JPH0158960B2 - - Google Patents
Info
- Publication number
- JPH0158960B2 JPH0158960B2 JP7842782A JP7842782A JPH0158960B2 JP H0158960 B2 JPH0158960 B2 JP H0158960B2 JP 7842782 A JP7842782 A JP 7842782A JP 7842782 A JP7842782 A JP 7842782A JP H0158960 B2 JPH0158960 B2 JP H0158960B2
- Authority
- JP
- Japan
- Prior art keywords
- sugar
- solution
- membrane
- cellulose
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 37
- 229920002678 cellulose Polymers 0.000 claims description 15
- 239000001913 cellulose Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 238000000926 separation method Methods 0.000 claims description 13
- 108090000790 Enzymes Proteins 0.000 claims description 12
- 102000004190 Enzymes Human genes 0.000 claims description 12
- 238000001223 reverse osmosis Methods 0.000 claims description 6
- 238000000108 ultra-filtration Methods 0.000 claims description 3
- 239000000243 solution Substances 0.000 description 28
- 239000012466 permeate Substances 0.000 description 11
- 229940088598 enzyme Drugs 0.000 description 10
- 239000007788 liquid Substances 0.000 description 7
- 108010059892 Cellulase Proteins 0.000 description 6
- 229940106157 cellulase Drugs 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 230000003204 osmotic effect Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000001476 alcoholic effect Effects 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000004821 distillation Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000020138 yakult Nutrition 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、糖液の濃縮方法に関し、更に詳しく
は、逆浸透法を利用した糖液の濃縮方法に関す
る。
従来より、セルロースはセルラーゼ(セルロー
ス糖化酵素)により糖化できることが知られてい
る。この時、全糖濃度が6〜7%(Somogyi−
Nelson法)になるまでは、比較的効率よく、セ
ルロースが分解され糖が生成するが、それ以上に
全糖濃度が高まると、生成した糖による阻害が起
こり、糖の生成速度(糖化速度)が低下する。生
成した糖化液から分離・除去し、糖化液中の全糖
濃度を6〜7%以下に保持することにより、糖化
速度を高めることができるが、生成された糖液の
濃度が低くなる。従つて、この糖を用いてアルコ
ール発酵を行なつた場合、得られたもののアルコ
ール濃度が低くなるので、アルコール濃度を高め
るための蒸留の際に、多量のエネルギーを要する
という問題がある。
即ち、本発明は前述した従来の糖液の製造方法
の問題点を解消したもので、高濃度の糖液を効率
よく得ることのできる糖液の濃縮方法を提供する
ことを目的とする。
本発明者らは、前記した点について鑑みて、鋭
意研究を重ねた結果、セルロースを酵素により糖
化して得られる糖化液を限外過(以下、「U.
F.」という)膜で処理後、逆浸透(以下、「R.O.」
という。)膜で処理することにより、本発明の目
的を達成できることを見出し、本発明を完成する
に至つた。
即ち、本発明の糖液の濃縮方法は、セルロース
を酵素により糖化して得られる糖化液をU.F.膜
で処理し、酵素及び未分解セルロースを含有する
濃縮液と、精製された糖液を含有する透過液とに
分離した後、該濃縮液を糖化工程に返送するとと
もに、該透過液をR.O.膜で処理することを特徴
とするものである。
以下、本発明の詳細に説明する。
本発明に用いるセルロース糖化酵素としては、
セルラーゼが挙げられる。
セルロースの糖化は、セルラーゼを用いる場
合、セルロースを1〜20重量%、好ましくは、5
〜10重量%及びセルラーゼを0.1〜10重量%、好
ましくは、0.5〜2.0重量%を含有する水溶液を、
PH3.5〜7.5、好ましくは、PH4.0〜5.0に調整し、
30〜60℃、好ましくは、40〜50℃で2〜120時間、
好ましくは、24〜48時間反応させることにより行
なうことができる。
このようにして得た糖化液を分離・精製するた
めに用いるU.F.膜は、分画分子量500〜100000の
ものであればよいが、特に、分画分子量6000〜
20000のものが好ましい。この時、U.F.膜の分画
分子量が100000以上であると、酵素の一部が透過
液中に漏れて、酵素と糖との分離効率が悪化する
ため、酵素の回収率が低下する。前記U.F.膜を
