JPH0157483B2 - - Google Patents
Info
- Publication number
- JPH0157483B2 JPH0157483B2 JP1839582A JP1839582A JPH0157483B2 JP H0157483 B2 JPH0157483 B2 JP H0157483B2 JP 1839582 A JP1839582 A JP 1839582A JP 1839582 A JP1839582 A JP 1839582A JP H0157483 B2 JPH0157483 B2 JP H0157483B2
- Authority
- JP
- Japan
- Prior art keywords
- winding
- frequency
- stray capacitance
- interlayer paper
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004804 winding Methods 0.000 claims description 54
- 239000010410 layer Substances 0.000 claims description 32
- 239000011229 interlayer Substances 0.000 claims description 26
- 239000002966 varnish Substances 0.000 description 19
- 230000010355 oscillation Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 4
- 108091008695 photoreceptors Proteins 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/06—Insulation of windings
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Of Transformers For General Uses (AREA)
- Transformers For Measuring Instruments (AREA)
- Insulating Of Coils (AREA)
Description
本発明は、自励発振インバータによる高圧電源
として複写機等に使用される高圧コイルに関する
ものである。
複写機において、転写工程を終了した後に感光
体ドラムから帯電したコピー紙を静電的に引きは
がすと同時にコピー紙の静電気をなくす除電作用
をも行なわせるためには、通常、高電圧の交流を
印加している。この高電圧を得るために従来は商
用電源による鉄共振トランスで昇圧し、高電圧化
して商用周波数の高圧を前記プロセスに用いてい
る。しかしながら、このように鉄共振トランスで
は装置全体が大型で重いこと、コピープロセスに
応じて出力電圧を自動的に変化させる自動制御が
困難であること、出力電圧の変動特性が良くない
こと等の欠点があり、近年では半導体インバータ
を利用した小型、高性能の半導体式高圧電源に移
行している。この半導体高圧電源の場合、鉄共振
式のものに較べて高価であると云う課題があつた
が、これも順次克服されつつある。
また、半導体式高圧電源においては、その周波
数が通常400〜500Hz程度に設定されている。これ
は周波数を高くすれば電源装置が小型で安価にで
きるが、あまり高くすると高電圧(4〜5kv程
度)であるために、電源装置と感光体ドラムまで
の配線の引きまわしによる配線とシヤーシフレー
ムとの間の浮遊静電容量で洩れ電流が増加し、感
光体ドラムに流し込む最終負荷電流が大幅に変化
し、かつ、変動する。これは周波数が高くなる
程、顕著になる。また、コピープロセス上も周波
数が高い程良好であるとは限らない。したがつ
て、周波数の増加には自ずから限度がある。ま
た、逆に周波数が低いと当然のことながら電源装
置が大型化し、半導体化する意味がなくなる。こ
れらの点を考慮して前述のコピープロセスの除
電、紙剥離に使用される半導体電源の高圧交流の
周波数は400〜500Hz程度に定められている。
しかして、この種の半導体電源、すなわち、イ
ンバータは、他励方式と自励方式とがある。他励
方式の場合、周波数ジエネレータが必要であり、
また、制御回路も複雑であるため装置が高価にな
り、部品数も多いために大型化すると云う欠点を
有する。そして、他励方式の場合には、通常、周
波数は固定化されるので、回路の固有振動数f0と
設定周波数f1とが合わなければ、f0−f1分の無効
電流が増加したり出力波形が歪む等の問題が生じ
る。しかして、実際上、f0とf1とを合わせること
は不可能であり、性能面から周波数精度の要求値
によつては自励方式の場合が有利のことが多い。
通常、この種の出力周波数範囲は±5%に管理さ
れることが要求されている。このように出力周波
数の精度があまり要求されないときには回路構成
が簡単な自励方式が採用されることが望ましい。
しかして、この種の高圧電源は負荷電流が
1mA前後でしかも高電圧のために必然的に二次
側(出力側)巻線は0.06〜0.08φ程度の細線を
30000回程度巻いたコイルになる。そのため、巻
線間や巻線とアース間に浮遊容量を持ち、インバ
ータの発振回路でこの浮遊容量成分と一次巻線側
のインダクタンス成分とでタンク時定数回路を構
成する。したがつて、この固有振動数が自励発振
周波数に合えば、タンク回路の無効電流によるロ
スは最小限に押えることができ、入出力変換効率
は向上する。
そこで、自励方式における従来の問題点を第1
図および第2図について説明する。まず、二次側
高圧巻線コイルNsに生じる浮遊容量Coは巻線の
被覆厚さのバラツキ、コイル層間絶縁紙のバラツ
キ、絶縁紙の長さ、巻線時の引張強度、巻線時の
回転速度、一層当りの巻数、コイル1の絶縁処理
(ワニス絶縁処理)状態等の変数要因が多く、こ
れの管理は不可能であり、この浮遊容量Coのバ
ラツキを補正するため、インバータ発振回路の一
次側に別のタンクコンデンサC1と入れたり、コ
ア2,3のつき合せ部にエアーギヤツプGを設け
てインダクタンスの調整を行なうことにより所要
の周波数f11に合わせている。しかしながら、こ
の周波数f11に合わせるため、タンクコンデンサ
C1の値を調整することやエアーギヤツプGを変
化させることは実用上きわめて繁雑な作業であ
り、従来は多くの工数を要している。このため、
発振トランジスタQのベース印加電圧のタイミン
グを周波数f11に近づけるべく、ベース回路定数
の設計で補正していたが、これでは不充分なもの
である。
本発明は、このような点に鑑みなされたもの
で、コイル自体の処理によつて所要周波数のバラ
ツキの少ない自励発振式インバータ用の高圧コイ
ルを得ることを目的とする。
本発明は、コイル部の巻始めを高電位とし、巻
終りを低電位とし、かつ、巻始めから数層は層間
紙を各層毎に入れ、その後は数巻毎に入れるよう
にしてコイル部自体で浮遊容量の調節を簡単に行
ないうるようにし、これにより、自励発振周波数
の調整を簡単に行ない、かつ、そのバラツキの少
ないものを得ることができるように構成したもの
である。
