JPH0159079B2 - - Google Patents
Info
- Publication number
- JPH0159079B2 JPH0159079B2 JP20622285A JP20622285A JPH0159079B2 JP H0159079 B2 JPH0159079 B2 JP H0159079B2 JP 20622285 A JP20622285 A JP 20622285A JP 20622285 A JP20622285 A JP 20622285A JP H0159079 B2 JPH0159079 B2 JP H0159079B2
- Authority
- JP
- Japan
- Prior art keywords
- flux
- slag
- wire
- welding
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002893 slag Substances 0.000 claims description 60
- 230000004907 flux Effects 0.000 claims description 47
- 238000003466 welding Methods 0.000 claims description 34
- 229910001220 stainless steel Inorganic materials 0.000 claims description 28
- 239000010935 stainless steel Substances 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910001512 metal fluoride Inorganic materials 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 2
- 238000002844 melting Methods 0.000 description 18
- 230000008018 melting Effects 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 239000011572 manganese Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000011324 bead Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 238000005538 encapsulation Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 150000002222 fluorine compounds Chemical class 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910052845 zircon Inorganic materials 0.000 description 4
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 235000010215 titanium dioxide Nutrition 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000604 Ferrochrome Inorganic materials 0.000 description 1
- 229910000616 Ferromanganese Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Nonmetallic Welding Materials (AREA)
Description
〔産業上の利用分野〕
本発明は、ステンレス鋼のガスシールドアーク
溶接に用いるフラツクス入りワイヤの改良に係
り、さらに詳しくは100%CO2のシールドガスに
おいてもスパツタが少なく、アークが安定で、溶
滴移行性に優れ、溶着効率の良好なステンレス鋼
溶接用フラツクス入りワイヤに関する。
〔従来の技術〕
フラツクス入りワイヤを用いるステンレス鋼の
ガスシールドアーク溶接はワイヤに内蔵されたフ
ラツクスによるスラグシールドとガスシールドの
両方によつて溶接金属を保護するので、ソリツド
ワイヤによるミグ溶接にくらべビード形状が良好
で、ブローホール、融合不良などの欠陥が発生し
にくいという長所があるため急速に普及してい
る。
特に近、立向姿勢やより薄板への適用が検討さ
れ、1.2mmφ、1.0mmφあるいはそれ以下の細径ワ
イヤ需要が高まつて来ている。
しかしながら、ステンレス鋼溶接用フラツクス
コアードワイヤの場合には外皮ステンレス鋼成分
と目的とする溶着金属成分との差を調整したり溶
接による合金成分の消耗を補償するための合金成
分をフラツクス中に多量に含有しなければなら
ず、いきおい充填率が高く外皮肉厚が薄くなり、
しかも外皮ステンレス鋼の電気抵抗も大きいため
に、スパツタの発生が多くなりがちであつた。
また、特開昭49−123140号公報において指摘さ
れているように、フラツクス入りワイヤには溶接
電流がワイヤの外皮のみに流れ、芯部のフラツク
スの溶融が遅れる結果、アークの足が動き廻つて
アークが乱れ、アークの集中性が悪くなるという
問題点があるが、とくにステンレス鋼溶接用ワイ
ヤの場合には外皮の電気抵抗が大きく、しかも肉
厚が薄いため、これら問題点はより顕著であり同
号公報で開示されているような、内蔵フラツクス
の粒度調整という手段のみでは解決できなかつ
た。
スパツタ発生量の低減については、特開昭58−
70993号公報において、金属フツ化物の10倍以上
のSiO2をワイヤ中に含有せしめる技術が開示さ
れているが、金属フツ化物は耐ピツト性を改善し
たりスラグの融点調整に有効な成分であり、他の
成分の含有の必要性やフラツクス充填率の適正範
囲との兼ね合いの中での前記のようなSiO2の十
分の一以下という制限は、フラツクス入りワイヤ
の性能設計上かなりの障害となり得るものであつ
た。
さらに、ステンレス鋼の溶接においては、腐食
の起点となり得るのでスパツタ除去が必要であ
り、その作業工数の低減を図るため、より一層の
スパツタ低減が各方面より求められていた。
〔発明が解決しようとする問題点〕
本発明は以上のような問題点を解決すべくなさ
れたものであつて、その目的とするところは、ス
パツタ発生量が少なく、アーク状態、溶滴移行性
が優れ、溶着効率が良好なステンレス鋼溶接用フ
ラツクス入りワイヤの提供にある。
〔問題点を解決するための手段〕
本発明者らは、フラツクス入りワイヤによるス
テンレス鋼のガスシールドアーク溶接におけるス
パツタ低減を目的に鋭意検討した結果、スパツタ
発生量はワイヤ中のスラグ含有量が少ない程減少