用いて、0.5〜20Kgf/cm2、好ましくは、1〜10
Kgf/cm2の操作圧力で処理することにより、全糖
濃度約6〜7%の透過液を得ることができる。次
いで、これをR.O.膜を用いて、20〜100Kgf/
cm2、好ましくは、40〜70Kgf/cm2の操作圧力で処
理することにより、全糖濃度が15〜20%である糖
液を得ることができる。用いるR.O.膜は、一般
的には、その素材が酢酸セルロース系、ポリアク
リロニトリル系、ポリベンズイミダゾール系、ポ
リスルホン系、芳香族ポリアミド系等の耐熱、耐
圧性膜であるものが好ましい。また、R.O.膜の
糖分離率は99%以上あればよいが、特に99.5%以
上であることが好ましい。
R.O.膜一段で処理する場合、目的とする糖液
の全糖濃度が高まるに従い、高い操作圧力を必要
とする。また、操作圧力はR.O.膜の耐圧限度以
下でならなければならないため、濃度限界があ
る。それ以上の全糖濃度の糖液は、次のようにし
て得られることが、研究の結果、明らかとなつ
た。
即ち、R.O.膜を二段に設け、一段目のR.O.膜
として、糖分離率が99%以上のもの、好ましく
は、99.5%以上のものを用いて、20〜100Kgf/
cm2、好ましくは、40〜70Kgf/cm2の操作圧力で処
理することにより、全糖濃度約15〜20%の糖液を
得ることができる。次いで、この糖液を二段目の
R.O.膜として、糖分離率が30〜90%のもの、好
ましくは、40〜80%のものを用いて、20〜100Kg
f/cm2、好ましくは、40〜70Kgf/cm2の操作圧力
で処理することにより、全糖濃度約30〜40%の糖
液を得ることができる。その理由を以下に記す。
R.O.法における諭送方程式は、次式(1)の近似
式で示される。
Jv=A(Δp−Δπ)=A{Δp−(Δπ(C2)−Δπ
(C3))} ……(1)
Jv:体積流束(透過水量)〔cm3/cm2・sec〕
A:純水透過係数〔mol/cm2・sec・atm〕
Δp:操作圧力
Δπ:浸透圧差
Δπ(C2):高圧側膜界面溶液の浸透圧
Δπ(C3):透過側溶液の浸透圧
前記式(1)から、透過水量Jvは、(Δp−Δπ)で
示される有効圧力に比例し、Jvを増加させるに
は、有効圧力を増加させればよいことがわかる。
従つて、操作圧力を高めることなく透過水量を増
加させるには、浸透圧差Δπを小さく、即ち、透
過側溶液の浸透圧Δπ(C3)を高めればよい。Δπ
(C3)を高めるということは、透過液の溶質
(糖)濃度を高めることを意味する。従つて、R.
O.膜を二段に設け、一段目のR.O.膜、即ち、比
較的糖分離率の高いR.O.膜で処理し、ある程度
まで糖濃度を高めた後、二段目のR.O.膜、即ち、
比較的糖分離率の低いR.O.膜で処理することに
より、より低い操作圧力で高濃度の糖液を得るこ
とができる。
この場合、即ち、糖分離率の低いR.O.膜で処
理した場合、一部の糖が透過液中に移行するた
め、糖回収率が低下するが、これは透過液を再
度、糖分離率の高いR.O.膜で処理することによ
り解決する。その工程系統の一例を図に示す。
図に示す工程に従つて処理することにより、全
糖濃度約30%〜40%の糖液を99%以上の糖回収率
で得ることができる。このようにして得れる高濃
度の糖液を用いてアルコール発酵を行なえば、高
濃度のアルコール水溶液を得ることができ、ま
た、蒸留により、さらにアルコール濃度を高める
際にも、要するエネルギーは少なくて済む。
以下、実施例により、本発明を更に詳細に説明
する。
実施例
図に示す工程系統に従つて、以下のように実施
した。セルロース(山陽国策パルプ社製 W−
100)を5重量%及びセルラーゼ(ヤクルト社製
S−3)を0.5重量%含有する水溶液をPH5.0に
調整し、40℃で24時間反応させて糖化処理を行な
い全糖濃度6.75%の糖化液を得た。この糖化液を
操作圧力3Kgf/cm2で分画分子量20000のU.F.膜
で処理し、未分解セルロース及びセルロースを分
離し、糖化槽1に返送した。一方、透過液(全糖
濃度6.75%)は、操作圧力60Kgf/cm2、温度40℃
の操作条件下において、糖分離率99%(塩化ナト
リウム分離率96.2%)の酢酸セルロース系R.O.膜
で処理した。その結果、濃縮液側に全糖濃度19.2
%の濃縮糖液が糖回収率99.9%で得られた。尚、
この時の平均透過流束は0.225m3/m2・dayであつ
た。また、透過液中には0.05%程度の糖が含まれ
ているため、糖化槽1に返送した。
尚、得られた濃縮糖液をブースターポンプ8に
より、操作圧力60Kgf/cm2、温度40℃の条件下に
おいて、糖分離率72.9%(塩化ナトリウム分離率
36.7%)の酢酸セルロース系R.O.膜で処理し、透
過液をR.O.原液槽3に返送しながら操作を続け
たところ、第2R.O.装置5の濃縮液側に全糖濃度
33.3%の濃縮糖液が全糖回収率99.9%で得られ
た。この時の平均透過流束は0.282m3/m2・dayで
あつた。
また、U.F.膜で処理する際のU.F.膜の分画分
子量の影響について検討するために、以下の試験
を行なつた。
0.5%セルラーゼ水溶液を分画分子量がそれぞ
れ100000、20000、6000である3種類のU.F.膜で
処理し、透過液のセルラーゼ活性をFPA法
(Filter Paper Assay)に従つて測定した。その
結果を表に示す。
The present invention relates to a method for concentrating a sugar solution, and more particularly to a method for concentrating a sugar solution using reverse osmosis. It has been known that cellulose can be saccharified by cellulase (cellulose saccharifying enzyme). At this time, the total sugar concentration is 6-7% (Somogyi-