本発明の一実施例を第3図および第4図に基い
て説明する。ここで、第3図に示すものは好まし
い例ではなく、第4図に示した実施例の理解を深
めるための一説明図である。
まず、二次巻線Nsの浮遊容量Coについて検討
した結果、つぎのような事実を得た。すなわち、
事実現象を重視した実験によれば、二次巻線Ns
の絶縁ワニス等の含浸絶縁物の含浸処理によつて
周波数f11は最も大きく変化する。また、含浸状
態によつてもバラツキは大きい。そして、この含
浸状態のバラツキは二次巻線Nsの高電位側のバ
ラツキが周波数f11をより大きくバラツカせると
云うことである。そこで、第3図に示すものは、
低電位側を巻始めLとし高電位側を巻終りHとし
て各層4毎に絶縁性のある層間紙5を入れて巻線
6を巻回し、これによりコイル部7を形成してい
る。この場合の浮遊容量Coは巻終にHとコア8
との間に形成されるCo1、各層4間に形成される
Co2、Co3、各巻線6間に形成されるCo4があり、
これらの合成がCoとなる。そして、これら浮遊
容量に流れる電流は、各浮遊容量Co間に印加す
る電圧により決り、それらの全ての合成が進相無
効電流となる。したがつて、Ic=ωCoVxが流れ
ることになる。ここで、Vxは各浮遊容量Coに印
加する電圧の総称である。
しかして、浮遊容量Coを決るのは、巻線6や
層間紙5の誘電率εsやそれらの絶縁物の厚さtが
主たるものである。しかし、実験によれば、これ
らのバラツキは規定のバラツキの含浸絶縁物を用
いた場合にはあまり浮遊容量Coを左右させない
ことが解つた。すなわち、同一発振回路、同一コ
ア、同一ギヤツプの条件で二次巻線Nsのみワニ
ス処理したものとワニス処理なしのものとを比較
した発振周波数f11は下表のとおりである。ただ
し、第1図に示す回路において一次巻線N1と並
列接続されたタンクコンデンサC1は用いていな
い。
The present invention relates to a high-voltage coil used in copying machines and the like as a high-voltage power source using a self-excited oscillation inverter. In a copying machine, in order to electrostatically remove the charged copy paper from the photoreceptor drum after the transfer process is completed, and at the same time perform a static neutralizing action that eliminates the static electricity on the copy paper, a high-voltage alternating current is usually applied. is being applied. In order to obtain this high voltage, conventionally, the voltage is increased by using an iron resonant transformer powered by a commercial power source, and the high voltage of the commercial frequency is used in the process. However, fero-resonant transformers have drawbacks such as the large size and weight of the entire device, the difficulty of automatic control that automatically changes the output voltage according to the copy process, and poor output voltage fluctuation characteristics. In recent years, there has been a shift to compact, high-performance semiconductor-type high-voltage power supplies that use semiconductor inverters. This semiconductor high-voltage power supply had the problem of being more expensive than the iron-resonant type, but this problem is gradually being overcome. Further, in semiconductor type high voltage power supplies, the frequency is usually set to about 400 to 500 Hz. This is because if the frequency is increased, the power supply can be made smaller and cheaper, but if the frequency is increased too much, the voltage is high (about 4 to 5 kV), so wiring and chassis are required to route the wiring between the power supply and the photoreceptor drum. Leakage current increases due to stray capacitance between the photoreceptor and the frame, and the final load current flowing into the photoreceptor drum changes and fluctuates significantly. This becomes more noticeable as the frequency becomes higher. Furthermore, the higher the frequency, the better the copy process. Therefore, there is naturally a limit to the increase in frequency. On the other hand, if the frequency is low, the power supply device will naturally become larger, and there is no point in using semiconductors. Taking these points into consideration, the frequency of the high-voltage alternating current of the semiconductor power supply used for static elimination and paper peeling in the above-mentioned copying process is determined to be approximately 400 to 500 Hz. This type of semiconductor power supply, that is, an inverter, can be classified into separately excited type and self-excited type. In the case of separately excited method, a frequency generator is required,
