる。Figures 13 to 15: Surface or cross section of the bulb corresponding to Figures 7 to 9 after the durability test. From the bottom to the top of Figure 15, it consists of the surface, the sticky layer, and the untreated layer.
第10〜12図および第13〜15図の対比か
ら、耐久試験後において、比較例のバルブ表面に
は殆んど起伏がないのに対し、実施例1のバルブ
表面にはなお粒子状物が残つていることが分り、
またバルブ断面については、比較例のものには粒
子層がなく、すべて粘着層となつているのに対
し、実施例1のものには粘着層がなく、粒子層の
耐久性の良いことも観察される。 From the comparison between Figures 10 to 12 and Figures 13 to 15, it can be seen that after the durability test, the valve surface of the comparative example has almost no undulations, while the valve surface of Example 1 still has particulate matter. I know what's left,
Regarding the cross section of the bulb, it was also observed that the comparative example had no particle layer and was entirely made up of adhesive layers, whereas the one of Example 1 had no adhesive layer and the particle layer had good durability. be done.
第1図は、耐久試験に用いられる加振機の中心
線断面図である。この図面において、符号4はポ
ペツトシート、5はコイルスプリング、そして7
はゴム製バルブをそれぞれ指示する。第2〜3図
および第4〜5図は、それぞれ比較例で処理され
たバルブの表面および断面の組織構造を示す電子
顕微鏡写真である。第6〜7図および第8〜9図
は、それぞれ実施例1で処理されたバルブの表面
および断面の組織構造を示す電子顕微鏡写真であ
る。第10〜12図は、耐久試験後の第3〜5図
に対応するバルブの表面または断面の組織構造を
示す電子顕微鏡写真である。第13〜15図は、
耐久試験後の第7〜9図に対応するバルブの表面
または断面の組織構造を示す電子顕微鏡写真であ
る。
FIG. 1 is a centerline sectional view of the vibrator used in the durability test. In this drawing, 4 is a poppet seat, 5 is a coil spring, and 7 is a poppet seat.
indicates the rubber valve respectively. 2-3 and 4-5 are electron micrographs showing the surface and cross-sectional structure of the bulb treated in the comparative example, respectively. 6-7 and 8-9 are electron micrographs showing the surface and cross-sectional structure of the bulb treated in Example 1, respectively. 10 to 12 are electron micrographs showing the structure of the surface or cross section of the bulb corresponding to FIGS. 3 to 5 after the durability test. Figures 13 to 15 are
9 is an electron micrograph showing the structure of the surface or cross section of the bulb corresponding to FIGS. 7 to 9 after the durability test.
Claims (1)
に際し、酸素ガス、酸素発生化合物または200℃
で1torr以上の蒸気圧を有する含酸素化合物の共
存下で処理することを特徴とする成形ゴム材料の
表面処理方法。1 When treating the surface of molded rubber materials with fluorine gas, oxygen gas, oxygen generating compounds or 200℃
A surface treatment method for a molded rubber material, characterized in that the treatment is carried out in the coexistence of an oxygen-containing compound having a vapor pressure of 1 torr or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8269982A JPS58199132A (en) | 1982-05-17 | 1982-05-17 | Surface treatment of molded rubber material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8269982A JPS58199132A (en) | 1982-05-17 | 1982-05-17 | Surface treatment of molded rubber material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58199132A JPS58199132A (en) | 1983-11-19 |
JPH0160177B2 true JPH0160177B2 (en) | 1989-12-21 |
Family
ID=13781650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8269982A Granted JPS58199132A (en) | 1982-05-17 | 1982-05-17 | Surface treatment of molded rubber material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58199132A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU7588587A (en) * | 1986-07-16 | 1988-02-10 | Richard Friedrich | Container with at least one chamber formed by a tubular body, tubular body, process and device for producing the same |
DE19941544A1 (en) * | 1999-09-01 | 2001-03-08 | Messer Griesheim Gmbh | Reagent for the fluorination of plastics |
CN100430435C (en) | 2002-10-25 | 2008-11-05 | 南非核能股份有限公司 | Oxyfluorination |
AU2003274421C1 (en) * | 2002-10-25 | 2009-07-02 | South African Nuclear Energy Corporation Limited | "Oxyfluorination" |
CN103630676A (en) * | 2013-11-29 | 2014-03-12 | 沈阳理工大学 | Rubber surface fluorination modification testing device |
-
1982
- 1982-05-17 JP JP8269982A patent/JPS58199132A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58199132A (en) | 1983-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2113796C (en) | Fluorination of articles molded from elastomers | |
US4721740A (en) | Dispersion-improved carbon black compounded rubber composition | |
CA2110499A1 (en) | Surface Modified Porous Expanded Polytetrafluoroethylene and Process for Making | |
EP1106268B1 (en) | Method of cleaning fluorine-containing rubber molded article for semiconductor production device | |
JPH0160177B2 (en) | ||
JP3475085B2 (en) | Fluororesin molded article having surface modified layer, surface treatment method for fluororesin, and treatment apparatus | |
Kawamura et al. | Effects of chitosan concentration and precipitation bath concentration on the material properties of porous crosslinked chitosan beads | |
Sheu et al. | Surface modification of Kevlar 149 fibers by gas plasma treatment | |
US5274049A (en) | Fluorination of articles molded from elastomers | |
TW367526B (en) | A process for distributing ultra high purity gases with minimized corrosion | |
US6632871B1 (en) | Crosslinkable elastomer composition, sealing material produced from said composition and filler used therefor | |
US6683127B1 (en) | Crosslinkable elastromer composition, sealing material produced from the composition, and filler for use therein | |
Küpper et al. | Modification of the fiber-matrix interface of p-aramid fibers using gas plasmas | |
JPH0625449A (en) | Exceedingly water-repellent film and its production | |
KR970074796A (en) | Treatment method of polyolefin | |
Florin | Electron spin resonance spectra of polymers during fluorination | |
JP3632888B2 (en) | Plasma-resistant sealing material | |
Pastor-Blas et al. | Different surface modifications produced by oxygen plasma and halogenation treatments on a vulcanized rubber | |
US5422404A (en) | Polymer modified gums | |
JPS5819464B2 (en) | Surface treatment method for molded rubber materials | |
FR2837827A1 (en) | METHOD FOR SURFACE TREATMENT OF RUBBER PRODUCT | |
US3423380A (en) | Elastomers having a low coefficient of friction | |
Yajima et al. | Dynamic plasma CVD and preparation of functional organic thin films | |
Chai et al. | XPS Study of Ultrafine Gold Particle Oxidation | |
BREWIS et al. | Mittal Festschrift, pp. 267-283 WJ Van Ooij and HR Anderson, Jr.(Eds) VSP 1998. |