Nelson's method), cellulose is decomposed relatively efficiently and sugar is produced, but if the total sugar concentration increases further, inhibition by the produced sugar occurs and the sugar production rate (saccharification rate) decreases. descend. Although the saccharification rate can be increased by separating and removing sugar from the produced saccharified solution and keeping the total sugar concentration in the saccharified solution at 6 to 7% or less, the concentration of the produced saccharified solution becomes low. Therefore, when alcoholic fermentation is carried out using this sugar, the resulting product has a low alcohol concentration, so there is a problem in that a large amount of energy is required during distillation to increase the alcohol concentration. That is, the present invention solves the problems of the conventional sugar solution manufacturing method described above, and aims to provide a method for concentrating a sugar solution that can efficiently obtain a highly concentrated sugar solution. In view of the above-mentioned points, the present inventors have conducted extensive research, and as a result, the saccharified liquid obtained by saccharifying cellulose with an enzyme was subjected to ultrafiltration (hereinafter referred to as "U.
After treatment with reverse osmosis (hereinafter referred to as "RO") membrane
That's what it means. ) It was discovered that the object of the present invention could be achieved by treatment with a membrane, and the present invention was completed. That is, in the method for concentrating a sugar solution of the present invention, a saccharified solution obtained by saccharifying cellulose with an enzyme is treated with a UF membrane, and a concentrated solution containing an enzyme and undecomposed cellulose and a purified sugar solution are obtained. After separation into a permeated liquid, the concentrated liquid is returned to the saccharification process, and the permeated liquid is treated with an RO membrane. The present invention will be explained in detail below. The cellulose saccharifying enzyme used in the present invention includes:
Examples include cellulase. When cellulose is used for saccharification of cellulose, cellulose is 1 to 20% by weight, preferably 5% by weight.
~10% by weight and an aqueous solution containing 0.1-10% by weight, preferably 0.5-2.0% by weight of cellulase,
Adjust to PH3.5-7.5, preferably PH4.0-5.0,
2 to 120 hours at 30 to 60°C, preferably 40 to 50°C,
Preferably, this can be carried out by reacting for 24 to 48 hours. The UF membrane used to separate and purify the saccharified liquid obtained in this way may have a molecular weight cut-off of 500 to 100,000, but especially has a molecular weight cut-off of 6000 to 100,000.