Furthermore, since the control circuit is complicated, the device becomes expensive, and the device has the drawbacks of being large in size due to the large number of parts. In the case of a separately excited system, the frequency is usually fixed, so if the natural frequency f 0 of the circuit and the set frequency f 1 do not match, the reactive current will increase by f 0 − f 1 . This may cause problems such as distortion of the output waveform. However, in practice, it is impossible to match f 0 and f 1 , and depending on the required value of frequency accuracy from a performance standpoint, the self-excitation method is often advantageous.
Typically, this type of output frequency range is required to be controlled within ±5%. When high precision in output frequency is not required, it is desirable to adopt a self-excitation system with a simple circuit configuration. However, this type of high-voltage power supply has a load current of
Since the voltage is around 1mA and the voltage is high, the secondary side (output side) winding must be a thin wire of about 0.06 to 0.08φ.
The coil will be wound around 30,000 times. Therefore, there is stray capacitance between the windings and between the winding and the ground, and in the inverter's oscillation circuit, this stray capacitance component and the inductance component on the primary winding side constitute a tank time constant circuit. Therefore, if this natural frequency matches the self-excited oscillation frequency, loss due to reactive current in the tank circuit can be suppressed to a minimum, and input/output conversion efficiency is improved. Therefore, the first problem with the conventional self-excitation method is
The figure and FIG. 2 will be explained. First, the stray capacitance Co generated in the secondary high-voltage winding coil Ns is determined by variations in the coating thickness of the winding, variations in the insulating paper between the coil layers, the length of the insulating paper, the tensile strength during winding, and the rotation during winding. There are many variable factors such as speed, number of turns per layer, insulation treatment (varnish insulation treatment) status of coil 1, etc., and it is impossible to control them. The required frequency f11 can be adjusted by inserting another tank capacitor C1 on the side or by providing an air gap G where the cores 2 and 3 meet to adjust the inductance. However, in order to match this frequency f 11 , the tank capacitor
Adjusting the value of C1 and changing the air gap G are extremely complicated tasks in practice, and conventionally require a large number of man-hours. For this reason,