する傾向が認められ、少ないスラグ量でも、十分
なスラグ被包性と良好なスラグ剥離性を示すスラ
グ系としてSiO2−ZrO2−TiO2系成分範囲を新た
に見出すに到つた。またフラツクス中の金属成分
含有量を多くし、フラツクスを溶融しやすくする
ことによつてアーク状態、溶滴移行性が改善され
ることを見出した。
本発明は以上の知見に基づくものであつて、そ
の要旨とするところはワイヤ全重量に対し1.5〜
3.7%のSiO2、0.7〜2.0%のZrO2、0.7〜4.2%の
TiO2、0.1〜0.7%の金属フツ化物、0.3〜2.3%の
Mnをフラツクス中に含有すると共に、フラツク
ス中のスラグ成分の合計がワイヤ全重量の4.5〜
9.5%で、さらにフラツクス中の金属成分の合計
がフラツクス全重量の59〜85%を占め、かつ炭酸
塩を実質的に含有しないことを特徴とするステン
レス鋼溶接用フラツクス入りワイヤにある。
以下に本発明を作用と共に詳細に説明する。
〔作用〕
まず、本発明のフラツクス入りワイヤとは第1
図a〜dにその一例を示すような断面形状のワイ
ヤで、パイプあるいは帯鋼から成る外皮1によつ
て充填フラツクス2を被包したものであり同図b
〜dの如く継目3を有するもの、あるいは同図a
に示すような継目のないものでもよい。
外皮材としては軟鋼、フエライト系ステンレス
鋼、およびオーステナイト系ステンレス鋼を用い
ることができるが、オーステナイト系ステンレス
鋼溶接用ワイヤの場合には、軟鋼やフエライト系
ステンレス鋼外皮を用いることは成分設計が困難
である。
次に、本発明は以下の実験結果に基づくもので
ある。
まず、SUS 304L鋼の帯鋼およびパイプを用い
て、第1図に示すような断面形状のフラツクス組
成および充填率の異なるJIS Z3323YF−308L相
当のワイヤ径1.2mmのフラツクス入りワイヤを製
造し、SUS304L鋼平板上にDCRP200A、31V、
30cm/minの溶接条件で炭酸ガスアーク溶接を行
ない、その時発生したスパツタを銅製捕集容器内
に集収、秤量することによつて、各ワイヤのスパ
ツタ発生量を比較し、スパツタ発生量に影響を及
ぼす要因について検討した。なお、フラツクス充
填率の検討範囲は9〜30%とした。
その結果、ワイヤの単位長さ当り重量とスパツ
タ発生量との間に弱い相関があるのに着目し、ワ
イヤ中のスラグ成分含有量(フラツクス中のスラ
グ成分量×フラツクス充填率)とスパツタ発生量
との間の明らかな傾向を把握するに到つた。
すなわち第2図は、ワイヤ中のスラグ成分含有
量とスパツタ発生量との関係を示すものであり、
スパツタの発生量はワイヤの断面形状やワイヤ中
のフラツクス充填率にはほとんど関係なく、ワイ
ヤ中のスラグ成分量の減少と共に減少することが
明らかとなつた。
これはワイヤ中のスラグ成分含有量の低いワイ
ヤは、フラツクス充填率が低く、外皮肉厚が厚い
か、もしくはフラツクス中の金属成分量が多くな
つており、ワイヤ断面における金属物質の占める
割合が多くなる結果、溶接時の電流密度が実質的
に低下したことがその原因と考えられる。
しかしながら、ガスシールドアーク溶接用フラ
ツクス入りワイヤにおけるスラグはビード形状を
整え、溶接金属を保護するために添加するもので
あり、一般にその量が不足すれば、上記の効果が
発揮できなくなり、スラグがビード表面にこびり
ついたり、ビード形状、ビード外観が悪化するた
め単純にスラグ量を低下することはできない。そ
こで本発明者らは、少ないスラグ量でもスラグ被
包性やスラグ剥離性を損なわないスラグ成分系の
開発を目的に、スラグの融点、流動性について検
討を重ねた結果、後述するような数値範囲の
SiO2−ZrO2−TiO2系スラグが適することを見出
すに到つた。
次に、ワイヤ外皮に対して内部フラツクスの溶
融が遅れ、アークが不安定となり、アークの集中
性が劣化するフラツクス柱の突出し現象について
はフラツクス部分の溶融のタイミングを早めるべ
く種々検討した結果、内蔵フラツクス中の金属成
分含有率が高い程アークの集中性、安定性が増
し、溶滴もほとんどスプレー状の移行形態とな
り、均一なアーク音の極めて安定したアーク状態
となることを見出した。
この現象は次のように理解される。すなわち、
スラグを形成する成分としては一般に酸化物やフ
ツ化物が用いられるが、このうちフツ化物や
NA2O、K2Oといつたアルカリ金属酸化物はスラ
グ物性やアーク状態に及ぼす影響が顕著であるた
め、その使用量は必然的に限定され、スラグは
SiO2、TiO2、ZrO2、Al2O3、MgO等の酸化物に
よつて主成分が構成される。
しかし、これら主成分酸化物はいずれも外皮ス
テンレス鋼にくらべその融点が高く、これが先に
述べた外皮ステンレス鋼と内部フラツクスとの溶
融の時間的ずれの原因となつていたものと考えら
れる。これら高融点の酸化物粒の間に比較的低融
点の金属粉が多量に入り込むことによつて金属自
体がアークの発生点になつたり、発生点にはなら
ない場合でも周囲の高融点酸化物より先に溶融さ
れるためフラツクス全体が極めて溶融されやすく
なる結果、外皮との溶融の時間差がほとんどなく
なり、フラツクス柱の突出し現象が解消され、ア
ーク状態や溶滴移行性が改善されるものと考えら
れる。
なお金属成分の増加によりアーク状態が改善さ
れる効果は第1図a,b,cのような単純円型断
面のワイヤにおいて特にその効果が顕著であつ
た。
以下に本発明において規定した各種数値の限定
理由について述べる。
まず、本発明の根幹とも言えるスラグ成分につ
いて説明するならば、SiO2は被包性の良いスラ
グを形成するに必要な成分であるが、1.5%未満
ではその効果が発揮できる、スラグ被包性が劣化
するが、3.7%を超えるとスラグの焼付きを生じ
剥離性が劣化する。なお、SiO2の原材料として
はケイ砂、ケイ石の他、ケイ灰石、ジルコンサン
ド、カリ長石等の原料の副成分を利用できる。
ZrO2は、スラグに流動性を与え、スラグ量低
減に有効な成分であり、0.7%未満では、その効
果が不十分であり、逆に2.0%を超えた場合には
フラツクスが溶けにくくなり、ワイヤ外皮と内部
フラツクスとの溶融時間差が拡がりアーク状態が
劣化する。原材料としては酸化ジルコニウム、ジ
ルコンフラワー、ジルコンサンド等を用い得る
が、融点の低いジルコンサンドを用いることが望
ましい。
TiO2は、緻密な剥離性の良いスラグを形成す
るが0.7%未満ではその効果が発揮されず、4.2%
を超えるとスラグの流動性が劣化し、スラグ被包
性を確保するために必要なスラグ量が増大し、ス
パツタが発生しやすくなる。原材料としては、ル
チール、チタン白、チタンスラグ、イルミナイト
さらにはチタン酸カリ、チタン酸ソーダ、チタン
酸カルシウム等のチタン酸塩等が単独、あるいは
複合で用いられる。
金属フツ化物はスラグの融点調整や耐ピツト性
改善のために添加され、0.1%未満では耐ピツト
性が確保できず、逆に0.7%を超えるとスラグ融