20000 is preferred. At this time, if the molecular weight cutoff of the UF membrane is 100,000 or more, a portion of the enzyme leaks into the permeate and the efficiency of separating the enzyme and sugar deteriorates, resulting in a decrease in the recovery rate of the enzyme. Using the UF membrane, 0.5 to 20 Kgf/cm 2 , preferably 1 to 10
By processing at an operating pressure of Kgf/cm 2 , a permeate with a total sugar concentration of about 6-7% can be obtained. Next, this is heated to 20 to 100Kgf/by using an RO membrane.
cm 2 , preferably 40 to 70 Kgf/cm 2 , a sugar solution having a total sugar concentration of 15 to 20% can be obtained. Generally, the RO membrane used is preferably a heat-resistant and pressure-resistant membrane made of cellulose acetate, polyacrylonitrile, polybenzimidazole, polysulfone, aromatic polyamide, or the like. Further, the sugar separation rate of the RO membrane may be 99% or more, and is particularly preferably 99.5% or more. When processing with a single RO membrane, higher operating pressure is required as the total sugar concentration of the target sugar solution increases. Furthermore, since the operating pressure must be below the pressure resistance limit of the RO membrane, there is a concentration limit. As a result of research, it has become clear that a sugar solution with a higher total sugar concentration can be obtained as follows. That is, RO membranes are provided in two stages, and the first stage RO membrane is one with a sugar separation rate of 99% or more, preferably 99.5% or more, and the 20 to 100 kgf/
By processing at an operating pressure of 40 to 70 kgf/cm 2 , preferably 40 to 70 Kgf/cm 2 , a sugar solution with a total sugar concentration of about 15 to 20% can be obtained. Next, this sugar solution is added to the second stage.
Use an RO membrane with a sugar separation rate of 30 to 90%, preferably 40 to 80%, and use a 20 to 100 kg
A sugar solution having a total sugar concentration of about 30 to 40% can be obtained by processing at an operating pressure of f/cm 2 , preferably 40 to 70 Kgf/cm 2 . The reason is described below. The sending equation in the RO method is expressed by the following approximate equation (1). J v = A(Δp−Δπ)=A{Δp−(Δπ(C 2 )−Δπ
(C 3 ))} ...(1) J v : Volume flux (permeated water amount) [cm 3 /cm 2・sec] A: Pure water permeability coefficient [mol/cm 2・sec ・atm] Δp: Operating pressure Δπ: Osmotic pressure difference Δπ (C 2 ): Osmotic pressure of the membrane interface solution on the high pressure side Δπ (C 3 ): Osmotic pressure of the solution on the permeate side From the above formula (1), the amount of permeated water J v is expressed as (Δp − Δπ). It can be seen that in order to increase J v , it is necessary to increase the effective pressure.
Therefore, in order to increase the amount of permeated water without increasing the operating pressure, it is sufficient to reduce the osmotic pressure difference Δπ, that is, to increase the osmotic pressure Δπ(C 3 ) of the permeate side solution. Δπ
Increasing (C 3 ) means increasing the solute (sugar) concentration in the permeate. Therefore, R.
O. Membranes are provided in two stages, and the first stage RO membrane, i.e., the RO membrane with a relatively high sugar separation rate, is used to increase the sugar concentration to a certain extent, and then the second stage RO membrane, i.e.,
By processing with an RO membrane that has a relatively low sugar separation rate, a highly concentrated sugar solution can be obtained at a lower operating pressure. In this case, if the treatment is performed using an RO membrane with a low sugar separation rate, some of the sugar will migrate into the permeate, resulting in a decrease in sugar recovery. This can be resolved by treatment with an RO membrane. An example of the process system is shown in the figure. By processing according to the steps shown in the figure, a sugar solution with a total sugar concentration of about 30% to 40% can be obtained with a sugar recovery rate of 99% or more. If alcoholic fermentation is carried out using the highly concentrated sugar solution obtained in this way, a highly concentrated alcoholic aqueous solution can be obtained, and even when the alcohol concentration is further increased by distillation, less energy is required. It's over. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example The following procedure was carried out according to the process system shown in the figure. Cellulose (manufactured by Sanyo Kokusaku Pulp Co., Ltd. W-
An aqueous solution containing 5% by weight of 100) and 0.5% by weight of cellulase (S-3 manufactured by Yakult) was adjusted to pH 5.0 and reacted at 40°C for 24 hours to perform saccharification treatment, resulting in saccharification with a total sugar concentration of 6.75%. I got the liquid. This saccharified liquid was treated with a UF membrane having a molecular weight cutoff of 20,000 at an operating pressure of 3 Kgf/cm 2 to separate undecomposed cellulose and cellulose, and returned to the saccharification tank 1. On the other hand, the permeate (total sugar concentration 6.75%) was processed at an operating pressure of 60 Kgf/cm 2 and a temperature of 40°C.