In order to bring the timing of the voltage applied to the base of the oscillation transistor Q closer to the frequency f11 , correction was made by designing the base circuit constants, but this is insufficient. The present invention has been made in view of these points, and it is an object of the present invention to obtain a high-voltage coil for a self-oscillation type inverter with less variation in the required frequency by processing the coil itself. In the present invention, the coil section is made to have a high potential at the beginning of winding and a low potential at the end of winding, and interlayer paper is inserted in each layer for several layers from the beginning of winding, and then every few turns thereafter, so that the coil section itself The structure is such that the stray capacitance can be easily adjusted, and thereby the self-excited oscillation frequency can be easily adjusted and a frequency with little variation can be obtained. An embodiment of the present invention will be explained based on FIGS. 3 and 4. Here, what is shown in FIG. 3 is not a preferred example, but is an explanatory diagram for better understanding of the embodiment shown in FIG. 4. First, as a result of studying the stray capacitance Co of the secondary winding Ns, the following facts were obtained. That is,
According to experiments focusing on factual phenomena, the secondary winding Ns
The frequency f 11 changes the most depending on the impregnation treatment of the impregnated insulator such as insulating varnish. Further, there is a large variation depending on the impregnation state. This variation in the impregnation state means that variation on the high potential side of the secondary winding Ns causes a larger variation in the frequency f11 . Therefore, what is shown in Figure 3 is
The winding wire 6 is wound with the low potential side being the winding start L and the high potential side being the winding end H, an insulating interlayer paper 5 is inserted between each layer 4, thereby forming a coil portion 7. In this case, the stray capacitance Co is H at the end of the winding and the core 8
Co 1 formed between each layer 4
There are Co 2 , Co 3 , and Co 4 formed between each winding 6,
The combination of these becomes Co. The current flowing through these stray capacitances is determined by the voltage applied between each stray capacitance Co, and the sum of all these becomes a phase-advanced reactive current. Therefore, Ic = ωCoVx will flow. Here, Vx is a general term for voltages applied to each stray capacitance Co. Therefore, the main factors that determine the stray capacitance Co are the dielectric constant εs of the winding 6 and interlayer paper 5, and the thickness t of their insulators. However, experiments have shown that these variations do not significantly affect the stray capacitance Co when an impregnated insulator with a specified variation is used. That is, the oscillation frequency f 11 is shown in the table below when comparing a case where only the secondary winding Ns is varnished and a case where the secondary winding Ns is not varnished under the conditions of the same oscillation circuit, the same core, and the same gap. However, in the circuit shown in FIG. 1, the tank capacitor C 1 connected in parallel with the primary winding N 1 is not used.