点が低くなり過ぎ、ビード形状が劣化すると共
に、フツ素ガス発生によりスパツタが発生しやす
くなる。金属フツ化物としてはCaF2、NaF、
AlF3、MgF2、LiF等を単独もしくは複合で用い
るが、上記範囲内であればその効果はどのフツ化
物もほぼ同等であつた。
本発明においてスラグ成分とは、酸化物、フツ
化物等の非金属成分を意味するものであり、上記
の他にスラグ塩基度の調整やスラグの融点、流動
性の微調整に用いるAl2O3、FeO、MgO、CaO、
MnO、BaO、合金歩留りの調整に用いるCr2O3、
NiO、アーク状態の若干の調整に用いるNa2O、
K2O、Li2O、さらにはスラグ剥離性の改善に用
いるBi2O3、PbO等、さらにはこれらの原料から
もたらされる不純物としてP、S等も含まれる。
これらをも含めた全スラグ成分がワイヤ全重量
に対し4.5〜9.5%の範囲とすることが本発明のポ
イントのひとつであるが、これはスラグ成分が
9.5%を超えた場合には前述のようにスパツタ量
が多くなり、4.5%未満ではいかに被包性の良い
スラグ系といえどもスラグ量が不足しスラグがビ
ード表面を覆うことが不可能となることによる。
なお、Na2O、K2O等のアルカル金属酸化物は
過多となるとスパツタ増加の原因となるので合計
0.6%以内が、Bi2O3等低融点金属酸化物は、ビー
ド形状の劣化や靭性の低下をもたらすので総量
0.2%以下がそれぞれ望ましい。
また、フラツクスは原材料粒度、フラツクス成
分、充填方法等に応じて、固着剤によつて造粒し
て用いることもあるが、その場合には固着剤から
もたらされる成分、例えば水ガラスの場合では
SiO2、Na2O、K2O等が増加することをあらかじ
め考慮して原料配合を行うことが必要である。
次に、Mnは脱酸剤として添加するものであ
り、耐割れ性を改善しアーク安定化の効果もある
が、0.3%未満ではその効果が発揮できず、2.3%
を超えるとスラグの流動性、スラグ剥離性を損
う。
なお、ここで言うMnは、金属マンガンあるい
はフエロマンガンを用いるものであり、鉄粉やス
テンレス鋼粉からもたらされるMnは含まないも
のとする。これは鉄粉やステンレス鋼粉中に含ま
れるたかだか2%程度のMnでは脱酸剤としての
効果が期待できないことによる。
本発明において金属成分とは、通常ステンレス
鋼に用いられるNi、Cr、Mo、Nb、W、Cu等の
合金剤、Al、Ti、Mn等の脱酸剤、これら成分を
含有する合金鉄、さらには鉄粉やステンレス鋼粉
等を意味し特に鉄粉、ステンレス鋼粉、合金鉄は
フラツクス中の金属成分含有量を調整するために
その成分組成に応じて使い分けることができる。
すなわち、市販されている各種のステンレス鋼
に合わせて、JIS Z3323には各種のステンレス鋼
フラツクス入りワイヤが規格化されているが、例
えば外皮としてSUS304鋼を用いた場合、合金成
分の高い溶着金属を得るYF−309やYF−309J相
当ワイヤを設計する場合にはフラツクス中の合金
成分量を多くしなければならないので純ニツケル
や純クローム粉を用い、比較的合金成分の低い
YF−308相当ワイヤの場合には、鉄粉、ステンレ
ス粉、あるいはフエロクローム等合金含有量の低
い金属粉を用いて、フラツクス中の金属成分量を
高く保持しなければならない。
各種規格ワイヤにおける溶着金属成分に対し、
溶接による消耗を考慮の上、次式を目安にしてワ
イヤ合金量の設計を行う。
MD=MC×(100−R)+MF×R/100−S
MD:消耗のない場合の溶着金属中の合金含有量
(%)
MC:外皮中の合金含有量(%)
MF:フラツクス中の合金含有量(%)
R:フラツクス充填率(%)
S:ワイヤ中のスラグ含有率(%)
例えば、炭酸ガスアーク溶接の場合、Niにつ
いてはほぼ100%、Crについては約90%の歩留を
示し、シールドガス中のアルゴン比率が高くなる
に従つて歩留はわずかに高くなる。
本発明においてフラツクス中の金属成分をフラ
ツクス全重量の59〜85%としたのは、59%未満で
はフラツクス溶融のタイミングが遅れ、スプレー
状の溶滴移行でアーク音が均一な安定したアーク
状態とはならず、また85%を超えると、スラグ成
分量との兼ね合いからワイヤ中のフラツクス充填
率が高くならざるを得ず、ワイヤの伸線工程にお
ける断線トラブルが生じやすくなることによる。
最後に、炭酸塩は溶接中に分解して炭酸ガスを
発生しスパツタの原因となるためその含有量は少
ない方が望ましく、積極的には添加しない。本発
明において実質的に含有しないとは、他の原料の
不可避的不純物として混入した場合の許容限度と
してCO2換算でワイヤ全重量あたり0.05%以下を
意味する。
以下に実施例により本発明の効果を具体的に説
明する
〔実施例〕
第1表に示すステンレス鋼の帯鋼およびパイプ
を用い、第2表に示す組成のJIS Z3323YF−
308L、YF−309L、YF−316L相当のワイヤを製
造し、SUS304L鋼平板上にDCRP200A、31V、
30cm/minの溶接条件で下向姿勢の炭酸ガスアー
ク溶接を行ない、それぞれの溶接作業性を比較し
た。
なおワイヤ径は1.2mmとし、外皮としてパイプ
P1,P2,P3を用いたものは第1図aに示す
シームレスタイプ、帯鋼H1,H2を用いたもの
は第1図b、帯鋼H3を用いたものは第1図dに
示す断面形状とした。
その結果は第3表に示すとおりでSiO2、ZrO2
あるいは金属フツ化物含量の少ないワイヤNo.15、
16、18、46、スラグ成分量の少ないワイヤNo.10、
15、43はいずれもスラグ被包性が不十分であつ
た。
また、SiO2あるいはMn含有量の多いワイヤNo.
11、14、41、TiO2含有量の少ないワイヤNo.17、
47はスラグの剥離性が劣つた。
さらに、ZrO2含有量の高いワイヤNo.44、52お
よびフラツクスに対する金属成分含有量の低いワ
イヤNo.8、12、41、42、50、51さらにはMn含有
量の低いワイヤNo.19はアーク状態や溶滴移行性の
点で問題があつた。
TiO2含有量の高いワイヤNo.12、45はスラグ被
包性を確保するためにはスラグ成分量を増さざる
を得ず、スラグ成分量の多いワイヤNo.9、12、
41、42と同様スパツタ発生量が多くなる結果とな
つた。
また、金属フツ化物含有量の高いワイヤNo.13は
ガス発生量が多くなりスパツタ発生量が多くなつ
た。
これらに対し、フラツクス成分範囲、スラグ成
分量が適正で、フラツクス中の金属成分含有量が
多い本発明の場合には、いずれもアーク状態、溶
滴移行性が良好で、スパツタ発生量が少なくスラ
グ被包性、スラグ剥離性にも問題はなく、極めて
良好な溶接作業性を示した。
なお、第3表における溶接作業性の評価は、
◎:極めて良好、〇:良好、△:やや不良、×:
不良を示すものである。