It was treated with a cellulose acetate-based RO membrane with a sugar separation rate of 99% (sodium chloride separation rate of 96.2%) under the following operating conditions. As a result, the total sugar concentration on the concentrate side was 19.2
% concentrated sugar solution was obtained with a sugar recovery rate of 99.9%. still,
The average permeation flux at this time was 0.225m 3 /m 2 ·day. Furthermore, since the permeate contained about 0.05% sugar, it was returned to the saccharification tank 1. In addition, the obtained concentrated sugar solution was pumped with the booster pump 8 under the conditions of an operating pressure of 60 Kgf/cm 2 and a temperature of 40°C, with a sugar separation rate of 72.9% (sodium chloride separation rate).
36.7%) cellulose acetate-based RO membrane, and continued operation while returning the permeate to the RO stock solution tank 3, the total sugar concentration was found on the concentrated solution side of the second R.O. device 5.
A concentrated sugar solution of 33.3% was obtained with a total sugar recovery rate of 99.9%. The average permeation flux at this time was 0.282m 3 /m 2 ·day. Furthermore, in order to examine the influence of the molecular weight cut-off of the UF membrane during treatment with the UF membrane, the following tests were conducted. A 0.5% cellulase aqueous solution was treated with three types of UF membranes with molecular weight cutoffs of 100,000, 20,000, and 6,000, respectively, and the cellulase activity of the permeate was measured according to the FPA method (Filter Paper Assay). The results are shown in the table.
【表】
表から、分画分子量100000のU.F.膜を用いた
場合には、酵素が透過液中に漏れるため酵素回収
率が低下することがわかる。[Table] From the table, it can be seen that when a UF membrane with a molecular weight cutoff of 100,000 is used, the enzyme recovery rate decreases because the enzyme leaks into the permeate.
図は、本発明の実施例の工程を示す系統図であ
る。
1……糖化槽、2……U.F.装置、3……R.O.
原液槽、4……第1R.O.装置、5……第2R.O.装
置、6……低圧ポンプ、7……高圧ポンプ、8…
…ブースターポンプ。
The figure is a system diagram showing the steps of an embodiment of the present invention. 1... Saccharification tank, 2... UF device, 3... RO
Stock solution tank, 4... 1st R.O. device, 5... 2nd R.O. device, 6... low pressure pump, 7... high pressure pump, 8...
...booster pump.
Claims (1)
化液を限外過膜で処理し、酵素及び未分解セル
ロースを含有する濃縮液と、精製された糖液を含
有する透過液とに分離した後、該濃縮液を糖化工
程に返送するとともに、該透過液を逆浸透膜で処
理することを特徴とする糖液の濃縮方法。 2 限外過膜の分画分子量が20000以下である
特許請求の範囲第1項記載の濃縮方法。 3 逆浸透膜が二段に設けられている特許請求の
範囲第1項又は第2項記載の濃縮方法。 4 一段目の逆浸透膜の糖分離率が99%以上であ
り、二段目の逆浸透膜の糖分離率が30〜90%であ
る特許請求の範囲第3項記載の濃縮方法。[Claims] 1. A saccharified solution obtained by saccharifying cellulose with an enzyme is treated with an ultrafiltration membrane, and a concentrated solution containing an enzyme and undecomposed cellulose and a permeated solution containing a purified sugar solution are obtained. A method for concentrating a sugar solution, which comprises returning the concentrated solution to the saccharification step and treating the permeated solution with a reverse osmosis membrane. 2. The concentration method according to claim 1, wherein the ultrafiltration membrane has a molecular weight cutoff of 20,000 or less. 3. The concentration method according to claim 1 or 2, wherein the reverse osmosis membrane is provided in two stages. 4. The concentration method according to claim 3, wherein the first-stage reverse osmosis membrane has a sugar separation rate of 99% or more, and the second-stage reverse osmosis membrane has a sugar separation rate of 30 to 90%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7842782A JPS58198299A (en) | 1982-05-12 | 1982-05-12 | Concentration of saccharide solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7842782A JPS58198299A (en) | 1982-05-12 | 1982-05-12 | Concentration of saccharide solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58198299A JPS58198299A (en) | 1983-11-18 |
JPH0158960B2 true JPH0158960B2 (en) | 1989-12-14 |
Family