【表】
この結果をみると、周波数のバラツキはワニス
処理後に大きくなつており、その周波数自体もワ
ニス処理後の方が低下している。これは巻線6
間、層間紙5内にワニスが含浸され、透電率εが
上昇したためである。そして、このワニスの含浸
具合の差が透電率εの差になつており、かつ、周
波数の差になつているものである。したがつて、
ワニス処理後の周波数f11のバラツキといかに小
さくおさえるかと云うことが課題である。
このようなことから、本発明においては第4図
に示すような構造を採用した。すなわち、二次巻
線Nsの巻終りLを低電位側として接地し、層間
紙5を巻始めHから数層の間は周波数のバラツキ
に応じて各層毎に入れ、その後は複数層毎に入れ
ている。このようにすることにより、最小コスト
で所望の効果が得られるものであり、その理由は
つぎのとおりである。
まず、コイル部7を装着した鉄心組立トランス
のワニス処理時ではワニス含浸処理をした後の乾
燥処理を行なうとき、コイル部7からワニスが洩
出してしまう。これはコイルの外側層程著しい。
これに対して内側層は、コア8に付着したワニス
の流れ込みもあつて比較的ワニスの流出が少な
く、ワニス処理後もワニスの固着が多くてワニス
流出による空気層が少ない。このため、巻終りL
を低電位側として接地したことによつて浮遊容量
Co1、Co3、Co4は比較的一定値であり、バラツキ
が少ない。そのため、バラツキの大きいのは低電
位側の浮遊容量Co2であり、全体としての浮遊容
量Coのバラツキは少ない。この浮遊容量Coが少
ないと云うことは発振周波数が安定し、そのバラ
ツキが少なくなることである。
さらに、巻始めHから数層は各層4毎に絶縁性
の層間紙5が介装されており、巻終りLに向うに
つれて複数層4毎に層間紙5を介装させるように
したことは、浮遊容量Coのバラツキを小さくし、
かつ、発振周波数の変更が容易にしかも簡単にで
きる。
この種のコイル部7において、400〜500Hz程度
の周波数では、その巻線6の径が0.06φ程度であ
り、0.15v/TURN程度の電圧であつて層間発生
電圧は低く、巻線6に被覆された絶縁耐圧からし
て各層4に層間紙5を入れなくても耐圧および寿
命の点では充分に耐え得るものである。したがつ
て、コイル部7の占積率を高め、小型化するため
に数層毎に層間紙5を入れる。こうすると浮遊容
量Co2のバラツキが小となり、全体の浮遊容量Co
もバラツキが小なくなる。このため、二次巻線
Nsの全てをこのように数層毎に層間紙5を入れ
た方が浮遊容量Coのバラツキが小なくなると思
われがちであるが、こうすると次のような欠点が
生じる。すなわち、層間紙5を減らす程、巻線6
は締つて固く巻ける。これは緩衡材としての層間
紙5がなくなるたである。そして、占積率がよく
なると同時に各巻線6間に加わる機械的応力は強
くなり、コイル部7の下層部、巻始めHに近くな
る程著るしい。そして、ワニスや樹脂コンパウン
ドで絶縁処理し、固化する程、この応力は強くな
る。このため、巻線6に対するストレスも大とな
り、巻線6の絶縁被覆の損傷、層間紙5なしによ
る浮遊容量のアツプ、無効電流の増加、層間短絡
や寿命の低下をきたす。そして、浮遊容量Coに
ついては前述のように高電位側の方が特性に影響
を与える度合いが大である。これは、コア8等の
電位に対する電位傾度がコイル部7の低電位側に
対する電位傾度より大きいことからしても明らか
である。
したがつて、巻始めHを高電位側とし、浮遊容
量Coのバラツキを防ぎ、かつ、各層4毎に層間
紙5を入れて占積率を高め、また、浮遊容量Co
のバラツキを小とし、これで生じる巻始めHの高
電位側の巻線ストレスを防止した。すなわち、巻
始めH数層は各層4間に層間紙5が挿入されてい
る。そして、巻終りL側で数層毎に層間紙5を入
れるようにすることにより自励発振周波数の値を
変えうる。なお、巻始めHの高電位側を数層にわ
たつて各層4毎に層間紙5を入れてもワニスの洩
出はなく、むしろ、層間紙5にストツプされてワ
ニスの付着量は多く、空気層はより少なくなる傾
向にある。このため、巻線6間の誘電率εは高ま
り、かつ、浮遊容量Co1は毎層入る層間紙5の層
数によつて自励発振周波数f0を変化させうるほど
変えることができる。
この実験結果を次表に示す。[Table] Looking at the results, it can be seen that the frequency variation becomes larger after the varnish treatment, and the frequency itself decreases after the varnish treatment. This is winding 6
This is because the varnish was impregnated into the interlayer paper 5 during this period, and the conductivity ε increased. This difference in the degree of impregnation of the varnish results in a difference in electrical permeability ε and also in frequency. Therefore,
The problem is how to reduce the variation in frequency f 11 after varnish treatment. For this reason, in the present invention, a structure as shown in FIG. 4 was adopted. That is, the winding end L of the secondary winding Ns is grounded as the low potential side, and the interlayer paper 5 is inserted in each layer for several layers from H at the beginning of winding, depending on the frequency dispersion, and after that, it is inserted in every multiple layers. ing. By doing so, the desired effect can be obtained at minimum cost, and the reason is as follows. First, when a core assembly transformer equipped with the coil section 7 is treated with varnish, the varnish leaks out from the coil section 7 when a drying process is performed after the varnish impregnation process. This is more noticeable in the outer layers of the coil.