[Industrial Application Field] The present invention relates to the improvement of flux-cored wire used in gas-shielded arc welding of stainless steel, and more specifically, the present invention relates to the improvement of flux-cored wire used in gas - shielded arc welding of stainless steel. This invention relates to a flux-cored wire for stainless steel welding that has excellent droplet transfer properties and good welding efficiency. [Prior art] Gas-shielded arc welding of stainless steel using flux-cored wire protects the weld metal by both a slag shield and a gas shield created by the flux built into the wire, so the bead shape is smaller than MIG welding using solid wire. It is rapidly becoming popular because it has good properties and is less prone to defects such as blowholes and poor fusion. In particular, applications in vertical positions and thinner plates are being considered, and demand for thin wires of 1.2 mmφ, 1.0 mmφ or smaller is increasing. However, in the case of flux-cored wire for stainless steel welding, a large amount of alloy components are added to the flux to adjust the difference between the outer stainless steel component and the target weld metal component, and to compensate for the consumption of the alloy component by welding. It must be contained in
Moreover, since the electrical resistance of the stainless steel outer shell is high, spatter tends to occur frequently. Furthermore, as pointed out in Japanese Patent Application Laid-Open No. 49-123140, in flux-cored wire, the welding current flows only to the outer sheath of the wire, which delays the melting of the flux in the core, causing the legs of the arc to move around. There are problems in that the arc is disturbed and the concentration of the arc is poor, but these problems are especially noticeable in the case of stainless steel welding wire because the electrical resistance of the outer sheath is high and the wall thickness is thin. The problem could not be solved only by adjusting the particle size of the built-in flux as disclosed in the same publication. Regarding the reduction of spatter generation,
Publication No. 70993 discloses a technology in which SiO 2 is contained in the wire in an amount more than 10 times that of metal fluoride, but metal fluoride is an effective component for improving pitting resistance and adjusting the melting point of slag. The above-mentioned limitation of less than one-tenth of SiO 2 in consideration of the necessity of containing other components and the appropriate range of flux filling rate can be a considerable obstacle in designing the performance of flux-cored wires. It was hot. Furthermore, when welding stainless steel, it is necessary to remove spatter because it can become a starting point for corrosion, and in order to reduce the number of work steps, there has been a demand from various fields for further reduction of spatter. [Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned problems, and its purpose is to reduce the amount of spatter, reduce the arc state, and improve droplet migration. The purpose of the