ID=13661738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7842782A Granted JPS58198299A (en) | 1982-05-12 | 1982-05-12 | Concentration of saccharide solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58198299A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2371973A1 (en) | 2008-12-09 | 2011-10-05 | Toray Industries, Inc. | Method for producing sugar liquid |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01256394A (en) * | 1988-04-06 | 1989-10-12 | Natl Food Res Inst | Enzymatic production of celloligosaccharide |
US8075780B2 (en) * | 2003-11-24 | 2011-12-13 | Millipore Corporation | Purification and concentration of synthetic biological molecules |
JP5431499B2 (en) | 2009-11-27 | 2014-03-05 | 三井化学株式会社 | Monosaccharide production method |
JP5716325B2 (en) * | 2010-03-30 | 2015-05-13 | 東レ株式会社 | Method and apparatus for producing sugar solution |
US20130266991A1 (en) * | 2010-12-09 | 2013-10-10 | Toray Industries, Inc. | Method for producing concentrated aqueous sugar solution |
WO2013156600A1 (en) * | 2012-04-20 | 2013-10-24 | Vlaamse Instelling Voor Technologisch Onderzoek (Vito) | Improved dilute chemical reaction process with membrane separation step |
JP2014128213A (en) * | 2012-12-28 | 2014-07-10 | Kawasaki Heavy Ind Ltd | Method of producing concentrated saccharified liquid |
US9622505B2 (en) | 2013-03-14 | 2017-04-18 | H2O Innovation Inc. | System and method to produce maple syrup |
CA3080110A1 (en) * | 2017-11-30 | 2019-06-06 | Toray Industries, Inc. | Filtration device |
WO2024203309A1 (en) * | 2023-03-27 | 2024-10-03 | 日東電工株式会社 | Concentration system for organic solvent-containing water and concentration method for organic solvent-containing water |
-
1982
- 1982-05-12 JP JP7842782A patent/JPS58198299A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2371973A1 (en) | 2008-12-09 | 2011-10-05 | Toray Industries, Inc. | Method for producing sugar liquid |
US10093747B2 (en) | 2008-12-09 | 2018-10-09 | Toray Industries, Inc. | Method for production sugar liquid |
Also Published As
Publication number | Publication date |
---|---|
JPS58198299A (en) | 1983-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2175029B1 (en) | Lactic acid production method | |
CN102639722B (en) | The manufacture method of liquid glucose | |
JPH0158960B2 (en) | ||
TW201231674A (en) | Method for preparing concentrated aqueous solution of sugar | |
Giorno et al. | Study of fouling phenomena in apple juice clarification by enzyme membrane reactor | |
CN206624888U (en) | A kind of purification concentrator of xylo-oligosaccharide | |
JPH08252434A (en) | Manufacture of highly concentrated alcohol | |
JP5262011B2 (en) | Lactic acid production method and production apparatus | |
CN105219889A (en) | A kind of method of membrane separation purification starch saccharificating liquid | |
Bohdziewicz et al. | Ultrafiltration preparation of pectinolytic enzymes from citric acid fermentation broth | |
JP2005102519A (en) | Method for treating glucose solution | |
CN212102647U (en) | L-citrulline extraction element in seed melon | |
CA1155112A (en) | Process for the purification of glucosaminoglucans | |
CN210560185U (en) | Device for purifying and recovering protein peptide by membrane method | |
CN100424088C (en) | Method for preparing crystal maltitol using maltose of 45%-50% purity | |
CN107406866B (en) | Method for producing sugar solution | |
WO2007034999A1 (en) | Method for production of enzyme | |
CN113461663B (en) | Membrane separation and purification method of proton pump inhibitor Esomeprazole sodium | |
CN216604772U (en) | Continuous membrane filtration system of erythritol zymotic fluid | |
JP2001079361A (en) | Membrane separation method of bacteria-containing liquid and device therefore | |
CN113372357A (en) | Method and device for concentrating and removing impurities from spectinomycin feed liquid | |
CA2241193A1 (en) | Process for purifying a liquid contaminated by filamentary molecules | |
JP3371783B2 (en) | Cell isolation method | |
CN215138674U (en) | Separation and purification device for jerusalem artichoke polysaccharide | |
KR101418827B1 (en) | A preparation method of sugar liquid using a membrane |