On the other hand, in the inner layer, the varnish that has adhered to the core 8 flows in, so there is relatively little varnish flowing out, and even after the varnish treatment, there is a lot of varnish sticking, so there is little air space due to varnish flowing out. For this reason, the end of volume L
By grounding as the low potential side, stray capacitance
Co 1 , Co 3 , and Co 4 are relatively constant values with little variation. Therefore, the variation is large in the stray capacitance Co 2 on the low potential side, and the variation in the stray capacitance Co as a whole is small. The fact that this stray capacitance Co is small means that the oscillation frequency is stable and its fluctuations are reduced. Furthermore, the insulating interlayer paper 5 is interposed between each layer 4 for several layers from the beginning H of the winding, and the interlayer paper 5 is interposed between every plural layers 4 toward the end L of the winding. Reduce the variation in stray capacitance Co,
Moreover, the oscillation frequency can be changed easily and simply. In this type of coil section 7, at a frequency of about 400 to 500Hz, the diameter of the winding 6 is about 0.06φ, the voltage generated between the layers is low at about 0.15v/TURN, and the winding 6 is coated. Considering the dielectric strength obtained, it is possible to sufficiently withstand voltage and life even without inserting an interlayer paper 5 into each layer 4. Therefore, in order to increase the space factor of the coil portion 7 and to reduce its size, interlayer paper 5 is inserted every several layers. This will reduce the variation in stray capacitance Co 2 and reduce the overall stray capacitance Co
The variation will also be reduced. For this reason, the secondary winding
It may be thought that if all the Ns are covered with interlayer paper 5 every few layers, the variation in the stray capacitance Co will be reduced, but this will cause the following drawbacks. In other words, the more the interlayer paper 5 is reduced, the more the winding 6 is reduced.
It can be tightened and rolled tightly. This is because the interlayer paper 5 as a buffering material is eliminated. As the space factor improves, the mechanical stress applied between the windings 6 becomes stronger, and becomes more significant as it approaches the lower layer of the coil section 7 and the winding start H. This stress becomes stronger as the insulation treatment with varnish or resin compound hardens. Therefore, the stress on the winding 6 becomes large, causing damage to the insulation coating of the winding 6, an increase in stray capacitance due to the absence of the interlayer paper 5, an increase in reactive current, an interlayer short circuit, and a shortened life. As for the stray capacitance Co, as mentioned above, the higher potential side has a greater influence on the characteristics. This is also clear from the fact that the potential gradient with respect to the potential of the core 8 and the like is larger than the potential gradient with respect to the low potential side of the coil portion 7. Therefore, the winding start H is on the high potential side to prevent variations in the stray capacitance Co, and interlayer paper 5 is inserted in each layer 4 to increase the space factor.
This minimizes the variation in winding stress on the high potential side of the winding start H, thereby preventing the winding stress. That is, in the H number of layers at the beginning of winding, interlayer paper 5 is inserted between each layer 4. By inserting interlayer paper 5 every few layers on the L side at the end of the winding, the value of the self-oscillation frequency can be changed. Furthermore, even if the high potential side of the winding start H is covered with several layers and interlayer paper 5 is inserted between each layer 4, the varnish will not leak out; on the contrary, the varnish will be stopped by the interlayer paper 5 and the amount of varnish deposited will be large, and air will not leak out. Layers tend to be smaller. Therefore, the dielectric constant ε between the windings 6 is increased, and the stray capacitance Co 1 can be changed to the extent that the self-oscillation frequency f 0 can be changed depending on the number of layers of the interlayer paper 5 inserted in each layer. The results of this experiment are shown in the table below.