present invention is to provide a flux-cored wire for stainless steel welding that has excellent welding efficiency and excellent welding efficiency. [Means for Solving the Problems] As a result of intensive studies aimed at reducing spatter during gas-shielded arc welding of stainless steel using flux-cored wire, the present inventors found that the amount of spatter generated is due to the small amount of slag content in the wire. We found a new SiO2 - ZrO2 - TiO2- based component range as a slag system that exhibits sufficient slag envelopment and good slag removability even with a small amount of slag. It has also been found that arc conditions and droplet transferability can be improved by increasing the content of metal components in the flux to make it easier to melt the flux. The present invention is based on the above findings, and its gist is that the total weight of the wire is
3.7% SiO2 , 0.7-2.0% ZrO2 , 0.7-4.2%
TiO2 , 0.1-0.7% metal fluoride, 0.3-2.3%
In addition to containing Mn in the flux, the total slag component in the flux is 4.5 to 4.5% of the total weight of the wire.
9.5%, the total metal component in the flux accounts for 59 to 85% of the total weight of the flux, and the flux-cored wire for stainless steel welding is characterized in that it contains substantially no carbonates. The present invention will be explained in detail below along with its operation. [Function] First, the flux-cored wire of the present invention is
A wire having a cross-sectional shape as shown in Figures a to d, examples of which are shown in Figure b
- Those with seam 3 as shown in d, or a in the same figure
It may be seamless as shown in the figure. Mild steel, ferritic stainless steel, and austenitic stainless steel can be used as the outer skin material, but in the case of austenitic stainless steel welding wires, it is difficult to design the composition to use mild steel or ferritic stainless steel outer skin. It is. Next, the present invention is based on the following experimental results. First, using SUS 304L steel strips and pipes, we manufactured flux-cored wires with a wire diameter of 1.2 mm equivalent to JIS Z3323YF-308L with different cross-sectional shapes, flux compositions, and filling rates as shown in Figure 1. DCRP200A, 31V, on steel plate
By performing carbon dioxide arc welding under the welding conditions of 30cm/min and collecting and weighing the spatter generated during the welding in a copper collection container, we can compare the amount of spatter generated for each wire and determine the influence on the amount of spatter generated. The factors were considered. The study range for the flux filling rate was 9 to 30%. As a result, they focused on the fact that there was a weak correlation between the weight per unit length of the wire and the amount of spatter generated. We have come to understand a clear trend between In other words, FIG. 2 shows the relationship between the content of slag components in the wire and the amount of spatter generated.
