[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0155210B2 - - Google Patents

Info

Publication number
JPH0155210B2
JPH0155210B2 JP6619384A JP6619384A JPH0155210B2 JP H0155210 B2 JPH0155210 B2 JP H0155210B2 JP 6619384 A JP6619384 A JP 6619384A JP 6619384 A JP6619384 A JP 6619384A JP H0155210 B2 JPH0155210 B2 JP H0155210B2
Authority
JP
Japan
Prior art keywords
concrete
water
slump
general formula
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6619384A
Other languages
Japanese (ja)
Other versions
JPS60210554A (en
Inventor
Koki Wami
Yasuhiro Kameda
Masayoshi Kakizaki
Tetsuo Ishizuka
Hiroshi Ueno
Tatsuo Kojima
Hiroshi Takimoto
Hiroshi Hotsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6619384A priority Critical patent/JPS60210554A/en
Publication of JPS60210554A publication Critical patent/JPS60210554A/en
Publication of JPH0155210B2 publication Critical patent/JPH0155210B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水硬性セメント混和剤に関する。さら
に詳しくは、水硬性セメント配合物であるコンク
リート、モルタルあるいはペーストの経時による
流動性低下を抑制し、その施工性、作業性を改善
すると共に、高い減水性を有し品質向上をならし
めた水硬性セメント混和剤に関するものである。 コンクリートあるいはモルタルは、セメント、
水、砂、砂利、必要に応じて混和剤を練り混ぜる
ことによつて得られるが、セメントと水の接触に
よりセメント粒子は化学的、物理的作用により時
間の経過と共に流動性が低下し、その作業性、施
工性の障害となる。この現象は一般にコンクリー
トのスランプロス、モルタルのフローダウンと呼
ばれる。 コンクリートあるいはモルタルの品質向上をは
かる第一歩はできるだけ少ない単位水量で練り混
ぜることが原則である。 ナフタリンスルホン酸ホルマリン高縮合物塩あ
るいはメラミン樹脂スルホン酸ホルマリン縮合物
塩等、いわゆる高性能減水剤は高い減水能を有
し、単位水量を大幅に低下できる。しかし経時に
よるスランプロスが極めて大きく、多量添加で使
用するコンクリート高強度二次製品には使用でき
るが、生コンクリート工場では使用し得ず、樹脂
酸塩等のAE剤、リグニンスルホン酸塩等のAE減
水剤を用いているのが現状であり、前者の減水率
は5〜8%、後者は10〜13%程度である。 コンクリートのスランプロスは生コンクリート
においては、アジテータ車の搬送時間の制限、打
設現場での待機時間、ポンプ圧送の一時中断等に
よる品質変化、施工性不良、未充填、コールドジ
ヨイントの発生等耐久性低下の障害を起こす。ま
たコンクリートパイル、ポール等の二次製品工場
では成型時間の制限、締め固め不良等、作業性、
品質上で多くの問題点を生じる。 従つて、コンクリートの経時スランプロスは生
コンクリート工場をはじめコンクリート二次製品
工場、その他において解決しなければならない重
要な課題であり、モルタルにおいても同様であ
る。 就中、生コン工場では、骨材品質の低下による
単位水量、単位セメント量の増大を余儀なくされ
ており、高い減水性を有し、しかもスランプロス
のない混和剤の開発が最も重要な課題となつてい
る。 従来コンクリートのスランプロス防止法とし
て、次のようないくつかの方法が知られている。
すなわち、 (イ) コンクリートの単位水量を増大する方法。 (ロ) 液状または顆粒状コンクリート混和剤の後添
加による方法。 (ハ) コンクリート混和剤の繰り返し添加による方
法。 (ニ) 凝結遅延剤の添加あるいは併用による方法。 上記(イ)の方法は練り混ぜ開始により、打設に至
るまでのスランプロスを見込んだコンクリートの
単位水量を増大する方法であり、最も容易にスラ
ンプロスを抑制できるが、コンクリートの品質
上、強度低下または乾燥収縮によるひび割れ発生
等、耐久性低下を来すことや、所定強度を得るた
めには単位セメント量の増大という経済的な不利
を伴う。 (ロ)の方法は一時的なスランプロス防止改善策で
あつて、本質的な防止策ではない。特に高品質を
目的とした単位水量の少ないコンクリートにおい
ては、添加後のスランプロスを却つて助長する傾
向にある。しかも後添加という作業の煩雑は避け
られない。また顆粒状混和剤の場合、徐々に溶解
することによつてセメント粒子の分散性が得ら
れ、スランプロスを防止する方法であるが、練り
混ぜから打設に至る時間はその時々によつて異な
り、その溶解速度をコントロールすることは困難
であり、しかも部分的に未溶解のまゝコンクリー
ト中に存在すると、強度、耐久性の点で問題であ
る。 (ハ)の方法はスランプロスした時点で、混和剤を
再添加する方法であり、完全に防止するものでな
いが、効果的な手段といえる。しかしながら繰り
返し添加という作業性および絶対添加量の増大と
いう経済的な不利がある。 (ニ)の方法はオキシカルボン酸塩、リグニンスル
ホン酸塩、デキストリンフミン酸塩等の凝結遅延
剤を単独あるいは高性能減水剤との併用により凝
結時間を遅延させ、流動性を維持させようとする
方法であるが、必ずしもスランプロスを防止する
ものではなく、しかも過剰添加の場合、硬化不
良、強度低下などの事故を招く危険性が非常に大
きい。 以上のような従来のスランプロス防止法は、コ
ンクリート品質または施工性、経済性に問題があ
り、あるいは一時的なスランプロス防止対策であ
つて、実用的な防止方法とは言えない。 本発明者らは、従来技術の問題点を解消すべ
く、鋭意研究の結果、高い減水性を有すると共
に、長時間流動性を保持し、しかも凝結遅延、そ
の他品質および施工性に悪影響をおよぼさない水
硬性セメント配合物のスランプロス抑制混和剤を
見い出し本発明に到達したものである。 本発明は、 一般式、 (ただし、式中R1はHまたは低級アルキル基、
R2は炭素数1〜4の直鎖または分枝状アルキレ
ン基、XはHまたはアルカリ金属またはNH4
たは有機塩基を表す)で示される化合物100〜15
モル%、 一般式、 (ただし、式中R3はHまたは低級アルキル基、
AはHまたは−CH2OHを表す)で示される化合
物を0〜85モル%、 一般式、 (ただし、式中R4はHまたは低級アルキル基、
YはHまたはアルカリ金属またはNH4または有
機塩基を表す)で示される化合物0〜85モル%、 を重合させて得られる極限粘度(1N NaCl水溶
液の30℃における)が0.05〜2.0dl/gを有する
水溶性重合体を必須の構成成分として含有するこ
とを特徴とする水硬性セメント混和剤を提供する
ものである。 上記一般式(1)で示される化合物としては、2−
アクリロイルアミノ−2−メチルプロパンスルホ
ン酸、2−アクリロイルアミノエタンスルホン
酸、3−メタアクリロイルアミノプロパンスルホ
ン酸等があり、一般式(2)で示される化合物として
は、アクリルアミド、メタクリルアミド等があ
り、また一般式(3)で示される化合物としては、ア
クリル酸、メタクリル酸、およびそれらの塩等が
ある。 本発明水硬性セメント混和剤の配合量は、対セ
メント固型分として、0.05〜1.5重量%の範囲が
好ましい。また水硬性セメント混和剤の添加方法
および養生方法としては、セメント組成物の練り
混ぜ水の添加しても良く、またセメント組成物の
練り混ぜ後に添加して練り混ぜることもできる。
さらに本発明水硬性セメント混和剤である水溶性
重合体の乾燥粉末物をあらかじめセメントとプレ
ミツクスした後練り混ぜることもできる。 また、添加練り混ぜ後の打設あるいは成型後の
養生方法は、通常の気乾、水中、水蒸気、オート
クレーブ養生しても良い。 対象とするセメントとしては各種ポルトランド
セメント、混合セメント、フライアツシユセメン
ト、特殊セメント等の水硬性セメントを挙げるこ
とができる。 また必要に応じて、樹脂酸塩等のAE剤、リグ
ニンスルホン酸塩等のAE減水剤、ナフタリンス
ルホン酸ホルマリン高縮合物塩等の高性能減水剤
と併用しても良く、さらに硬化促進剤、凝結遅延
剤あるいは膨張剤等と併用することもできる。 次に、本発明における水溶性重合体の製造方法
は、ラジカル開始剤の存在下で、要すれば重合調
節剤の存在下に、一般式(1)で示される化合物を重
合、または一般式(1)、(2)および(3)で示される化合
物を共重合させることによつて得られる。また基
体となるポリマーを常法により合成した後、高分
子反応により官能基を変換することにより合成す
ることもできる。 次に一般式(1)、(2)および(3)で示される化合物の
配合モル比に関して述べる。 一般式(1)で示される化合物は100〜15モル%
(好ましくは90〜25モル%)であり、15モル%以
下の場合はセメント粒子の分散性が劣り、セメン
ト組成物中の単位水量が増大する。即ち減水率が
大幅に増大し、流動化減水剤としては供し得な
い。 一般式(2)、(3)で示される化合物は0〜85モル%
(好ましくは10〜75モル%)であり、一般式(2)で
示される化合物が85モル%以上の場合、減水率が
低下し、しかもスランプの経時安定性が劣る。ま
た一般式(3)で示される化合物が85モル%以上にな
るとセメント配合物の凝結遅延作用を呈し、初期
強度の低下を招く恐れがある。 本発明水硬性セメント混和剤である水溶性重合
体の1N NaCl水溶液の30℃における極限粘度
(η)は0.05〜2.0dl/gの範囲であることが好ま
しく、極限粘度が0.05dl/g未満の場合、および
2.0dl/gを越えると、水硬性セメント混和剤の
セメント組成物に対する添加直後の流動化効果が
発揮されず、減水率が低下し、しかもスランプの
経時安定性が不良となる。 本発明水硬性セメント混和剤をセメント配合物
に添加することにより、遅延作用を伴うことな
く、従来のAE剤、AE減水剤では得られなかつた
高い減水率を得ることができ、しかも高温時で
も、長時間スランプの安定性を保持することが可
能となる。 従つて、従来単位水量の少ないコンクリートを
打設する場合、生コンクリートでは現場へ搬入
し、現場でアジテーター車に、いわゆる流動化剤
を投入し、撹拌、混合し、一時的に流動性を高め
てポンプ圧送し、打設を行つていたが、生コンプ
ラントで従来のAE剤、AE減水剤と同様の方法で
混和剤の添加、練り混ぜ、運搬、打設が可能とな
り、ポンプ圧送性の改善がなされ、作業性の向上
がはかれて、現場での高速撹拌による騒音公害も
なく、しかも低水量コンクリートの流動性および
経時安定性を保持することができ、安定した高品
質のコンクリートを打設することが可能となつ
た。さらにコンクリート二次製品の成型、製造に
おいても、より高い減水効果と安定した流動性を
有することにより、高品質でしかも作業効率の向
上がはかれる。 以下に本発明を実施例により具体的に説明する
(部、%は重量基準を示す)。 製造例 1 撹拌棒、温度計、リフラツクスコンデンサー、
窒素導入管を具備した容量1の4つ口フラスコ
に固型分濃度30%、PH8.0の2−アクリロイルア
ミノ−2−メチル−プロパンスルホン酸ナトリウ
ム水溶液500gを仕込む。 次いで窒素を導入しながら2−メルカプトエタ
ノール3.0gを仕込み、温度を40℃に調節する。
2−2′−アゾビス(2−アミノジプロパン)塩酸
塩0.15gを水20mlに溶解し加える。若干の誘導期
の後発熱が認められ重合反応が開始する。 温度を60℃にコントロールしながら4時間重合
反応を続ける。かくして得られたポリ−2−アク
リロイルアミノ−2−メチル−プロパンスルホン
酸ナトリウムの30℃1N NaCl中で測定した極限
粘度は0.51dl/gであつた。 製造例 2 製造例1において2−アクリロイルアミノ−2
−メチル−プロパンスルホン酸ナトリウムの水溶
液の内300gを、150gを9.3%のアクリルアミド
水溶液、更に150gを12.3%、PH8.0のアクリル酸
ナトリウム水溶液に変え、2−メルカプトエタノ
ールの添加量を0.1gとすることの外は製造例1
と同様に合成した。 得られた共重合体の極限粘度は1.5dl/gであ
つた。 製造例 3 製造例1において2−アクリロイルアミノ−2
−メチル−プロパンスルホン酸ナトリウムに変え
て30%のアルリルアミド水溶液を用い、2−メル
カプトエタノールを5g添加し、同様に重合して
ポリアクリルアミドを得た。 このポリアクリルアミド水溶液に37%ホルムア
ルデヒド171g、酸性亜硫酸ナトリウム220gを加
え、PH12.0になるよう調整する。 得られた混合物を50℃、4時間反応せしめてス
ルホメチル化ポリアクリルアミドのナトリウム塩
を得た。得られた重合物の極限粘度は0.09dl/g
であつた。 なお上記製造例に準じて合成した重合体および
共重合体(混和剤)を表−1に示す。
The present invention relates to hydraulic cement admixtures. More specifically, it suppresses the decline in fluidity of concrete, mortar, or paste, which is a hydraulic cement compound, over time and improves its workability and workability. This invention relates to hard cement admixtures. Concrete or mortar is cement,
It can be obtained by mixing water, sand, gravel, and admixtures if necessary, but when cement and water come into contact, the fluidity of cement particles decreases over time due to chemical and physical effects. It becomes an obstacle to workability and construction. This phenomenon is generally called concrete slump loss or mortar flowdown. The first step in improving the quality of concrete or mortar is to mix it with as little unit water as possible. So-called high performance water reducing agents such as naphthalene sulfonic acid formalin high condensate salts or melamine resin sulfonic acid formalin condensate salts have high water reducing ability and can significantly reduce the unit water amount. However, the slump loss over time is extremely large, and although it can be used for concrete high-strength secondary products that are used in large amounts, it cannot be used in ready-mixed concrete plants. Currently, water reducing agents are used, and the water reduction rate of the former is about 5 to 8%, and the latter is about 10 to 13%. Concrete slump loss is due to durability issues such as limited conveyance time of agitator vehicles, waiting time at the pouring site, quality changes due to temporary suspension of pump pressure, poor workability, unfilled concrete, occurrence of cold joints, etc. Causes disorders of sexual decline. In addition, in factories for secondary products such as concrete piles and poles, there are problems such as limited molding time, poor compaction, etc.
This causes many problems in terms of quality. Therefore, the slump loss of concrete over time is an important issue that must be solved in ready-mixed concrete factories, concrete secondary product factories, and others, and the same applies to mortar. In particular, ready-mixed concrete factories are forced to increase the amount of water and cement per unit due to the decline in aggregate quality, and the most important issue is the development of admixtures that have high water-reducing properties and no slump loss. ing. The following several methods are known as conventional methods for preventing slump loss in concrete.
In other words, (a) A method of increasing the unit water content of concrete. (b) Method by post-addition of liquid or granular concrete admixture. (c) Method by repeated addition of concrete admixtures. (d) A method involving the addition or combination of a setting retarder. Method (a) above is a method of increasing the unit water volume of concrete by starting mixing to account for slump loss up to pouring, and is the easiest way to suppress slump loss, but in terms of concrete quality, strength There is an economical disadvantage in that durability is reduced due to cracking due to deterioration or drying shrinkage, and the amount of cement per unit is increased in order to obtain a predetermined strength. Method (b) is a temporary improvement measure to prevent slump loss, and is not an essential preventive measure. Particularly in concrete with a small unit water content aimed at high quality, it tends to promote slump loss after addition. Moreover, the complication of post-addition is unavoidable. In addition, in the case of granular admixtures, dispersibility of cement particles is obtained by gradually dissolving them, which is a method of preventing slump loss, but the time from mixing to casting varies depending on the situation. It is difficult to control its dissolution rate, and if it remains partially undissolved in concrete, it poses problems in terms of strength and durability. Method (c) involves re-adding the admixture at the time of slump loss, and although it does not completely prevent the problem, it can be said to be an effective means. However, there are economical disadvantages such as the workability of repeated addition and an increase in the absolute amount added. Method (d) attempts to maintain fluidity by delaying the setting time by using setting retarders such as oxycarboxylate, lignin sulfonate, and dextrin humate alone or in combination with a high performance water reducing agent. However, it does not necessarily prevent slump loss, and if it is added in excess, there is a great risk of causing accidents such as poor curing and reduced strength. The conventional methods for preventing slump loss as described above have problems with concrete quality, workability, and economic efficiency, or are temporary measures to prevent slump loss, and cannot be said to be practical methods for preventing slump loss. In order to solve the problems of the conventional technology, the inventors of the present invention have conducted intensive research and found that it has high water-reducing properties, maintains fluidity for a long time, and does not cause setting delay or other adverse effects on quality and workability. The present invention has been achieved by discovering an admixture for suppressing slump loss in hydraulic cement formulations that does not cause slump loss. The present invention has the general formula: (However, in the formula, R 1 is H or a lower alkyl group,
Compounds 100 to 15 where R 2 is a linear or branched alkylene group having 1 to 4 carbon atoms, and X is H, an alkali metal, NH 4 or an organic base
Mol%, general formula, (However, in the formula, R 3 is H or a lower alkyl group,
A represents H or -CH2OH ) 0 to 85 mol% of the compound represented by the general formula, (However, in the formula, R 4 is H or a lower alkyl group,
0 to 85 mol% of a compound represented by H, an alkali metal, NH4 , or an organic base) whose intrinsic viscosity (at 30°C of a 1N NaCl aqueous solution) is 0.05 to 2.0 dl/g. The present invention provides a hydraulic cement admixture characterized by containing a water-soluble polymer having the following properties as an essential component. As the compound represented by the above general formula (1), 2-
There are acryloylamino-2-methylpropanesulfonic acid, 2-acryloylaminoethanesulfonic acid, 3-methacryloylaminopropanesulfonic acid, etc., and compounds represented by general formula (2) include acrylamide, methacrylamide, etc. Further, examples of the compound represented by the general formula (3) include acrylic acid, methacrylic acid, and salts thereof. The amount of the hydraulic cement admixture of the present invention is preferably in the range of 0.05 to 1.5% by weight based on cement solid content. Further, as a method for adding and curing the hydraulic cement admixture, water for mixing the cement composition may be added, or it may be added and mixed after mixing the cement composition.
Furthermore, the dry powder of the water-soluble polymer, which is the hydraulic cement admixture of the present invention, can be premixed with cement and then mixed. Further, the curing method after casting after addition and mixing or after molding may be the usual air drying, underwater, steam, or autoclave curing. The target cements include hydraulic cements such as various portland cements, mixed cements, flyash cements, and special cements. In addition, if necessary, it may be used in combination with an AE agent such as a resin acid salt, an AE water reducing agent such as a lignosulfonate, a high performance water reducing agent such as a naphthalene sulfonic acid formalin high condensate salt, and a curing accelerator, It can also be used in combination with a setting retarder or an expanding agent. Next, the method for producing a water-soluble polymer according to the present invention involves polymerizing a compound represented by the general formula (1) in the presence of a radical initiator and, if necessary, a polymerization regulator, or by polymerizing the compound represented by the general formula ( It can be obtained by copolymerizing the compounds shown in 1), (2) and (3). It can also be synthesized by synthesizing a polymer as a base by a conventional method and then converting the functional groups by a polymer reaction. Next, the blending molar ratio of the compounds represented by general formulas (1), (2) and (3) will be described. The compound represented by general formula (1) is 100 to 15 mol%
(preferably 90 to 25 mol%); if it is less than 15 mol%, the dispersibility of cement particles will be poor and the unit water amount in the cement composition will increase. That is, the water reduction rate increases significantly and it cannot be used as a fluidizing water reducing agent. Compounds represented by general formulas (2) and (3) are 0 to 85 mol%
(preferably 10 to 75 mol%), and when the compound represented by general formula (2) is 85 mol% or more, the water loss rate decreases and the stability of slump over time is poor. Moreover, if the compound represented by general formula (3) exceeds 85 mol%, it may exhibit a setting retarding effect on the cement mixture, leading to a decrease in initial strength. The intrinsic viscosity (η) at 30°C of the 1N NaCl aqueous solution of the water-soluble polymer that is the hydraulic cement admixture of the present invention is preferably in the range of 0.05 to 2.0 dl/g, and the intrinsic viscosity is preferably less than 0.05 dl/g. if, and
If it exceeds 2.0 dl/g, the fluidizing effect of the hydraulic cement admixture on the cement composition will not be exhibited immediately after addition, the water reduction rate will decrease, and the stability of slump over time will become poor. By adding the hydraulic cement admixture of the present invention to a cement mixture, it is possible to obtain a high water reduction rate that could not be obtained with conventional AE agents and AE water reducers without any retarding effect, and even at high temperatures. , it becomes possible to maintain slump stability for a long time. Therefore, when pouring concrete that requires a small amount of water per unit, fresh concrete is delivered to the site, where a so-called fluidizing agent is poured into an agitator vehicle, stirred and mixed, and temporarily increased fluidity. Previously, admixtures were pumped and placed, but now it is possible to add, mix, transport, and place admixtures in the same way as conventional AE agents and AE water reducers for ready-mixed concrete, improving pumping performance. This improves work efficiency, eliminates the noise pollution caused by high-speed stirring on site, and maintains the fluidity and stability over time of low water consumption concrete, allowing stable, high-quality concrete to be poured. It became possible to do so. Furthermore, in the molding and manufacturing of secondary concrete products, it is possible to achieve high quality and improve work efficiency by having a higher water-reducing effect and stable fluidity. The present invention will be specifically explained below using Examples (parts and percentages are based on weight). Production example 1 Stirring bar, thermometer, reflux condenser,
A 4-neck flask with a capacity of 1 and equipped with a nitrogen inlet tube is charged with 500 g of an aqueous solution of sodium 2-acryloylamino-2-methyl-propanesulfonate having a solid content concentration of 30% and a pH of 8.0. Next, 3.0 g of 2-mercaptoethanol was charged while nitrogen was introduced, and the temperature was adjusted to 40°C.
Dissolve 0.15 g of 2-2'-azobis(2-aminodipropane) hydrochloride in 20 ml of water and add. After a slight induction period, exotherm is observed and the polymerization reaction begins. The polymerization reaction was continued for 4 hours while controlling the temperature at 60°C. The intrinsic viscosity of the thus obtained sodium poly-2-acryloylamino-2-methyl-propanesulfonate measured in 1N NaCl at 30°C was 0.51 dl/g. Production Example 2 In Production Example 1, 2-acryloylamino-2
- Of the aqueous solution of sodium methyl-propanesulfonate, 150g was changed to a 9.3% acrylamide aqueous solution, and further 150g was changed to a 12.3% aqueous sodium acrylate solution with a pH of 8.0, and the amount of 2-mercaptoethanol added was changed to 0.1g. Manufacturing example 1 except what to do
It was synthesized in the same way. The intrinsic viscosity of the obtained copolymer was 1.5 dl/g. Production Example 3 In Production Example 1, 2-acryloylamino-2
A 30% aqueous allylamide solution was used instead of sodium -methyl-propanesulfonate, 5 g of 2-mercaptoethanol was added, and polyacrylamide was obtained by polymerization in the same manner. Add 171 g of 37% formaldehyde and 220 g of acidic sodium sulfite to this polyacrylamide aqueous solution and adjust the pH to 12.0. The resulting mixture was reacted at 50°C for 4 hours to obtain the sodium salt of sulfomethylated polyacrylamide. The intrinsic viscosity of the obtained polymer was 0.09 dl/g
It was hot. Table 1 shows polymers and copolymers (admixtures) synthesized according to the above production example.

【表】【table】

【表】 実施例 1 表−1に示す混和剤をコンクリートに添加し、
スランプの経時変化、凝結時間を測定した。 コンクリートの調合を表−2に示す。
[Table] Example 1 Add the admixtures shown in Table-1 to concrete,
Changes in slump over time and condensation time were measured. Table 2 shows the concrete formulation.

【表】 実験は100傾胴型ミキサーに練り混ぜ量が50
となるように表−2の調合を計量し、全材料を
投入する。直ちに3分間練り混ぜを行い(19r.p.
m.)ミキサーより全量排出しスランプ(JIS
A1101)、空気量(JIS A1128)を測定する。こ
の値を添加前とする。 測定後直ちにミキサーに戻し、表−1に示す混
和剤を添加し、1〜2分間練り混ぜ、スランプ、
空気量および凝結時間(ASTM(403−79T)の
測定をした。この値を添加直後とする。 以後ミキサーを低速(10r.p.m.)でアジテーテ
イングを行い、20分毎にスランプ、空気量を測定
し経時変化を見た。 測定結果を表−3に示す。
[Table] In the experiment, the mixing amount was 50 in a tilting mixer.
Weigh out the formulation shown in Table 2 and add all ingredients. Immediately knead for 3 minutes (19r.p.
m.) Discharge the entire amount from the mixer and slump (JIS
A1101) and air volume (JIS A1128). This value is taken as before addition. Immediately after the measurement, return to the mixer, add the admixture shown in Table 1, mix for 1 to 2 minutes, slump,
The air volume and condensation time (ASTM (403-79T)) were measured. These values were taken immediately after addition. After that, the mixer was agitated at low speed (10 rpm), and the slump and air volume were adjusted every 20 minutes. Measurements were taken to observe changes over time. The measurement results are shown in Table 3.

【表】【table】

【表】 * 添加量:対セメント固型分換算
コンクリート温度:25〜26℃
表−3の測定結果から明らかなように、本発明
例混和剤No.1〜6を添加したコンクリートはスラ
ンプの経時安定性が良く90分後においても高い流
動性を示している。しかも凝結時間は無添加コン
クリート(No.11)と同等であり、凝結遅延をおこ
さないことが判る。一方比較例No.7は一般式(1)、
(3)の配合モル比(%)が本発明外のものであり、
スランプ増大効果も弱く、経時安定性が不良で、
しかも凝結時間は無添加コンクリートよりも2時
間以上遅延することが確認された。 No.8は一般式(1)の配合モル比(%)が本発明外
のものであり、No.7同様スランプ増大効果、経時
安定性が不良であつた。No.9は本発明混和剤No.2
と同一配合モル比のものであるが極限粘度が2.65
dl/gのため凝結遅延はないがスランプ増大効果
が得られなかつた。 No.10は一般式(3)のホモポリマーであり、セメン
ト粒子の分散能が弱くスランプ増大効果が小さ
い。しかも凝結遅延が極めて大きいことが明らか
となり本発明混和剤の配合モル比(%)、および
極限粘度の範囲のみにおいて有効な混和剤となる
ことが認められた。 実施例 2 コンクリートの調合を表−4に示す。
[Table] *Additional amount: Converted to cement solid content Concrete temperature: 25 to 26℃
As is clear from the measurement results in Table 3, the concretes to which admixtures Nos. 1 to 6 of the present invention were added had good slump stability over time and exhibited high fluidity even after 90 minutes. Furthermore, the setting time was the same as additive-free concrete (No. 11), indicating that there was no setting delay. On the other hand, Comparative Example No. 7 has the general formula (1),
The molar ratio (%) of (3) is outside the scope of the present invention,
Slump increasing effect is weak, stability over time is poor,
Furthermore, it was confirmed that the setting time was delayed by more than 2 hours compared to additive-free concrete. In No. 8, the compounding molar ratio (%) of general formula (1) was outside the scope of the present invention, and like No. 7, the slump increasing effect and stability over time were poor. No. 9 is the admixture of the present invention No. 2
It has the same molar ratio as , but the intrinsic viscosity is 2.65.
dl/g, so there was no setting delay, but no slump increasing effect was obtained. No. 10 is a homopolymer of general formula (3), which has a weak dispersion ability for cement particles and a small slump increasing effect. Moreover, it became clear that the setting delay was extremely large, and it was confirmed that the admixture of the present invention is an effective admixture only within the blending molar ratio (%) and intrinsic viscosity range. Example 2 The concrete formulation is shown in Table-4.

【表】 表−4の調合に基づき、生コンクリート工場に
おいて強制練りミキサーで45秒間練り混ぜ(混和
剤は練り混ぜ水に含む)生コンクリートを製造し
た。これをトラツクアジテーターに移し、直後の
スランプ、空気量の測定を行い以後トラツクアジ
テーターを低速(2r.p.m.)で連続アジテーテイ
ングし、経時のスランプ、空気量を測定した。 測定結果を表−5に示す。
[Table] Based on the formulation shown in Table 4, ready-mixed concrete was produced at a ready-mixed concrete factory by mixing for 45 seconds with a forced mixing mixer (the admixture was included in the mixing water). This was transferred to a track agitator, and the slump and air amount immediately after were measured.Then, the track agitator was continuously agitated at a low speed (2 rpm) to measure the slump and air amount over time. The measurement results are shown in Table-5.

【表】 無添加コンクリートの単位水量
コンクリート温度:28〜30℃
表−5から明らかなように通常のAEコンクリ
ート(No.13)、AE減水コンクリート(No.14)は90
分後スランプ16cm以上と経時安定性は見られるが
減水率は各々6.9%、11.9%と小さい。 また比較例No.15、No.16は本発明範囲外の重合物
(混和剤)であり、いずれもスランプの経時安定
性に欠ける。 一方本発明No.17、No.18は単位水量の多い無添加
コンクリートと同等の良好なスランプ経時安定性
と共に減水率が14.9%、18.8%のコンクリートが
得られ、従来の生コンクリートでは得られなかつ
たスランプの安定性と高い減水率、すなわち高品
質の生コンクリートが得られることが確認され
た。 実施例 3 本発明の添加剤と市販の高性能減水剤との併用
によるスランプの経時変化と圧縮強度(JIS
A1108による)の測定を実施した。 コンクリートの調合を表−6に、測定結果を表
−7に示す。
[Table] Unit water volume of additive-free concrete Concrete temperature: 28 to 30℃
As is clear from Table 5, normal AE concrete (No. 13) and AE water-reduced concrete (No. 14) are 90
Although stability over time can be seen with a slump of 16 cm or more after minutes, the water loss rate is small at 6.9% and 11.9%, respectively. Moreover, Comparative Examples No. 15 and No. 16 are polymers (admixtures) outside the scope of the present invention, and both lack slump stability over time. On the other hand, the present invention No. 17 and No. 18 have good slump stability over time equivalent to additive-free concrete with a large unit water volume, and concrete with a water reduction rate of 14.9% and 18.8%, which cannot be obtained with conventional ready-mixed concrete. It was confirmed that slump stability and high water reduction rate, that is, high quality ready-mixed concrete could be obtained. Example 3 Changes in slump over time and compressive strength (JIS
A1108) measurements were carried out. The concrete formulation is shown in Table 6, and the measurement results are shown in Table 7.

【表】 使用材料は実施例1表−2に同じ
練り混ぜ方法は実施例2に準じた。
[Table] The materials used were the same as those in Table 2 of Example 1. The mixing method was the same as in Example 2.

【表】 測定結果から明らかなように、本発明No.19、20
は市販の高性能減水剤と併用することによつても
安定した経時スランプを示すことが判る。一方、
比較例No.21は本発明外の混和剤との併用であり、
No.22は高性能減水剤単独添加のものである。No.21
はスランプの安定性、圧縮強度共に劣り、No.22は
強度面では問題はないがスランプの経時低下が著
しい。 このように本発明混和剤は低水セメント比にお
けるコンクリート、いわゆる高強度コンクリート
において安定した流動性を保持することができ、
コンクリートの二次製品あるいは生コンクリート
工場で現場打ち高強度コンクリートの製造が可能
になる。
[Table] As is clear from the measurement results, invention Nos. 19 and 20
It can be seen that it shows a stable slump over time even when used in combination with a commercially available high performance water reducing agent. on the other hand,
Comparative Example No. 21 is the combination with an admixture other than the present invention,
No. 22 is the one that only contains a high-performance water reducer. No.21
No. 22 is inferior in both slump stability and compressive strength, and No. 22 has no problems in terms of strength, but the slump deteriorates significantly over time. In this way, the admixture of the present invention can maintain stable fluidity in concrete with a low water-cement ratio, so-called high-strength concrete.
It becomes possible to produce high-strength concrete as a secondary concrete product or cast-in-place at a ready-mixed concrete factory.

Claims (1)

【特許請求の範囲】 1 一般式、 (ただし、式中R1はHまたは低級アルキル基、
R2は炭素数1〜4の直鎖または分枝状アルキレ
ン基、XはHまたはアルカリ金属またはNH4
たは有機塩基を表す)で示される化合物100〜15
モル%、 一般式、 (ただし、式中R3はHまたは低級アルキル基、
AはHまたは−CH2OHを表す)で示される化合
物を0〜85モル%、 一般式、 (ただし、式中R4はHまたは低級アルキル基、
YはHまたはアルカリ金属またはNH4または有
機塩基を表す)で示される化合物0〜85モル% を重合させて得られる極限粘度(1N NaCl水溶
液の30℃における)が0.05〜2.0dl/gを有する
水溶性重合体を必須の構成成分として含有するこ
とを特徴とする水硬性セメント混和剤。
[Claims] 1 General formula, (However, in the formula, R 1 is H or a lower alkyl group,
Compounds 100 to 15 where R 2 is a linear or branched alkylene group having 1 to 4 carbon atoms, and X is H, an alkali metal, NH 4 or an organic base
Mol%, general formula, (However, in the formula, R 3 is H or a lower alkyl group,
A represents H or -CH2OH ) 0 to 85 mol% of the compound represented by the general formula, (However, in the formula, R 4 is H or a lower alkyl group,
Y represents H or an alkali metal or NH4 or an organic base) having an intrinsic viscosity (at 30°C of a 1N NaCl aqueous solution) of 0.05 to 2.0 dl/g obtained by polymerizing 0 to 85 mol% of a compound represented by A hydraulic cement admixture characterized by containing a water-soluble polymer as an essential component.
JP6619384A 1984-04-03 1984-04-03 Hydraulic cement admixing agent Granted JPS60210554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6619384A JPS60210554A (en) 1984-04-03 1984-04-03 Hydraulic cement admixing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6619384A JPS60210554A (en) 1984-04-03 1984-04-03 Hydraulic cement admixing agent

Publications (2)

Publication Number Publication Date
JPS60210554A JPS60210554A (en) 1985-10-23
JPH0155210B2 true JPH0155210B2 (en) 1989-11-22

Family

ID=13308761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6619384A Granted JPS60210554A (en) 1984-04-03 1984-04-03 Hydraulic cement admixing agent

Country Status (1)

Country Link
JP (1) JPS60210554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654455A1 (en) * 1993-11-24 1995-05-24 MITSUI TOATSU CHEMICALS, Inc. Admixture for hydraulic cement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260453A (en) * 1984-06-05 1985-12-23 第一工業製薬株式会社 Admixing agent for underwater concrete
JPH0688819B2 (en) * 1985-03-12 1994-11-09 日本ゼオン株式会社 Admixture for cement
JP2514202B2 (en) * 1987-05-26 1996-07-10 株式会社日本触媒 Cement complex

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654455A1 (en) * 1993-11-24 1995-05-24 MITSUI TOATSU CHEMICALS, Inc. Admixture for hydraulic cement
US5489626A (en) * 1993-11-24 1996-02-06 Mitsui Toatsu Chemicals, Inc. Admixture for hydraulic cement

Also Published As

Publication number Publication date
JPS60210554A (en) 1985-10-23

Similar Documents

Publication Publication Date Title
JP2010059045A (en) Water-reducing agent for hydraulic composition
JPS60161365A (en) Cement dispersant
JPH0155210B2 (en)
JPH0952749A (en) Admixture for high flowability concrete and concrete material containing the same
JPS60161363A (en) Cement dispersant
JPH0558696A (en) Additive for cement and production of concrete using the same
JP4709359B2 (en) Hydraulic composition
JPH0292852A (en) Cement dispersant
JPH0240623B2 (en)
JPH07126051A (en) Production of cement having high fluidity
JPH09241055A (en) Cement additive
JP2617903B2 (en) Cement dispersant
JP3172747B2 (en) Cement admixture
JPS6218507B2 (en)
JP3172748B2 (en) Cement admixture
JPH0216260B2 (en)
JP2722387B2 (en) Cement dispersant
JPS616163A (en) Method of decreasing fluidity reduction of cement composition
JPS6224371B2 (en)
JPH04349160A (en) Cement admixture
JPS6328866B2 (en)
JPH03257053A (en) Cement dispersant
JPH0578156A (en) Cement admixture
JPH0617259B2 (en) Slump loss reducing admixture and composition using the same
JPH06279085A (en) Cement admixture