【表】
このような実験値は、同一発振回路、同一コ
ア、同一ギヤツプの条件で求められたことは勿論
である。なお、層間紙5は25μの厚さのものを使
用した。
本発明は、上述のように巻始め側を高電位と
し、巻始めから毎層入る層間紙を巻終り側に向つ
て複数層に一回の割合いで入れるようにしたの
で、自励発振周波数を変えることができ、したが
つて、設計製作の自由度が増し、バラツキの少な
い高圧電源装置を提供することが可能になり、か
つ、信頼性が高く、寿命もながい等の効果を有す
るものである。[Table] Of course, these experimental values were obtained under the conditions of the same oscillation circuit, the same core, and the same gap. Note that the interlayer paper 5 used had a thickness of 25 μm. In the present invention, as described above, the starting side of the winding is set at a high potential, and the interlayer paper inserted in each layer from the beginning of the winding is inserted once in each layer toward the end of the winding, so that the self-excited oscillation frequency can be increased. Therefore, the degree of freedom in design and production increases, making it possible to provide a high-voltage power supply with little variation, and having effects such as high reliability and long life. .
第1図は自励発振インバータの一部の回路図、
第2図はトランスの断面図、第3図は一部の拡大
断面図、第4図は本発明の一実施例を示す断面図
である。
4…層、5…層間紙、6…巻線、7…コイル
部、H…巻始め、L…巻終り。
Figure 1 is a partial circuit diagram of a self-oscillating inverter.
FIG. 2 is a sectional view of the transformer, FIG. 3 is a partially enlarged sectional view, and FIG. 4 is a sectional view showing one embodiment of the present invention. 4...layer, 5...interlayer paper, 6...winding, 7...coil part, H...start of winding, L...end of winding.
Claims (1)
イル部を含浸剤で絶縁処理して固化するようにし
たものにおいて、巻始めは高電位側とし巻終りを
低電位側とするとともに巻始めから数層は各層毎
に層間紙を挿入しそれ以降の層は数層に一回の割
合いで前記層間紙を挿入してコイル部を形成した
ことを特徴とする高圧コイル。1 In a coil that is wound with an interlayer paper interposed between the windings and insulated with an impregnating agent and solidified, the beginning of winding is on the high potential side, the end of winding is on the low potential side, and A high-voltage coil characterized in that a coil portion is formed by inserting an interlayer paper in each of the first few layers, and inserting the interlayer paper once every several layers after that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1839582A JPS58135611A (en) | 1982-02-08 | 1982-02-08 | High-tension coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1839582A JPS58135611A (en) | 1982-02-08 | 1982-02-08 | High-tension coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58135611A JPS58135611A (en) | 1983-08-12 |
JPH0157483B2 true JPH0157483B2 (en) | 1989-12-06 |
Family
ID=11970509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1839582A Granted JPS58135611A (en) | 1982-02-08 | 1982-02-08 | High-tension coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58135611A (en) |
-
1982
- 1982-02-08 JP JP1839582A patent/JPS58135611A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58135611A (en) | 1983-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4616407A (en) | Insulating method for rotary electric machine | |
US20060244398A1 (en) | Transformer | |
US3704390A (en) | Combined capacitor-inductor reactor device having transformer characteristics | |
US5107411A (en) | Interference free, pulse type transformer | |
JPH07283037A (en) | Transformer | |
JPH0157483B2 (en) | ||
KR100508274B1 (en) | Diode-split high-voltage transformer | |
US6927342B1 (en) | Insulation for electrical conductors that produces no partial discharges | |
US5198622A (en) | Condenser body for the field control of the connection of a transformer bushing | |
JP2008159963A (en) | High-voltage transformer and image forming device | |
US3975653A (en) | Creeping discharge and partial discharge prevention means for a coil end of a rotary electric machine | |
US2412609A (en) | High-voltage transformer | |
JP2855924B2 (en) | Interval charging device | |
JPH1055898A (en) | X-ray apparatus | |
US5973584A (en) | High-voltage transformer for a television receiver | |
US20240177924A1 (en) | Compact high-voltage pulse transformer and method of manufacturing same | |
JPS60144774A (en) | High voltage power supply device for separating paper in copying machine | |
CA2305420A1 (en) | Magnetic tap changer | |
JPS55103472A (en) | Withstand voltage test method | |
JPS63194576A (en) | High voltage generator | |
JPH11297550A (en) | High voltage generating coil | |
JPH0985135A (en) | High voltage supply device for electrostatic coating gun | |
JP3401021B2 (en) | Neon transformer | |
JP2003164091A (en) | Rotating electric machine and winding thereof | |
JP2001525656A (en) | Main motor and drive system |