It has become clear that the amount of spatter generated is almost unrelated to the cross-sectional shape of the wire or the flux filling rate in the wire, and decreases as the amount of slag components in the wire decreases. This is because wires with a low slag component content have a low flux filling rate and a thick outer skin thickness, or have a large amount of metal components in the flux, and the proportion of metal substances in the wire cross section is large. This is thought to be caused by a substantial decrease in the current density during welding. However, slag in flux-cored wire for gas-shielded arc welding is added to adjust the bead shape and protect the weld metal, and if the amount is insufficient, the above effects cannot be achieved, and the slag will form the bead. It is not possible to simply reduce the amount of slag because it will stick to the surface and deteriorate the bead shape and bead appearance. Therefore, the inventors of the present invention have repeatedly studied the melting point and fluidity of slag with the aim of developing a slag component system that does not impair slag encapsulation and slag removability even with a small amount of slag. of
It was discovered that SiO 2 −ZrO 2 −TiO 2 based slag is suitable. Next, as a result of various studies in order to accelerate the timing of melting of the flux portion, we investigated the phenomenon of the flux column protruding, which causes a delay in the melting of the internal flux relative to the wire sheath, making the arc unstable and deteriorating arc concentration. It has been found that the higher the metal component content in the flux, the more concentrated and stable the arc is, and the droplets also take on a mostly spray-like transfer form, resulting in an extremely stable arc with uniform arc sound. This phenomenon can be understood as follows. That is,
Generally, oxides and fluorides are used as components that form slag, but among these, fluorides and
Alkali metal oxides such as NA 2 O and K 2 O have a significant effect on slag physical properties and arc conditions, so their usage is inevitably limited, and slag
The main component is composed of oxides such as SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 and MgO. However, all of these main component oxides have higher melting points than the outer stainless steel, and this is thought to be the cause of the time lag in melting between the outer stainless steel and the internal flux mentioned above. If a large amount of metal powder with a relatively low melting point enters between these high melting point oxide grains, the metal itself may become an arc generation point, or even if it does not become an arc generation point, it is more likely than the surrounding high melting point oxides. Since the flux is melted first, it becomes extremely easy to melt the entire flux, and as a result, the time difference between melting with the outer skin is almost eliminated, the protrusion phenomenon of the flux column is eliminated, and the arc condition and droplet migration are thought to be improved. . The effect of improving the arc condition by increasing the metal content was particularly noticeable in wires with simple circular cross sections as shown in FIGS. 1a, b, and c. The reasons for limiting the various numerical values defined in the present invention will be described below. First, to explain the slag component, which can be said to be the basis of the present invention, SiO 2 is a necessary component to form a slag with good encapsulation properties, but if it is less than 1.5%, the effect can be exhibited, and the slag encapsulation property is reduced. However, if it exceeds 3.7%, the slag will seize and the releasability will deteriorate. In addition, as raw materials for SiO 2 , in addition to silica sand and silica stone, subcomponents of raw materials such as wollastonite, zircon sand, and potassium feldspar can be used. ZrO 2 is a component that gives fluidity to slag and is effective in reducing the amount of slag. If it is less than 0.7%, the effect is insufficient, and if it exceeds 2.0%, the flux becomes difficult to dissolve. The difference in melting time between the wire sheath and the internal flux increases, deteriorating the arc condition. Although zirconium oxide, zircon flour, zircon sand, etc. can be used as raw materials, it is desirable to use zircon sand with a low melting point. TiO 2 forms a dense slag with good releasability, but if it is less than 0.7%, the effect is not exhibited;
If it exceeds this, the fluidity of the slag will deteriorate, the amount of slag required to ensure slag envelopment will increase, and spatter will be more likely to occur. As raw materials, rutile, titanium white, titanium slag, illuminite, and titanates such as potassium titanate, sodium titanate, and calcium titanate are used alone or in combination. Metal fluoride is added to adjust the melting point of slag and improve pitting resistance. If it is less than 0.1%, pitting resistance cannot be ensured, and if it exceeds 0.7%, the slag melting point becomes too low and the bead shape deteriorates. At the same time, spatter is likely to occur due to the generation of fluorine gas. Metal fluorides include CaF 2 , NaF,
AlF 3 , MgF 2 , LiF, etc. are used alone or in combination, and within the above range, the effects are almost the same for all fluorides. In the present invention, slag components refer to nonmetallic components such as oxides and fluorides, and in addition to the above, Al 2 O 3 is used to adjust the basicity of the slag and finely adjust the melting point and fluidity of the slag. , FeO, MgO, CaO,
MnO, BaO, Cr 2 O 3 used for adjusting alloy yield,
NiO, Na 2 O used for slight adjustment of arc condition,
K 2 O, Li 2 O, Bi 2 O 3 , PbO, etc. used for improving slag removability, and impurities such as P, S, etc. derived from these raw materials are also included. One of the key points of the present invention is that the total slag component including these is in the range of 4.5 to 9.5% of the total weight of the wire.
If it exceeds 9.5%, the amount of spatter will increase as mentioned above, and if it is less than 4.5%, no matter how good the slag type is, the amount of slag will be insufficient and it will be impossible for the slag to cover the bead surface. It depends. Note that excessive amounts of alkali metal oxides such as Na 2 O and K 2 O can cause an increase in spatter, so the total
The total amount should be within 0.6% because low melting point metal oxides such as Bi 2 O 3 cause deterioration of the bead shape and decrease in toughness.
Each is preferably 0.2% or less. In addition, depending on the raw material particle size, flux components, filling method, etc., flux may be used after being granulated with a binding agent.
It is necessary to mix the raw materials by considering in advance that SiO 2 , Na 2 O, K 2 O, etc. will increase. Next, Mn is added as a deoxidizing agent, and has the effect of improving cracking resistance and stabilizing the arc, but if it is less than 0.3%, the effect cannot be exhibited;
Exceeding this will impair slag fluidity and slag removability. Note that the Mn referred to here refers to metallic manganese or ferromanganese, and does not include Mn derived from iron powder or stainless steel powder. This is because the Mn contained in iron powder or stainless steel powder, which is about 2% at most, cannot be expected to be effective as a deoxidizing agent. In the present invention, metal components include alloying agents such as Ni, Cr, Mo, Nb, W, and Cu that are normally used in stainless steel, deoxidizing agents such as Al, Ti, and Mn, and ferroalloys containing these components. means iron powder, stainless steel powder, etc. In particular, iron powder, stainless steel powder, and ferroalloy can be used depending on the component composition in order to adjust the metal component content in the flux. In other words, JIS Z3323 standardizes various stainless steel flux-cored wires to match the various stainless steels on the market. When designing a wire equivalent to YF-309 or YF-309J, it is necessary to increase the amount of alloy components in the flux, so use pure nickel or pure chromium powder, which has a relatively low alloy component.
