JPH0158677B2 - - Google Patents
Info
- Publication number
- JPH0158677B2 JPH0158677B2 JP15732481A JP15732481A JPH0158677B2 JP H0158677 B2 JPH0158677 B2 JP H0158677B2 JP 15732481 A JP15732481 A JP 15732481A JP 15732481 A JP15732481 A JP 15732481A JP H0158677 B2 JPH0158677 B2 JP H0158677B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- semiconductor laser
- optical
- magneto
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 claims description 48
- 230000003287 optical effect Effects 0.000 claims description 37
- 239000010409 thin film Substances 0.000 claims description 23
- 239000010408 film Substances 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 17
- 230000010287 polarization Effects 0.000 claims description 17
- 230000005540 biological transmission Effects 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 230000001902 propagating effect Effects 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 description 24
- 230000010355 oscillation Effects 0.000 description 10
- 239000000835 fiber Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/095—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
- G02F1/0955—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
本発明は光フアイバからの反射光によつて生ず
る発振光強度の変動や雑音が生ずることのない、
半導体レーザモジユールに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention eliminates fluctuations in oscillation light intensity and noise caused by reflected light from optical fibers.
Regarding semiconductor laser modules.
光フアイバ技術の進展にともなつて、線路の低
損失化がすすみ、長距離大容量の光信号の伝送が
可能となつてきた。また信号源である半導体レー
ザと光フアイバとの光結合技術の改良も加えられ
高効率な光の利用ができるようになり、一層の伝
送距離の増大が策れるようになつてきている。光
フアイバの低損失化および光結合効率の向上によ
つて次のような問題が明らかになつてきた。半導
体レーザの出力光を結合させる光フアイバの入射
端面やその光フアイバの他端すなわち主伝送路と
の接続コネクタとの間などで生ずる反射光は強度
として僅かであるが光路を逆にたどつて半導体レ
ーザ端面に集束される。この戻り光の入射によつ
て半導体レーザの発振特性が変化する。ひとつは
発振閾値電流が減少するために、定電流駆動で半
導体レーザを駆動していても、発振光強度が変化
する。また、たとえば光フアイバの入射端からの
ように短い距離に反射面がある場合には半導体レ
ーザの有する光学的な共振器に更に外部の反射面
による複合共振器が付加されることになり、半導
体レーザ媒質の屈折率の温度の変化などによつて
出力光強度の変化を生ずる。また光フアイバの出
射端面からの反射光が半導体レーザに再入射する
とレーザは多数の縦モードが共存した発振特性を
示し、周囲温度や戻り光強度のわずかの変化によ
つて主発振モードの変化やモードの飛びなどを生
ずる。これらはいずれも発振光の雑音となり、通
信系の信号対雑音比の劣化を生じさせる大きな原
因となつている。 With the advancement of optical fiber technology, the loss of lines has been reduced, making it possible to transmit large-capacity optical signals over long distances. In addition, improvements have been made to the optical coupling technology between the semiconductor laser, which is the signal source, and the optical fiber, making it possible to use light with high efficiency, and it is becoming possible to further increase the transmission distance. As the loss of optical fibers has been reduced and optical coupling efficiency has been improved, the following problems have come to light. Although the intensity of the reflected light generated at the input end face of the optical fiber that couples the output light of the semiconductor laser and between the other end of the optical fiber, that is, the connector connecting to the main transmission line, is small, it can be reflected by retracing the optical path. It is focused on the semiconductor laser end facet. The oscillation characteristics of the semiconductor laser change due to the incidence of this returned light. One is that the oscillation threshold current decreases, so the oscillation light intensity changes even if the semiconductor laser is driven with constant current. Furthermore, if there is a reflective surface at a short distance, such as from the input end of an optical fiber, a complex resonator formed by an external reflective surface is added to the optical resonator of the semiconductor laser. Changes in the output light intensity occur due to changes in the refractive index, temperature, etc. of the laser medium. Furthermore, when the reflected light from the output end face of the optical fiber enters the semiconductor laser again, the laser exhibits oscillation characteristics in which many longitudinal modes coexist, and slight changes in the ambient temperature or return light intensity can cause changes in the main oscillation mode. This may cause mode jumps, etc. All of these become noise in the oscillated light, and are a major cause of deterioration in the signal-to-noise ratio of communication systems.
とくに光デジタル信号の通信系よりも光アナロ
グ信号の受信送信を行うシステム、広帯域アナロ
グ光通信システム、光ビデオデイスク、光フアイ
バジヤイロなどのシステムではとくに戻り光によ
る半導体レーザの発する雑音は重要な問題となつ
ている。 In particular, the noise emitted by semiconductor lasers due to return light becomes an important problem in systems such as systems that receive and transmit optical analog signals rather than optical digital signal communication systems, broadband analog optical communication systems, optical video disks, and optical fiber grills. ing.
この半導体レーザの発振光ノイズを除去するこ
とはその原因である戻り光のレーザへの再入射を
防ぐ対策を施こすことであり、これまで多数の方
法が考えられている。そのうちのひとつは、半導
体レーザの出射光を高NA・短焦点のレンズによ
つて平行光束とし、この平行光束の光路中に、偏
光プリズム、1/4波長板を挿入し、これらを透過
した平行光束をレンズによつて集束し光フアイバ
に結合するもので、偏光プリズムの光軸は、活性
層と平行の方向に振動電界成分を有する半導体レ
ーザの発振光を透過し、それに直交する成分は屈
折によつて光路外へ除去するように選ばれてい
る。レーザを出射し1/4波長板を透過した光は円
偏光となる、集束用レンズやフアイバ端面で反射
した反射光は、1/4波長板を逆方向に透過し、入
射時とは直交した直線偏光となり、前述の偏光プ
リズムによつて除去される。この方法はレンズ面
や、フアイバ入射端面のように反射時に光偏光状
態が変らない反射光すなわち近端反射は1/4波長
板によつて直交する偏光に変換して除去すること
ができるが、フアイバを透過して出射端面によつ
て反射し再びフアイバ中を透過してくるような反
射光すなわち遠端反射光にたいしては、フアイバ
透過後の光の偏光状態は円偏光を保持しないため
除去することができないという難点を有する。 To eliminate this oscillation light noise of a semiconductor laser, it is necessary to take measures to prevent the return light that is the cause of the noise from entering the laser again, and many methods have been considered so far. One of them is to convert the emitted light from a semiconductor laser into a parallel light beam using a high NA/short focal length lens, and insert a polarizing prism and a quarter-wave plate into the optical path of this parallel light beam. The light beam is focused by a lens and coupled to an optical fiber.The optical axis of the polarizing prism transmits the oscillated light of the semiconductor laser, which has an oscillating electric field component in a direction parallel to the active layer, and refracts the component perpendicular to it. is selected so that it is removed out of the optical path. The light emitted from the laser and transmitted through the 1/4 wavelength plate becomes circularly polarized light.The reflected light reflected from the focusing lens and the end face of the fiber passes through the 1/4 wavelength plate in the opposite direction and is perpendicular to the direction of incidence. It becomes linearly polarized light and is removed by the aforementioned polarizing prism. In this method, reflected light whose polarization state does not change when reflected, such as from a lens surface or fiber input end face, that is, near-end reflection, can be removed by converting it into orthogonal polarized light using a quarter-wave plate. For reflected light that passes through the fiber, is reflected by the output end face, and then passes through the fiber again, that is, far-end reflected light, the polarization state of the light after passing through the fiber does not maintain circular polarization, so it must be removed. The problem is that it is not possible to
上記1/4波長板の代りに、フアラデーまたはベ
ルデ効果をもつ磁気光学結晶や磁気光学ガラスを
用い、この磁気光学媒質を透過する光の偏光を入
射の直線偏光とは45度の角度を有する直線偏光と
し、この偏光成分のみを透過する複屈折プリズム
を出射側にも設け、集光レンズによつて光フアイ
バに光を集束する方法がある。この方法では、反
射光の偏光成分のうち出射側プリズムを透過する
成分は磁気光学媒質を逆方向に透過することによ
つて入射時とは直交する偏光へ回転を受け、この
偏光は入射側の複屈折プリズムによつて除去され
るため、半導体レーザへの再入射が阻止される。
この構成は高い逆方向損失を与えることができる
が、この構成も前述の方法も、半導体レーザの出
射光をいつたんレンズによつて平行光束に変換
し、この平行光束の光路中に複屈折プリズムや1/
4板ないしは磁気光学媒質を挿入し、再びレンズ
によつて集束し光フアイバに集光するという構成
をとり、構成光学部品が多い。このため周囲温度
の変化によつて配置ずれを生じ易く不安定であ
る。たとえば半導体レーザの活性領域の幅は2〜
3μm、単一モードフアイバのコア径は10μm程度
である。このため2つのレンズ径は3〜5倍倍率
の拡大光学系を構成することになる。したがつて
レンズの周囲温度の変化による横移動は拡大され
て光フアイバ端面上に生ずる。単一モードフアイ
バの光軸ずれの許容度は1〜2μm程度と狭いため
周囲温度の変化によつて容易に光フアイバへの結
合効率が低下してしまう。また半導体レーザの端
面は平行光束に変換するレンズの焦点位置に位置
する。したがつて平行光束光路上の各部品の入出
射面で僅かの反射が生ずると、それら効率よく半
導体レーザの発光部に集光されることになる。し
たがつて各部品の光入出射端面は高性能の無反射
処理を施こす必要があり部品の製造価格が高くな
るという難点を有する。 Instead of the above-mentioned 1/4 wavelength plate, a magneto-optic crystal or magneto-optic glass with the Faraday or Verdet effect is used, and the polarization of the light transmitted through this magneto-optic medium is a straight line having an angle of 45 degrees with the incident linearly polarized light. There is a method in which the light is polarized, a birefringent prism that transmits only this polarized light component is also provided on the output side, and the light is focused onto an optical fiber using a condenser lens. In this method, the polarized light component of the reflected light that passes through the output side prism is transmitted through the magneto-optic medium in the opposite direction and is rotated to a polarization perpendicular to that at the time of incidence. Since it is removed by the birefringent prism, re-injection into the semiconductor laser is prevented.
This configuration can provide high reverse loss, but both this configuration and the method described above first convert the emitted light from the semiconductor laser into a parallel beam using a lens, and then place a birefringent prism in the optical path of this parallel beam. Ya1/
It has a configuration in which four plates or a magneto-optical medium are inserted, and the light is again focused by a lens and condensed onto an optical fiber, and there are many optical components. Therefore, the arrangement is likely to shift due to changes in ambient temperature, making it unstable. For example, the width of the active region of a semiconductor laser is 2~
3 μm, and the core diameter of single mode fiber is about 10 μm. Therefore, the two lens diameters constitute a magnifying optical system with a magnification of 3 to 5 times. Therefore, lateral movement of the lens due to changes in ambient temperature is magnified and occurs on the end face of the optical fiber. Since the tolerance for optical axis deviation of a single mode fiber is narrow, about 1 to 2 μm, the coupling efficiency to the optical fiber easily decreases due to changes in ambient temperature. Further, the end face of the semiconductor laser is located at the focal point of a lens that converts the beam into a parallel beam. Therefore, if a slight reflection occurs at the entrance/exit surface of each component on the parallel beam optical path, the light will be efficiently focused on the light emitting section of the semiconductor laser. Therefore, it is necessary to apply high-performance anti-reflection treatment to the light input/output end faces of each component, which has the disadvantage of increasing the manufacturing cost of the components.
本発明の目的は上記難点を除去し、構成部品の
少い低廉な半導体レーザモジユールを提供するこ
とにある。 SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide an inexpensive semiconductor laser module with fewer components.
本発明の半導体レーザモジユールは、半導体レ
ーザと該半導体レーザの光出射端面に光学的に端
面接続された磁気光学薄膜アイソレータとから成
り、該薄膜アイソレータは、その基板面と前記半
導体レーザの接合面とが前記光学的に接続された
端面内で45度の角度を成すように配置されてお
り、かつ上面が光透過方向に金属膜で覆われた部
位と覆われない部位とに2分された一本のリブ形
光導波路を有し、該光導波路は、これを伝搬する
偏光面の直交した2つの伝搬モードの位相定数が
縮退するように、該光導波路を構成する結晶材料
の組成及び該光導波路の幾可学的形状が定められ
た値に設定されている構成となつている。このよ
うな構成にすることによつて、半導体レーザへの
戻り光による発振不安定が生ずることない、安定
でしかも構成が簡単な半導体レーザモジユールが
得られる。 The semiconductor laser module of the present invention includes a semiconductor laser and a magneto-optic thin film isolator optically end face connected to the light emitting end face of the semiconductor laser, and the thin film isolator has a bonding surface between the substrate surface and the semiconductor laser. are arranged to form an angle of 45 degrees within the optically connected end surface, and the upper surface is divided into a portion covered with a metal film and a portion not covered in the light transmission direction. The optical waveguide has a single rib-shaped optical waveguide, and the composition of the crystal material constituting the optical waveguide is such that the phase constants of two propagation modes with orthogonal polarization planes propagating through the optical waveguide are degenerate. The configuration is such that the geometrical shape of the optical waveguide is set to a predetermined value. By adopting such a structure, it is possible to obtain a semiconductor laser module that is stable and has a simple structure, without causing unstable oscillation due to light returning to the semiconductor laser.
本発明は次の事実に基づく、第1はTE偏光で
発振している半導体レーザに戻り光として偏波面
を90゜回転させた偏光であるTM波を入射させて
もレーザ出力光の変化は生じないこと(この事実
を示す文献として、たとえば、第27回応用物理
学、関係連合講演会予稿3P―G―12、昭和55年
春に示されている)、第2に磁気光学薄膜を使つ
た新らしいアイソレータを用い、これの光学的配
置の工夫によつて、レンズ等の光学部品の少い構
成で半導体レーザモジユールを構成することがで
きる。 The present invention is based on the following facts. First, even if a TM wave, which is polarized light whose plane of polarization is rotated by 90 degrees, is input as return light to a semiconductor laser that is oscillating with TE polarized light, the laser output light does not change. (For example, a document showing this fact is shown in Proceedings of the 27th Applied Physics and Related Union Lectures, 3P-G-12, Spring 1981). By using a unique isolator and devising its optical arrangement, a semiconductor laser module can be constructed with fewer optical parts such as lenses.
本発明の詳細を更に図面をもつて説明する。第
1図は本発明の一実施例の構成原理図であつて1
は半導体レーザ、2は磁気光学薄膜アイソレー
タ、3は光フアイバ、4は磁気光学薄膜アイソレ
ータに印加される外部磁場の方向である。この薄
膜アイソレータの構造は非磁性基板7の上にエピ
タキシヤル成長させた磁気光学薄膜8にリブ形導
波路5を形成し、該導波路の一部の上部に金属膜
6を設けた構成である。半導体レーザの発光部
に、前記磁気光学薄膜アイソレータ2のリブ形導
波路5の上面に金属膜を有さない端面を極接近し
て配置し、該リブ形導波路の上面に金属膜を有す
る側の端面には光フアイバ3が極接近して配置さ
れている。磁気光学薄膜アイソレータの光透過方
向に直交し非磁性基板7に平行する線と半導体レ
ーザ1の接合面とは45゜の角度をなして配置され
ている。 The details of the present invention will be further explained with reference to the drawings. FIG. 1 is a diagram showing the configuration principle of one embodiment of the present invention.
is a semiconductor laser, 2 is a magneto-optic thin film isolator, 3 is an optical fiber, and 4 is the direction of an external magnetic field applied to the magneto-optic thin film isolator. The structure of this thin film isolator is such that a rib-shaped waveguide 5 is formed on a magneto-optic thin film 8 epitaxially grown on a non-magnetic substrate 7, and a metal film 6 is provided on a part of the waveguide. . The end face of the rib-shaped waveguide 5 of the magneto-optic thin film isolator 2 is placed in close proximity to the upper surface of the rib-shaped waveguide 5 of the semiconductor laser, and the end face of the rib-shaped waveguide 2 has a metal film on the upper surface. An optical fiber 3 is placed very close to the end face of the optical fiber 3. A line perpendicular to the light transmission direction of the magneto-optic thin film isolator and parallel to the non-magnetic substrate 7 and the bonding surface of the semiconductor laser 1 are arranged at an angle of 45°.
本構成における光の振舞いを説明する。第2図
は半導体レーザ1から出射し光フアイバ3に向か
う光の偏光状態を説明する図で、座標軸は光透過
方向、半導体レーザの接合面に平行な方向及びこ
れらに直交する方向をとつてある。半導体レーザ
を出射するレーザ光11はTE波であつてこれは
磁気光学薄膜アイソレータ2のリブ形導波路5に
効率よく入射する。該リブ形導波路5を進む光波
は後にその動作を説明するようにその上部を金属
膜6で覆われた部との境界では45゜の直線偏光1
2へとフアラデ効果によつて偏光の回転を受け
る。磁気光学薄膜アイソレータ2は半導体レーザ
の接合面9と45゜の角度をなしているためこの偏
光には磁気光学薄膜アイソレータ2中ではTE波
である。更にリブ形導波路を進みその上部を金属
膜6で覆われた部分を透過するTE波は上記の金
属膜ではほとんど減衰を受けない。また上部を金
属膜で覆われているため、該導波路中ではTE波
とTM波の位相速度が異なるために偏光回転を受
けることなく45゜の直線偏光状態13を保つて該
磁気光学薄膜 アイソレータを出射し、その出射
端面に近接して設けた光フアイバ3に入射する。 The behavior of light in this configuration will be explained. FIG. 2 is a diagram explaining the polarization state of light emitted from the semiconductor laser 1 and directed toward the optical fiber 3. The coordinate axes are the light transmission direction, the direction parallel to the bonding surface of the semiconductor laser, and the direction perpendicular to these. . Laser light 11 emitted from the semiconductor laser is a TE wave, which efficiently enters the rib-shaped waveguide 5 of the magneto-optic thin film isolator 2. The light wave traveling through the rib-shaped waveguide 5 becomes linearly polarized light 1 of 45 degrees at the boundary with the part whose upper part is covered with the metal film 6, as will be explained later.
2, the polarization is rotated by the Farade effect. Since the magneto-optic thin film isolator 2 forms an angle of 45° with the junction surface 9 of the semiconductor laser, this polarized light is a TE wave in the magneto-optic thin film isolator 2. Furthermore, the TE wave that travels through the rib-shaped waveguide and passes through the portion whose upper part is covered with the metal film 6 is hardly attenuated by the metal film. In addition, since the upper part is covered with a metal film, the phase velocity of the TE wave and the TM wave are different in the waveguide, so the linear polarization state 13 of 45° is maintained without polarization rotation, and the magneto-optic thin film isolator is emitted and enters an optical fiber 3 provided close to the emitting end face.
第3図は戻り光にたいする偏光の振舞 い示す
図で、光フアイバ3を戻つて来る光は、薄膜アイ
ソレータ2の基板に平行な振動電界成分TE波1
5とそれに直交するTM波14両成分が存在す
る。磁気光学薄膜アイソレータ2のリブ形導波路
の上部が金属膜6で覆われた部分を透過する両方
の偏光成分14,15のうちTM波14は金属膜
の効果で急激に減衰し、該上部を金属膜で覆われ
た部位を透過終了時点ではTE波成分のみ16と
なる。更にリブ形導波路の金属膜で覆われない部
位を半導体レーザ1に向かつて進むTE波はフア
ラデー効果によつて入射時の偏光(第2図11)
とは直交する偏光17へと回転を受ける。この半
導体レーザ端面へ到達する戻り光は、発振光であ
るTE波に直交したTM波である。このためこの
戻り光が半導体レーザ中に再入射しても前述の如
くレーザ出力光に変動を来すことがないため、発
振光の変動や雑音を生ずることがない。 FIG. 3 is a diagram showing the behavior of polarized light with respect to the returned light.
There are 5 and 14 TM wave components orthogonal to it. Of the two polarized light components 14 and 15 that pass through the upper part of the rib-shaped waveguide of the magneto-optic thin film isolator 2 covered with the metal film 6, the TM wave 14 is rapidly attenuated by the effect of the metal film, and At the end of transmission through the part covered with the metal film, only the TE wave component becomes 16. Furthermore, the TE wave that travels toward the semiconductor laser 1 through the portion of the rib-shaped waveguide that is not covered with the metal film is polarized at the time of incidence due to the Faraday effect (Fig. 2, 11).
It undergoes rotation into polarized light 17 orthogonal to that of the polarized light 17. The return light that reaches the semiconductor laser end face is a TM wave orthogonal to the TE wave, which is the oscillation light. Therefore, even if this returned light enters the semiconductor laser again, the laser output light does not change as described above, and therefore, the oscillation light does not fluctuate or noise is generated.
磁気光学薄膜アイソレータの動作は特願昭56―
036990に記載されているように以下の如くであ
る。Y3Fe5O12で代表されるガーネツト磁気光学
単結晶は光波長1〜2μmで光学的に透明であり、
フアラデー効果を有するため、光アイソレータ用
材料として有用である。すなわち、バルク単結晶
の光を透過させる2面を研磨して光を透過させ、
光透過方向に磁場を印加し、その透過長を適切
(たとえば1.3μm光波にたいして、Y3Fe5O12結晶
では2.4mm程度)にしておくと、入射した直線偏
光は出射時にはこれと45゜の角度に偏光する直線
偏光にフアラデ効果によつて偏光回転を受ける。
この偏光を逆方向に該結晶を透過させると、反射
側面での偏光は入射した直線偏光と直交した直線
偏光となる。このため入出射側に偏光プリズムを
設けその結晶軸を適切に定めると光アイソレータ
機能すなわち、逆方向光透過損失の大きい非可逆
光素子が構成できることはよく知られている。 The operation of the magneto-optical thin film isolator was disclosed in a patent application filed in 1983.
As described in 036990, it is as follows. Garnet magneto-optic single crystals, represented by Y 3 Fe 5 O 12 , are optically transparent at light wavelengths of 1 to 2 μm.
Since it has a Faraday effect, it is useful as a material for optical isolators. In other words, the two light-transmitting surfaces of the bulk single crystal are polished to allow light to pass through,
If a magnetic field is applied in the light transmission direction and the transmission length is set appropriately (for example, about 2.4 mm for a Y 3 Fe 5 O 12 crystal for a 1.3 μm light wave), the incident linearly polarized light will be at an angle of 45° from this when it exits. Linearly polarized light that is angularly polarized undergoes polarization rotation due to the Farade effect.
When this polarized light is transmitted through the crystal in the opposite direction, the polarized light at the reflective side becomes linearly polarized light orthogonal to the incident linearly polarized light. For this reason, it is well known that if a polarizing prism is provided on the input/output side and its crystal axis is appropriately determined, an optical isolator function, that is, an irreversible optical element with large reverse light transmission loss can be constructed.
薄膜においてはその固有伝搬モードであるTE
波とTM波とではその位相速度が異なるため、通
常の構成では偏光回転は生ずることはない。通
常、ガーネツト結晶そのものは光学的には等方で
あるが、薄膜に構成するとTE波の位相定数が
TM波のそれより大きい。しかしながらエピタキ
シヤル成長させる磁気光学膜に格子定数が基板の
それより大なる組成(たとえば一例として基板材
料にGd3Ga5O12結晶を選びこの基板上にGdXY2-X
Fe5O12,0.1<x<0.3をエピタキシヤル成長させ
る)を選ぶと、格子定数の不整合によつてエピタ
キシヤル膜には引張り応力が発生し、この応力に
よつて光弾性効果を介して複屈折が生じ、最低次
のTM波の位相定数の方がTE波のそれよりも大
になるようにすることができる。 In a thin film, its eigenpropagation mode TE
Since the phase velocity of the wave and the TM wave are different, polarization rotation does not occur in a normal configuration. Normally, the garnet crystal itself is optically isotropic, but when formed into a thin film, the phase constant of the TE wave changes.
larger than that of the TM wave. However, if the magneto-optical film to be epitaxially grown has a composition with a lattice constant larger than that of the substrate (for example, if Gd 3 Ga 5 O 12 crystal is selected as the substrate material, Gd
When epitaxial growth of Fe 5 O 12 , 0.1<x<0.3 is selected, tensile stress is generated in the epitaxial film due to lattice constant mismatch, and this stress causes Birefringence occurs and the phase constant of the lowest order TM wave can be made larger than that of the TE wave.
一般に導波路の位相定数は、一例としてリブ形
導波路のようなチヤンネル化された導波路の幅の
大きさによつても変化する。上記のように平面導
波路構成においてTM波の位相定数がTE波のそ
れより大なるようにエピタキシヤル膜の組成およ
び膜厚を設定しておき、イオンミリング法などに
よつてリブ形導波路を形成しその導波路幅を適切
に設定するとTE波の位相定数とTM波の位相定
数とを縮退させることができる。この導波路の光
透過方向に磁場を印加すると、前述のバルク単結
晶の場合と同様非可逆特性を得ることができる。
一例としてGd0.2Y2.8Fe5O12エピタキシヤル膜を
3.5μm成長させ、導波路幅を3.3μm、導波路長す
なわち第1図におけるリブ形導波路で上部を金属
膜で覆われない部位5の光透過方向への長さを
2.3mm程度とすると、第2図、第3図に示した偏
光特性を得ることができる。 In general, the phase constant of a waveguide also changes depending on the width of a channeled waveguide, such as a rib-shaped waveguide, for example. As described above, the composition and film thickness of the epitaxial film are set so that the phase constant of the TM wave is larger than that of the TE wave in the planar waveguide configuration, and the rib-shaped waveguide is formed by ion milling or the like. If the waveguide width is appropriately set, the phase constant of the TE wave and the phase constant of the TM wave can be degenerated. When a magnetic field is applied in the light transmission direction of this waveguide, irreversible characteristics can be obtained as in the case of the bulk single crystal described above.
As an example, Gd 0 . 2 Y 2 . 8 Fe 5 O 12 epitaxial film is used.
The waveguide width is 3.3 μm, and the waveguide length is the length in the light transmission direction of the portion 5 of the rib-shaped waveguide in Fig. 1 whose upper part is not covered with a metal film.
When the thickness is about 2.3 mm, the polarization characteristics shown in FIGS. 2 and 3 can be obtained.
本実施例の構成では半導体レーザの出射光はレ
ンズ等の光学部品を介することなくチヤンネル導
波路によつて導波され光フアイバに導びかれる。
半導体レーザと上記設計例のチヤンネル導波路と
の光結合損失は2dB程度、チヤンネル導波路と光
フアイバとのそれは1.5dB程度で光の結合を実現
することができる。 In the configuration of this embodiment, the light emitted from the semiconductor laser is guided by the channel waveguide and guided to the optical fiber without passing through any optical components such as lenses.
Optical coupling can be achieved with an optical coupling loss of about 2 dB between the semiconductor laser and the channel waveguide of the above design example, and with an optical coupling loss of about 1.5 dB between the channel waveguide and the optical fiber.
半導体レーザを利用する場合に光フアイバに透
過させずに平行光束として利用したい場合も多
い。この場合は本実施例の光フアイバ3の代りに
光学レンズを用い、その焦点位置が磁気光学薄膜
アイソレータの光出射端面となるように設定する
ことによつて平行光束を得ることができる。 When using a semiconductor laser, it is often desirable to use it as a parallel beam without transmitting it through an optical fiber. In this case, a parallel light beam can be obtained by using an optical lens in place of the optical fiber 3 of this embodiment and setting its focal point to be the light output end face of the magneto-optic thin film isolator.
尚、実施例の構成を示す第1図において、磁気
光学薄膜アイソレータ2のリブ形導波路の金属膜
で覆われた部位6と覆われない部位5との配置を
逆、すなわち、半導体レーザ1に近い側を金属膜
で覆つた構成にした場合には、半導体レーザ1に
戻り再入射する光偏光成分をTE成分だけを残存
させるため所期の目的を達することは出来ない。 In FIG. 1, which shows the configuration of the embodiment, the arrangement of the portion 6 covered with the metal film and the portion 5 not covered with the metal film of the rib-shaped waveguide of the magneto-optic thin film isolator 2 is reversed, that is, the semiconductor laser If the near side is covered with a metal film, only the TE component of the light polarization component that returns to the semiconductor laser 1 and re-enters remains, making it impossible to achieve the intended purpose.
以上述べた如く、本発明によれば半導体レーザ
への戻り光の影響が無く、しかも光学構成部品の
少い、信頼性の高い半導体レーザモジユールが得
られる。 As described above, according to the present invention, it is possible to obtain a highly reliable semiconductor laser module that is free from the influence of returning light to the semiconductor laser and has fewer optical components.
第1図は本発明の一実施例の原理構成を示す図
で、1は半導体レーザ、2は磁気光学薄膜アイソ
レータ、3は光フアイバ、4は磁気光学薄膜アイ
ソレータに印加する外部磁場である。第2図、第
3図は磁気光学薄膜アイソレータ中を伝搬する光
の偏光の振舞いを示す図である。
FIG. 1 is a diagram showing the principle configuration of an embodiment of the present invention, in which 1 is a semiconductor laser, 2 is a magneto-optic thin film isolator, 3 is an optical fiber, and 4 is an external magnetic field applied to the magneto-optic thin film isolator. FIGS. 2 and 3 are diagrams showing the behavior of polarization of light propagating in a magneto-optic thin film isolator.
Claims (1)
に光学的に端面接続された磁気光学薄膜アイソレ
ータとから成り、該薄膜アイソレータは、その基
板面と前記半導体レーザの接合面とが前記光学的
に接続された端面内で45度の角度を成すように配
置されており、かつ上面が光透過方向に金属膜で
覆れた部位と覆われない部位とに2分された一本
のリブ形光導波路を有し、該光導波路は、これを
伝搬する偏光面の直交した2つの伝搬モードの位
相定数が縮退するように、該光導波路を構成する
結晶材料の組成及び該光導波路の幾可学的寸法が
定められた値に設定されていることを特徴とする
半導体レーザモジユール。1 Consists of a semiconductor laser and a magneto-optic thin film isolator optically end-face connected to a light emitting end face of the semiconductor laser, and the thin film isolator has a substrate surface and a bonding surface of the semiconductor laser optically connected to each other. A single rib-shaped optical waveguide is arranged to form an angle of 45 degrees within the end face, and the upper surface is divided into two parts covered with a metal film and a part not covered with a metal film in the direction of light transmission. The composition of the crystal material constituting the optical waveguide and the geometric dimensions of the optical waveguide are such that the phase constants of two propagation modes with orthogonal polarization planes propagating through the optical waveguide are degenerate. A semiconductor laser module characterized in that: is set to a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15732481A JPS5858782A (en) | 1981-10-02 | 1981-10-02 | Module of semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15732481A JPS5858782A (en) | 1981-10-02 | 1981-10-02 | Module of semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5858782A JPS5858782A (en) | 1983-04-07 |
JPH0158677B2 true JPH0158677B2 (en) | 1989-12-13 |
Family
ID=15647201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15732481A Granted JPS5858782A (en) | 1981-10-02 | 1981-10-02 | Module of semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5858782A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60145689A (en) * | 1984-01-10 | 1985-08-01 | Nec Corp | Pig-tailed semiconductor laser device |
JPS61192471U (en) * | 1985-05-22 | 1986-11-29 |
-
1981
- 1981-10-02 JP JP15732481A patent/JPS5858782A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5858782A (en) | 1983-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5692082A (en) | Laser diode module and depolarizer | |
EP0015129B1 (en) | Optical circulator | |
US5299056A (en) | Optical passive component assembly | |
WO1993005429A1 (en) | Optical device | |
JP5439669B2 (en) | Polarization-independent optical isolator | |
US5428695A (en) | Optical non-reciprocal circuit of waveguide type | |
JP5535150B2 (en) | Polarization-independent optical isolator | |
US4886332A (en) | Optical systems with thin film polarization rotators and method for fabricating such rotators | |
JPH02292887A (en) | Integrated optical isolator | |
JPH0158677B2 (en) | ||
JP2004145136A (en) | Optical demultiplexer and otdr device | |
JP2542532B2 (en) | Method for manufacturing polarization-independent optical isolator | |
JP5439670B2 (en) | Polarization-independent optical isolator | |
JPS6365419A (en) | Semiconductor laser device with optical isolator | |
JP2808564B2 (en) | Optical modulator with isolator function | |
CN114114678B (en) | Device and method for realizing optical reciprocity-nonreciprocal transmission regulation and control | |
JPH04221922A (en) | Polarization independent type optical isolator | |
JPS61132925A (en) | Semiconductor laser module with optical isolator | |
Kuwahara et al. | An optical isolator for semiconductor lasers in the 0.8 μm range | |
JPH09145929A (en) | Optical fiber element with optical isolator | |
JPS6230607B2 (en) | ||
JPH0634916A (en) | Optical isolator | |
US20060139727A1 (en) | Hybrid fiber polarization dependent isolator, and laser module incorporating the same | |
JPH0720407A (en) | Optical isolator | |
JPH07301763A (en) | Optocoupler and optical fiber amplifier |