In the case of YF-308 equivalent wire, the metal content in the flux must be kept high by using metal powder with a low alloy content, such as iron powder, stainless steel powder, or ferrochrome. Regarding weld metal components in various standard wires,
In consideration of wear due to welding, the amount of wire alloy is designed using the following formula as a guide. M D = M C × (100−R) + M F × R / 100−S M D : Alloy content in the weld metal without wear (%) M C : Alloy content in the outer skin (%) M F : Alloy content in flux (%) R: Flux filling rate (%) S: Slag content in wire (%) For example, in the case of carbon dioxide arc welding, Ni is almost 100% and Cr is about 90%. %, and the yield increases slightly as the proportion of argon in the shielding gas increases. In the present invention, the metal component in the flux is set to 59 to 85% of the total weight of the flux.If it is less than 59%, the timing of flux melting will be delayed, resulting in a stable arc state with uniform arc sound due to spray-like droplet transfer. Moreover, if it exceeds 85%, the flux filling rate in the wire will have to be high due to the balance with the slag component content, and wire breakage problems will easily occur in the wire drawing process. Finally, since carbonate decomposes during welding and generates carbon dioxide gas, which causes spatter, it is desirable that its content be small, and it is not actively added. In the present invention, "substantially not containing" means that the permissible limit when the material is mixed as an unavoidable impurity in other raw materials is 0.05% or less based on the total weight of the wire in terms of CO 2 . The effects of the present invention will be specifically explained using examples below. [Example] Using stainless steel strips and pipes shown in Table 1, JIS Z3323YF-
Wires equivalent to 308L, YF-309L, and YF-316L are manufactured, and DCRP200A, 31V,
Carbon dioxide arc welding was performed in a downward position under welding conditions of 30 cm/min, and the welding workability of each method was compared. The wire diameter is 1.2 mm, and the type using pipes P1, P2, and P3 as the outer sheath is the seamless type shown in Figure 1a, the type using steel strips H1 and H2 is the seamless type shown in Figure 1b, and the type using steel strip H3 is shown in Figure 1b. The cross-sectional shape shown in FIG. 1d was used. The results are shown in Table 3. SiO 2 , ZrO 2
Or wire No. 15 with low metal fluoride content,
16, 18, 46, wire No. 10 with low slag content,
Both Nos. 15 and 43 had insufficient slag encapsulation. In addition, wire No. with high SiO 2 or Mn content.
11, 14, 41, Wire No. 17 with low TiO2 content,
Sample No. 47 had poor slag removability. Furthermore, wire Nos. 44 and 52 with high ZrO 2 content, wires No. 8, 12, 41, 42, 50, and 51 with low metal component content for flux, and wire No. 19 with low Mn content are There were problems with the condition and droplet migration. Wires No. 12 and 45, which have a high TiO 2 content, have no choice but to increase the amount of slag component in order to ensure slag encapsulation.
Similar to 41 and 42, the amount of spatter generated increased. Further, wire No. 13 with a high metal fluoride content generated a large amount of gas and a large amount of spatter. In contrast, in the case of the present invention, in which the flux component range and the slag component amount are appropriate, and the metal component content in the flux is high, the arc condition and droplet transferability are good, the amount of spatter is small, and the slag There were no problems with encapsulation or slag removability, and extremely good welding workability was demonstrated. In addition, the evaluation of welding workability in Table 3 is as follows:
◎: Very good, 〇: Good, △: Slightly poor, ×:
This indicates a defect.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
以上のように本発明は、ステンレス鋼溶接用フ
ラツクス入りワイヤにおけるフラツクス組成を、
スラグ量が少なくても十分なスラグ被包性と剥離
性を示すSiO2−ZrO2−TiO2系成分範囲に特定す
ることによりスパツタ発生量の低減を可能とし、
さらにフラツクス中の金属成分含有量を多くする
ことによつてアーク状態、溶滴移行性の改善を達
成したものであつて溶接後のスパツタ除去作業軽
減が可能でステンレス鋼溶接の作業能率向上に大
きく貢献するものである。
As described above, the present invention improves the flux composition of flux-cored wire for stainless steel welding by
By specifying the range of SiO 2 −ZrO 2 −TiO 2 components that exhibit sufficient slag encapsulation and peelability even with a small amount of slag, it is possible to reduce the amount of spatter generated.
Furthermore, by increasing the content of metal components in the flux, arc conditions and droplet migration properties have been improved, making it possible to reduce the work of removing spatter after welding, which greatly improves the work efficiency of stainless steel welding. It is something that contributes.
第1図a,b,c,dは各種フラツクス入りワ
イヤの断面形状を示す模式図、第2図はワイヤ中
のスラグ成分含有量とスパツタ発生量の関係を示
す図である。
1……外皮、2……充填フラツクス、3……継
目。
FIGS. 1a, b, c, and d are schematic diagrams showing the cross-sectional shapes of various flux-cored wires, and FIG. 2 is a diagram showing the relationship between the content of slag components in the wires and the amount of spatter generated. 1... Outer skin, 2... Filling flux, 3... Seam.
Claims (1)
2.0%のZrO2、0.7〜4.2%のTiO2、0.1〜0.7%の金
属フツ化物、0.3〜2.3%のMnをフラツクス中に
含有すると共に、フラツクス中のスラグ成分の合
計がワイヤ全重量の4.5〜9.5%で、さらにフラツ
クス中の金属成分の合計がフラツクス全重量の59
〜85%を占め、かつ炭酸塩を実質的に含有しない
ことを特徴とするステンレス鋼溶接用フラツクス
入りワイヤ。1 1.5-3.7% SiO 2 based on the total weight of the wire, 0.7-
The flux contains 2.0% ZrO2 , 0.7~4.2% TiO2 , 0.1~0.7% metal fluoride, and 0.3~2.3% Mn, and the total slag component in the flux is 4.5% of the total weight of the wire. ~9.5%, and the total metal content in the flux is 59% of the total weight of the flux.
A flux-cored wire for stainless steel welding, which is characterized in that it accounts for ~85% and contains substantially no carbonates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20622285A JPS6268696A (en) | 1985-09-20 | 1985-09-20 | Flux cored wire for welding stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20622285A JPS6268696A (en) | 1985-09-20 | 1985-09-20 | Flux cored wire for welding stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6268696A JPS6268696A (en) | 1987-03-28 |
JPH0159079B2 true JPH0159079B2 (en) | 1989-12-14 |
Family
ID=16519783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20622285A Granted JPS6268696A (en) | 1985-09-20 | 1985-09-20 | Flux cored wire for welding stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6268696A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019102932A1 (en) | 2017-11-24 | 2019-05-31 | 株式会社神戸製鋼所 | Flux-cored wire for gas-shielded arc welding and welding method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2602604B2 (en) * | 1992-11-20 | 1997-04-23 | 株式会社神戸製鋼所 | Flux-cored wire for stainless steel with excellent porosity resistance |
JPH09267193A (en) * | 1996-03-29 | 1997-10-14 | Kobe Steel Ltd | Stainless steel flux cored wire |
JP4516702B2 (en) * | 2001-04-10 | 2010-08-04 | 新日本製鐵株式会社 | High toughness low temperature transformation flux cored wire |
KR100419498B1 (en) * | 2001-06-20 | 2004-02-19 | 고려용접봉 주식회사 | Flux cored wire for ferritic stainless steel |
US8710405B2 (en) | 2005-04-15 | 2014-04-29 | Nippon Steel & Sumikin Stainless Steel Corporation | Austenitic stainless steel welding wire and welding structure |
JP4782467B2 (en) * | 2005-04-28 | 2011-09-28 | エア・ウォーター株式会社 | Vehicle transport type cryogenic container structure |
JP2007298178A (en) * | 2007-06-06 | 2007-11-15 | Air Water Inc | Ultra-low temperature container |
-
1985
- 1985-09-20 JP JP20622285A patent/JPS6268696A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019102932A1 (en) | 2017-11-24 | 2019-05-31 | 株式会社神戸製鋼所 | Flux-cored wire for gas-shielded arc welding and welding method |
US12059756B2 (en) | 2017-11-24 | 2024-08-13 | Kobe Steel, Ltd. | Flux-cored wire for gas-shielded arc welding and welding method |
Also Published As
Publication number | Publication date |
---|---|
JPS6268696A (en) | 1987-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1846928B (en) | Flux cored electrode and method for forming welding seam with reduced gas trace | |
JP4834191B2 (en) | Flux-cored wire for gas shielded arc welding that can be welded in all positions | |
JP2011140064A (en) | Ni-BASED ALLOY FLUX-CORED WIRE | |
CN1872484B (en) | Improving slag detachability and method capable of improving slag separating power | |
JPH0159079B2 (en) | ||
JPS5913955B2 (en) | Composite wire for stainless steel welding | |
JPH08164498A (en) | Coated arc welding rod for austenitic stainless steel | |
JP2019013980A (en) | Multi-electrode gas shield arc single-sided welding method | |
JPH0899192A (en) | Flux cored wire for gas shielded arc welding | |
JPH10291092A (en) | Flux-cored wire for gas-shielded metal arc welding | |
JP2001205483A (en) | Flux-containing wire for gas shield arc welding | |
JP3540894B2 (en) | Flux-cored wire for stainless steel welding | |
JPH0547318B2 (en) | ||
JPH03294092A (en) | Flux cored wire electrode for gas shielded arc welding | |
JPH0381094A (en) | Flux cored wire for welding stainless steel | |
JPH10296486A (en) | Flux cored wire for welding 9% nickel steel | |
JPH0632872B2 (en) | Wire with flux for welding stainless steel | |
JP7211652B1 (en) | flux cored wire | |
JPH0122080B2 (en) | ||
JPS62110897A (en) | Iron power flux cored wire | |
JPH04356397A (en) | Self-shielded arc welding composite wire | |
JPH0545359B2 (en) | ||
JPH05285692A (en) | Flux cored wire for gas shielded arc welding | |
JPH08118071A (en) | Flux cored wire for welding stainless steel | |
JPS61286090A (en) | Flux-cored wire for arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |