JPH0154561B2 - - Google Patents
Info
- Publication number
- JPH0154561B2 JPH0154561B2 JP18830683A JP18830683A JPH0154561B2 JP H0154561 B2 JPH0154561 B2 JP H0154561B2 JP 18830683 A JP18830683 A JP 18830683A JP 18830683 A JP18830683 A JP 18830683A JP H0154561 B2 JPH0154561 B2 JP H0154561B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- valve
- circuit
- operation command
- pressure difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 25
- 238000006073 displacement reaction Methods 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 claims 1
- 238000011010 flushing procedure Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Landscapes
- Fluid-Pressure Circuits (AREA)
- Control Of Fluid Gearings (AREA)
Description
【発明の詳細な説明】
本発明は、片ロツド油圧シリンダや油圧モータ
などの油圧アクチユエータを閉回路により駆動す
る油圧アクチユエータの閉回路駆動装置の改良、
特にフラツシング機能を有する開閉弁(主回路の
油の一部を低圧側主回路よりタンクへ排出させる
開閉弁)の改良に関し、油圧シヨベルなどに好適
なものである。DETAILED DESCRIPTION OF THE INVENTION The present invention is an improvement of a closed-circuit drive device for a hydraulic actuator that drives a hydraulic actuator such as a single-rod hydraulic cylinder or a hydraulic motor in a closed circuit;
In particular, it is suitable for hydraulic excavators, etc., with regard to improvements in on-off valves with a flushing function (on-off valves that discharge part of the oil in the main circuit from the low-pressure side main circuit to a tank).
第1図は従来の片ロツド油圧シリンダの閉回路
駆動装置を示す。可変容量油圧ポンプ1が、油圧
シリンダ2に対して二つの主回路A,Bにより閉
回路に接続される。主回路A,Bと低圧回路Cと
の間にはフラツシング弁3が接続され、フラツシ
ング弁3は主回路A,Bの圧力差に応じて動作す
る。即ち、圧力差がない場合には、フラツシング
弁3は中立位置にあつて、主回路A,Bの両方を
低圧回路から遮断する。主回路A又はBが高圧側
になると、フラツシング弁3は低圧側の主回路B
又はAを低圧回路Cに連通させ、低圧回路Cに設
けられたリリーフ弁4を通して主回路B又はAの
余剰圧油をタンク5に排出させる。低圧側の主回
路B又はAで油が不足すると、タンク5からチエ
ツク弁6又は7を経て油が補給される。 FIG. 1 shows a conventional closed-circuit drive system for a single-rod hydraulic cylinder. A variable displacement hydraulic pump 1 is connected to a hydraulic cylinder 2 in a closed circuit by two main circuits A, B. A flushing valve 3 is connected between the main circuits A, B and the low pressure circuit C, and the flushing valve 3 operates according to the pressure difference between the main circuits A, B. That is, when there is no pressure difference, the flushing valve 3 is in the neutral position, cutting off both the main circuits A and B from the low pressure circuit. When the main circuit A or B becomes the high pressure side, the flushing valve 3
Alternatively, A is connected to a low pressure circuit C, and excess pressure oil in the main circuit B or A is discharged to a tank 5 through a relief valve 4 provided in the low pressure circuit C. When there is a shortage of oil in the main circuit B or A on the low pressure side, oil is supplied from the tank 5 via the check valve 6 or 7.
第1図において、油圧シリンダ2に矢印に示す
右方の外力が加わつている場合に、この外力の作
用する方向に急激に油圧シリンダ2を駆動しよう
とすると、油圧シリンダ2のピストンの動作遅れ
のために主回路Bの圧力が主回路Bの圧力が主回
路Aの圧力より低くなつて、フラツシング弁3が
切り換わり、主回路Bが低圧回路Cに連通され
る。このため、油圧シリンダ2は急激に加速され
る。そして、可変容量油圧ポンプ1からの供給油
量に見合つた速度に達した時に、二つの主回路
A,Bの圧力が平衡するので、フラツシング弁3
は中立位置に復帰し、主回路A,Bは共に低圧回
路Cから遮断される。これによつて、主回路Bに
圧油が閉じめられ、油圧シリンダ2の速度が急変
し、衝撃が発生する。 In Fig. 1, when an external force is applied to the hydraulic cylinder 2 in the right direction indicated by the arrow, if you try to suddenly drive the hydraulic cylinder 2 in the direction in which this external force acts, the piston of the hydraulic cylinder 2 will be delayed in its operation. Therefore, the pressure in the main circuit B becomes lower than the pressure in the main circuit A, the flushing valve 3 is switched, and the main circuit B is communicated with the low pressure circuit C. Therefore, the hydraulic cylinder 2 is rapidly accelerated. Then, when the speed reaches a speed commensurate with the amount of oil supplied from the variable displacement hydraulic pump 1, the pressures in the two main circuits A and B are balanced, so the flushing valve 3
returns to the neutral position, and both main circuits A and B are cut off from low voltage circuit C. As a result, pressure oil is closed in the main circuit B, the speed of the hydraulic cylinder 2 suddenly changes, and an impact is generated.
本願出願人は、特願昭56−1614号(特開昭57−
116913号)によつて、フラツシング弁を中立位置
で主回路A,Bのいずれか一方と低圧回路Cとを
連通させる構造にし、それによつて異常な閉じ込
み圧力を防止する発明を提案しているが、フラツ
シング弁の切り換わり及び油圧シリンダの急激な
加速は、解決されていない。これは、フラツシン
グ弁3が主回路A,Bの圧力差によつてのみ切り
換えられるところに起因する。 The applicant of this application is Japanese Patent Application No. 56-1614
No. 116913) proposes an invention in which a flushing valve is structured to communicate one of main circuits A and B with low pressure circuit C in a neutral position, thereby preventing abnormal confinement pressure. However, switching of the flushing valve and sudden acceleration of the hydraulic cylinder have not been solved. This is due to the fact that the flushing valve 3 is switched only by the pressure difference between the main circuits A and B.
また、フラツシング弁が主回路A,Bの圧力差
によつてのみ切り換えられることは、油圧モータ
の閉回路駆動装置においても別の問題をひき起こ
している。第2図は従来の油圧モータの閉回路駆
動装置を示す。8は油圧モータ、9はチヤージポ
ンプ、10はチヤージ用のリリーフ弁である。 Further, the fact that the flushing valve is switched only by the pressure difference between the main circuits A and B causes another problem in a closed circuit drive system for a hydraulic motor. FIG. 2 shows a conventional closed circuit drive system for a hydraulic motor. 8 is a hydraulic motor, 9 is a charge pump, and 10 is a charge relief valve.
第2図において、油圧モータ8が、例えば外力
によつて駆動され、この時、可変容量油圧ポンプ
1の吐出し方向が主回路B側であるとすると、主
回路Aが高圧側となるので、フラツシング弁3は
主回路Bを低圧回路Cに連通させる。ここで、可
変容量油圧ポンプ1の吐出しポート及び吸込みポ
ートとフラツシング弁3との間の圧力損失が、配
管が長いとか、間に別の弁が挿入されているとか
の理由によつて大きい場合には、フラツシング弁
3の付近では主回路Aの圧力が主回路Bより高い
のに対して、可変容量油圧ポンプ1の付近では逆
に主回路Bの圧力が主回路Aより高くなる状況が
生ずる。この場合、可変容量油圧ポンプ1から主
回路Bへ吐き出された圧油は、フラツシング弁3
及びリリーフ弁4を通つてタンク5へ流出し、油
圧モータ8の速度が可変容量油圧ポンプ1の吐出
し流量に見合つた速度より小さくなるという不具
合が生ずる。これによつて生ずる可変容量油圧ポ
ンプ1の吸込みポートへ戻る流量の不足分は、チ
ヤージポンプ9からの圧油によつて補われる。 In FIG. 2, if the hydraulic motor 8 is driven by, for example, an external force and the discharge direction of the variable displacement hydraulic pump 1 is on the main circuit B side, then the main circuit A is on the high pressure side. Flushing valve 3 connects main circuit B to low pressure circuit C. Here, if the pressure loss between the discharge port and suction port of the variable displacement hydraulic pump 1 and the flushing valve 3 is large because the piping is long or another valve is inserted between them. In this case, a situation occurs in which the pressure in main circuit A is higher than that in main circuit B near the flushing valve 3, whereas the pressure in main circuit B is higher than that in main circuit A near the variable displacement hydraulic pump 1. . In this case, the pressure oil discharged from the variable displacement hydraulic pump 1 to the main circuit B is transferred to the flushing valve 3.
This causes the problem that the speed of the hydraulic motor 8 becomes smaller than the speed commensurate with the discharge flow rate of the variable displacement hydraulic pump 1. The resulting shortage in the flow rate returned to the suction port of the variable displacement hydraulic pump 1 is compensated for by the pressure oil from the charge pump 9.
更にこの状態から、外力が小さくなるか、或い
は油圧モータ8の速度低下によりフラツシング弁
3の近傍の主回路A,B間圧力差が、フラツシン
グ弁3の切換設定圧力より小さくなつた時、フラ
ツシング弁3が中立位置に復帰し、それまでタン
ク5へ流出していた可変容量油圧ポンプ1からの
圧油の流れが急激に閉止される。したがつて、主
回路Bに高圧が発生し、油圧モータ8が急加速さ
れる。この現象は、上記の場合典型的に発生する
が、主回路A,Bの圧力損失が非常に大きい場合
には、油圧モータ8により外部負荷、特に慣性負
荷を駆動する通常時にも発生する。このような不
具合は操作性を著しく損なう。 Furthermore, from this state, when the pressure difference between the main circuits A and B near the flushing valve 3 becomes smaller than the switching setting pressure of the flushing valve 3 due to the external force becoming smaller or the speed of the hydraulic motor 8 decreasing, the flushing valve 3 returns to the neutral position, and the flow of pressure oil from the variable displacement hydraulic pump 1, which had been flowing into the tank 5, is abruptly stopped. Therefore, high pressure is generated in the main circuit B, and the hydraulic motor 8 is rapidly accelerated. This phenomenon typically occurs in the above case, but if the pressure loss in the main circuits A and B is very large, it also occurs during normal operation when the hydraulic motor 8 drives an external load, especially an inertial load. Such defects significantly impair operability.
この問題を解決するには、フラツシング弁3を
可変容量油圧ポンプ1の付近に配置すればよい
が、別の問題が生ずる。即ち、低圧側の主回路か
らフラツシング弁3によつて低圧回路Cへ分流さ
れていた流量が、圧力損失を生じている主回路の
部分にも流れるため、この部分を大流量が流れる
ことになり、動力損失が大きくなるうえに、可変
容量油圧ポンプ1を駆動する原動機の最大出力を
越える場合には、油圧モータ8の速度を低下させ
ざるを得ない欠点が生ずる。 This problem can be solved by arranging the flushing valve 3 near the variable displacement hydraulic pump 1, but another problem arises. In other words, the flow rate that was diverted from the low-pressure side main circuit to the low-pressure circuit C by the flushing valve 3 also flows to the part of the main circuit where pressure loss is occurring, so a large flow rate flows through this part. In addition, the power loss becomes large, and if the maximum output of the prime mover that drives the variable displacement hydraulic pump 1 is exceeded, the speed of the hydraulic motor 8 must be reduced.
また、レバー操作量すなわちアクチユエータ駆
動流量が小さく、且つ外力も小さい場合、主回路
A,Bの圧力差がフラツシング弁3の切換設定圧
力の上下を変動し、これに伴つて、フラツシング
弁3がひんぱんに切換わるハンチング現象を発生
する不具合がある。 Furthermore, when the lever operation amount, that is, the actuator drive flow rate is small, and the external force is also small, the pressure difference between the main circuits A and B will fluctuate above and below the switching setting pressure of the flushing valve 3, and accordingly, the flushing valve 3 will be activated frequently. There is a problem that causes a hunting phenomenon.
以上のように、主回路A,B間の圧力差でのみ
主回路A,Bと低圧回路Cとの接続を切り換える
と種々の不具合が発生する。 As described above, if the connection between the main circuits A and B and the low voltage circuit C is switched only based on the pressure difference between the main circuits A and B, various problems occur.
本発明の目的は、フラツシング機能を有する開
閉弁が望ましくない状態で切り換わるために発生
する不具合を防止することができ、操作性を向上
させることができる油圧アクチユエータの閉回路
駆動装置を提供することである。 An object of the present invention is to provide a closed circuit drive device for a hydraulic actuator that can prevent problems caused by undesirable switching of an on-off valve having a flushing function and improve operability. It is.
この目的を達成するために、本発明は、二つの
主回路の圧力差を検出する圧力差検出手段と、油
圧アクチユエータの操作指令を検出する操作指令
検出手段と、前記圧力差検出手段により検出され
た前記圧力差と前記操作指令検出手段により検出
された前記操作指令の両方に基づいて、開閉弁を
制御する制御手段とを設け、以て、開閉弁の制御
入力条件として油圧アクチユエータの操作指令を
加えるようにしたことを特徴とする。 In order to achieve this object, the present invention provides a pressure difference detection means for detecting a pressure difference between two main circuits, an operation command detection means for detecting an operation command for a hydraulic actuator, and a pressure difference detection means for detecting a pressure difference detected by the pressure difference detection means. control means for controlling the on-off valve based on both the pressure difference detected by the operation command detection means and the operation command detected by the operation command detection means; It is characterized by adding:
以下、本発明を図示の実施例に基づいて詳細に
説明する。 Hereinafter, the present invention will be explained in detail based on illustrated embodiments.
第3図は本発明の一実施例である片ロツドの油
圧シリンダの閉回路駆動装置を示す。第1図及び
第2図と同様の部分は同一符号にて示す。開閉弁
11,12はポペツト弁タイプのもので、ポペツ
ト11a,12a、ばね11b,12b及びパイ
ロツト受圧室11c,12cをそれぞれ有し、主
回路A,Bと低圧回路Cとの間の接続を開閉す
る。切換弁13,14は開閉弁11,12のパイ
ロツト受圧室11c,12cを主回路A,Bとド
レンとに切り換えるものである。主回路A,Bの
圧力を検出する圧力検出器15,16は、検出信
号PA,PBを制御回路17へ出力する。制御回路
17は、検出信号PA,PBと操作レバー18から
の操作指令信号Xとに基づいて演算し、切換弁1
3,14及びレギユレータ19へ指令信号を出力
する。低圧回路Cのリリーフ弁4は、チヤージ用
のリリーフ弁を兼用する。 FIG. 3 shows a closed circuit drive system for a single-rod hydraulic cylinder, which is an embodiment of the present invention. Components similar to those in FIGS. 1 and 2 are designated by the same reference numerals. The on-off valves 11 and 12 are of the poppet valve type and have poppets 11a and 12a, springs 11b and 12b, and pilot pressure receiving chambers 11c and 12c, respectively, and open and close the connection between the main circuits A and B and the low pressure circuit C. do. The switching valves 13 and 14 switch the pilot pressure receiving chambers 11c and 12c of the on-off valves 11 and 12 between the main circuits A and B and the drain. Pressure detectors 15 and 16 that detect pressures in main circuits A and B output detection signals P A and P B to control circuit 17 . The control circuit 17 performs calculations based on the detection signals P A and P B and the operation command signal X from the operation lever 18, and operates the switching valve 1.
3, 14 and the regulator 19. The relief valve 4 of the low pressure circuit C also serves as a charge relief valve.
次に動作を第4図の制御回路17のフローチヤ
ートを参照して説明する。 Next, the operation will be explained with reference to the flowchart of the control circuit 17 shown in FIG.
ステツプ20で信号PA,PB,Xを読み込み、
油圧シリンダ2が停止状態で、且つ主回路A,B
の圧力差が所定値以下の場合には、ステツプ21
では、操作指令信号Xが零であるから、NOの判
定をする。ステツプ22では、圧力差|PA−PB
|は所定値より小さいので、NOの判定をする。
これによつて、ステツプ26により制御回路17
は切換弁13,14の両方をオフにする。したが
つて、切換弁13,14は開閉弁11,12のパ
イロツト受圧室11c,12cを主回路A,Bに
接続し、開閉弁13,14は共に閉止される。そ
して、ステツプ28では吐出量零の指令信号をレ
ギユレータ19へ出力する。 In step 20, read the signals P A , P B , and X.
Hydraulic cylinder 2 is stopped and main circuits A and B
If the pressure difference is less than the predetermined value, step 21
Now, since the operation command signal X is zero, the determination is NO. In step 22, the pressure difference |P A −P B
Since | is smaller than the predetermined value, the determination is NO.
As a result, in step 26, the control circuit 17
turns off both switching valves 13 and 14. Therefore, the switching valves 13 and 14 connect the pilot pressure receiving chambers 11c and 12c of the on-off valves 11 and 12 to the main circuits A and B, and both on-off valves 13 and 14 are closed. Then, in step 28, a command signal indicating a discharge amount of zero is output to the regulator 19.
操作レバー18が操作され、油圧シリンダ2の
作動方向及び速度を設定する操作指令信号Xが、
制御回路17に入力すると、操作指令信号Xの変
化速度が所定値より小さい場合と、それが所定値
より大きくても、ステツプ27で、可変容量油圧
ポンプ1の吐出し方向を高圧側であると判定した
場合のいずれであつても、ステツプ22により圧
力差|PA−PB|を判定する。油圧シリンダ2の
通常の起動時、或いは作動中に、主回路A,B間
に圧力差が発生すれば、ステツプ23によりPA
>PBを判定し、主回路Aが高圧側の場合には、
ステツプ24で、切換弁13をオフに、切換弁1
4をオンにし、開閉弁11を閉止させ、開閉弁1
2を開通させる。これによつて低圧側の主回路B
が低圧回路Cに連通され、余剰圧油がタンク5に
排出される。ステツプ23で主回路Bの圧力が高
いと判定した場合には、ステツプ25で、切換弁
13をオンに、切換弁14をオフに、それぞれ制
御し、開閉弁11を開通させ、開閉弁12を閉止
させる。その後、ステツプ28で、操作指令信号
Xに応じた指令信号をレギユレータ19へ出力
し、可変容量油圧ポンプ1の吐出し方向及び吐出
し流量が制御される。 When the operating lever 18 is operated, the operating command signal X that sets the operating direction and speed of the hydraulic cylinder 2 is
When inputted to the control circuit 17, the discharge direction of the variable displacement hydraulic pump 1 is set to the high pressure side in step 27 when the rate of change of the operation command signal In either case, the pressure difference |P A −P B | is determined in step 22. If a pressure difference occurs between the main circuits A and B during normal startup or operation of the hydraulic cylinder 2, step 23 turns P A
>P B is determined, and if main circuit A is on the high voltage side,
In step 24, switch valve 13 is turned off and switch valve 1 is turned off.
4 is turned on, the on-off valve 11 is closed, and the on-off valve 1 is turned on.
Open 2. As a result, the main circuit B on the low voltage side
is connected to the low pressure circuit C, and excess pressure oil is discharged to the tank 5. If it is determined in step 23 that the pressure in the main circuit B is high, in step 25, the switching valve 13 is turned on, the switching valve 14 is controlled to be turned off, the on-off valve 11 is opened, and the on-off valve 12 is turned on. Close it. Thereafter, in step 28, a command signal corresponding to the operation command signal X is output to the regulator 19, and the discharge direction and discharge flow rate of the variable displacement hydraulic pump 1 are controlled.
油圧シリンダ2に外力が加えられて、主回路B
が高圧側になつている状態で、外力が作用する方
向と同じ方向に油圧シリンダ2を駆動しようとし
て、操作レバー18を急激に操作した場合には、
ステツプ21で、操作指令信号Xの変化速度が所
定値より大となることによりYESと判定し、ス
テツプ27で、可変容量油圧ポンプ1の吐出し方
向が主回路A側であるので、NOと判定し、切換
弁13,14を切り換えずに、そのままの状態を
保持させる。即ち、レバー操作前は、主回路Bが
高圧側となつていたので、切換弁13がオン、切
換弁14がオフ、となつており、その状態が保持
される。したがつて、主回路Aが急激に高圧側に
なつても、主回路Aが開閉弁11の開通によつて
低圧回路Cに連通された状態が保持されるので油
圧シリンダ2の急加速が防止される。 When an external force is applied to the hydraulic cylinder 2, the main circuit B
If the operating lever 18 is suddenly operated in an attempt to drive the hydraulic cylinder 2 in the same direction as the direction in which an external force is applied while the hydraulic cylinder 2 is on the high pressure side,
In step 21, it is determined as YES because the rate of change of the operation command signal However, the switching valves 13 and 14 are not switched and are kept in the same state. That is, before the lever was operated, the main circuit B was on the high pressure side, so the switching valve 13 was on and the switching valve 14 was off, and this state is maintained. Therefore, even if the main circuit A suddenly becomes high-pressure, the state in which the main circuit A is connected to the low-pressure circuit C by opening the on-off valve 11 is maintained, thereby preventing sudden acceleration of the hydraulic cylinder 2. be done.
操作レバー18の操作量を略一定にしていて、
油圧シリンダ2にかかる負荷の変動により主回路
A,Bの圧力の大小関係が変わつた場合には、ス
テツプ22〜26の動作を行うので、従来のフラ
ツシング弁と同等の機能を果たす。 The amount of operation of the operation lever 18 is kept approximately constant,
When the magnitude relationship between the pressures in the main circuits A and B changes due to a change in the load applied to the hydraulic cylinder 2, the operations of steps 22 to 26 are performed, so that the same function as a conventional flushing valve is achieved.
本実施例によれば、主回路A,Bの圧力差の他
に、操作指令信号Xの変化速度及び吐出し方向を
見ているので、油圧シリンダ2の速度の急変を防
ぎ、操作性を向上させることができる。 According to this embodiment, in addition to the pressure difference between the main circuits A and B, the change rate and discharge direction of the operation command signal X are checked, so sudden changes in the speed of the hydraulic cylinder 2 are prevented and operability is improved. can be done.
なお、本発明の技術的範囲に属するものではな
いが、エンジントラブルなどの非常時に、制御回
路17への非常入力によつて切換弁13,14の
いずれか一方、或いは両方をオンにするような制
御回路17の構成にすれば、非常時に油圧シリン
ダ2を自由降下させることができ、安全性を高め
ることができる。 Although not within the technical scope of the present invention, it is possible to turn on one or both of the switching valves 13 and 14 by an emergency input to the control circuit 17 in the event of an emergency such as engine trouble. With the configuration of the control circuit 17, the hydraulic cylinder 2 can be freely lowered in an emergency, and safety can be improved.
第3図では、切換弁13,14を制御回路17
が制御しているが、第5図に示されるように、制
御回路17が電磁弁タイプの開閉弁29,30を
直接制御するようにしてもよい。通常、この場合
にはチヤージ用のチエツク弁6,7が必要とな
る。 In FIG. 3, the switching valves 13 and 14 are connected to the control circuit 17.
However, as shown in FIG. 5, the control circuit 17 may directly control the solenoid valve type on-off valves 29 and 30. Normally, in this case, check valves 6 and 7 for charging are required.
第6図は本発明の他の実施例である油圧モータ
の閉回路駆動装置を示す。第2図及び第5図と同
様な部分は同一符号にて示す。 FIG. 6 shows a closed circuit drive device for a hydraulic motor, which is another embodiment of the present invention. Components similar to those in FIGS. 2 and 5 are designated by the same reference numerals.
本実施例では、開閉弁29,30の開弁設定圧
力を従来の切換設定圧力のように常に一定にする
のではなく、レバー操作量及び主回路A,Bの圧
力損失を考慮して変える。その動作について、第
7図の開弁設定圧力及び第8図の制御回路17の
フローチヤートを参照にして説明する。31〜4
2はステツプを示す。 In this embodiment, the opening set pressures of the on-off valves 29 and 30 are not always kept constant like the conventional switching set pressures, but are changed in consideration of the lever operation amount and the pressure loss of the main circuits A and B. The operation will be explained with reference to the valve opening setting pressure shown in FIG. 7 and the flowchart of the control circuit 17 shown in FIG. 31-4
2 indicates a step.
制御回路17は、ステツプ31にて操作指令信
号X及び検出信号PA,PBを読み込む。操作指令
信号Xの絶対値の大きさが所定値|XO|より小
さい時には、ステツプ32からステツプ41に移
行し、開閉弁29,30をいずれも閉止させ、そ
の後、レギユレータ19に操作指令信号Xに応じ
た指令信号を出力する。この状態は、主回路A,
Bの圧力差ΔPの値の如何にかかわらず、制御さ
れるので、レバー操作量が小さく、且つ外力も小
さい場合に生ずるハンチング現象を防ぐことがで
きる。 The control circuit 17 reads the operation command signal X and the detection signals P A and P B in step 31 . When the magnitude of the absolute value of the operation command signal X is smaller than the predetermined value | Outputs a command signal according to the In this state, main circuit A,
Since the control is performed regardless of the value of the pressure difference ΔP of B, the hunting phenomenon that occurs when the amount of lever operation is small and the external force is also small can be prevented.
油圧モータ8に外力が作用しておらず、油圧モ
ータ8の付近の高圧側主回路と、可変容量油圧ポ
ンプ1の付近の高圧側主回路とが一致している場
合には、例えば、主回路Aが高圧側であるとする
と、制御回路17は、ステツプ34でYESの判
定をし、ステツプ35で開弁設定圧力ΔP1(X)
をメモリから読み出す。主回路Aが高圧側である
時の開閉弁30の開弁設定圧力ΔP1(X)と、主
回路Bが高圧側である時の開閉弁29の開弁設定
圧力ΔP2(X)とが、第7図に示されるように、
吐出し方向及び吐出量に応じて予め定められ、メ
モリに記憶されている。 When no external force is acting on the hydraulic motor 8 and the high-pressure side main circuit near the hydraulic motor 8 and the high-pressure side main circuit near the variable displacement hydraulic pump 1 match, for example, the main circuit Assuming that A is on the high pressure side, the control circuit 17 makes a YES determination in step 34 and sets the valve opening set pressure ΔP 1 (X) in step 35.
Read from memory. The opening setting pressure ΔP 1 (X) of the on-off valve 30 when the main circuit A is on the high pressure side and the opening setting pressure ΔP 2 (X) of the on-off valve 29 when the main circuit B is on the high pressure side are , as shown in Figure 7,
It is determined in advance according to the ejection direction and ejection amount and is stored in the memory.
主回路Aが高圧側で、且つ吐出し側である場合
には、開弁設定圧力ΔP1(X)は常に一定であり、
ステツプ36で、圧力差ΔPが開弁設定圧力ΔP1
(X)より大きいと判定すると、ステツプ37で、
開閉弁30を開通させる。これによつて低圧側の
主回路Bが低圧回路Cに連通され、従来のフラツ
シング弁と同様の機能を果たす。 When the main circuit A is on the high pressure side and on the discharge side, the valve opening setting pressure ΔP 1 (X) is always constant,
In step 36, the pressure difference ΔP becomes the valve opening set pressure ΔP 1
If it is determined that it is larger than (X), in step 37,
The on-off valve 30 is opened. As a result, the main circuit B on the low pressure side is communicated with the low pressure circuit C, and performs the same function as a conventional flushing valve.
油圧モータ8に外力が作用していて、主回路B
が吐出側であるので、油圧モータ8付近の主回路
Aが高圧側であるとした場合には、ステツプ35
で、開弁設定圧力ΔP1(X)を読み出すと、その
値は第7図の第二象限に示されるように操作指令
信号Xの値が負方向に大きくなるに従つて大きく
なる。即ち、主回路Bを流れる流量が大きくな
り、主回路Bの圧力損失もそれに伴つて大きくな
るので、この圧力損失の増加分を加算して、ΔP1
(X)としている。この圧力損失補正分を第7図
において点線にて示す。主回路内に発生する圧力
損失は、そこを流れる圧油の流量、即ち油圧ポン
プの吐出容量(ポンプ入力軸回転数が略一定の場
合)に対応して定まるのである。したがつて、ス
テツプ36で、圧力差ΔPと開弁設定圧力ΔP1
(X)とを比較することは、主回路Bに圧力損失
がない場合に主回路A,Bの圧力を比較している
のと同じことになる。つまり、可変容量油圧ポン
プ1の付近では主回路Bの圧力が主回路Aの圧力
より高いのに、圧力損失のために油圧モータ8の
付近では主回路Aの圧力が主回路Bより高い場合
には、圧力差△Pは開弁設定圧力△P1より小さ
くなり、開閉弁30が閉状態に保持される。そし
て、外力が更に大きくなつて、油圧モータ8の付
近でも主回路Aの圧力が主回路Bより高くなると
(油圧モータ8がポンプ作用を行い、可変容量油
圧ポンプ1がモータ作用を行う)、圧力差△Pは
開弁設定圧力△P1より大きくなり、開閉弁30
が開状態に制御される。これにより、第2図の説
明中に述べた、油圧モータ8の速度が吐出し流量
に見合つた速度より小さくなる不具合や、更にそ
の後、急加速される不具合を解決することができ
る。 An external force is acting on the hydraulic motor 8, and the main circuit B
is on the discharge side, so if the main circuit A near the hydraulic motor 8 is on the high pressure side, step 35
When the valve opening set pressure ΔP 1 (X) is read out, the value increases as the value of the operation command signal X increases in the negative direction, as shown in the second quadrant of FIG. In other words, the flow rate flowing through the main circuit B increases, and the pressure loss in the main circuit B also increases accordingly, so by adding up this increase in pressure loss, ΔP 1
(X). This pressure loss correction is shown by a dotted line in FIG. The pressure loss generated in the main circuit is determined depending on the flow rate of the pressure oil flowing therethrough, that is, the discharge capacity of the hydraulic pump (when the pump input shaft rotation speed is approximately constant). Therefore, in step 36, the pressure difference ΔP and the valve opening set pressure ΔP 1
(X) is the same as comparing the pressures in main circuits A and B when there is no pressure loss in main circuit B. In other words, the pressure in main circuit B is higher than the pressure in main circuit A near the variable displacement hydraulic pump 1, but the pressure in main circuit A is higher than the pressure in main circuit B near the hydraulic motor 8 due to pressure loss. In this case, the pressure difference ΔP becomes smaller than the valve opening set pressure ΔP 1 , and the on-off valve 30 is maintained in the closed state. Then, as the external force becomes larger and the pressure in the main circuit A becomes higher than the main circuit B even near the hydraulic motor 8 (the hydraulic motor 8 performs a pump action and the variable displacement hydraulic pump 1 performs a motor action), the pressure The difference △P becomes larger than the valve opening setting pressure △P 1 , and the opening/closing valve 30
is controlled to be open. Thereby, it is possible to solve the problem that the speed of the hydraulic motor 8 becomes smaller than the speed commensurate with the discharge flow rate, as described in the explanation of FIG. 2, and the problem that the hydraulic motor 8 is suddenly accelerated thereafter.
本実施例によれば、主回路A,Bの圧力差の他
に、操作指令信号Xの大きさ及び吐出し方向、そ
の大きさに伴い変化する主回路A,Bの圧力損失
を見ているので、主回路A,Bの圧力差のハンチ
ング現象や、油圧モータ8の速度低下及びその後
の急加速を防ぎ、操作性を向上させることができ
る。 According to this embodiment, in addition to the pressure difference between the main circuits A and B, the magnitude and discharge direction of the operation command signal X and the pressure loss in the main circuits A and B that change depending on the magnitude are looked at. Therefore, it is possible to prevent a hunting phenomenon due to the pressure difference between the main circuits A and B, a decrease in the speed of the hydraulic motor 8, and a sudden acceleration thereafter, and improve operability.
第6図において、圧力検出器15,16を可変
容量油圧ポンプ1の付近に設ければ、主回路A,
Bの圧力損失分の補正が僅かで済むか、或いは場
合によつては全く無しにすることも可能である。 In FIG. 6, if the pressure detectors 15 and 16 are installed near the variable displacement hydraulic pump 1, the main circuit A,
It is possible to make only a small amount of correction for the pressure loss of B, or in some cases, it may be completely omitted.
図示実施例において、制御回路17が本発明の
制御手段に相当し、制御回路17のステツプ22
(第4図)及びステツプ33(第8図)を行う部
分が圧力検出器15,16と共に圧力差検出手段
に相当し、制御回路17のステツプ21,27
(第4図)及びステツプ35,38(第8図)を
行う部分が操作指令検出手段に相当する。 In the illustrated embodiment, the control circuit 17 corresponds to the control means of the present invention, and the step 22 of the control circuit 17 corresponds to the control means of the present invention.
(FIG. 4) and step 33 (FIG. 8) correspond to the pressure difference detection means together with the pressure detectors 15 and 16.
The portion that performs steps 35 and 38 (FIG. 4) and steps 35 and 38 (FIG. 8) corresponds to the operation command detection means.
なお、圧力検出器15,16の代わりに差圧検
出器を用いることができる。 Note that a differential pressure detector can be used instead of the pressure detectors 15 and 16.
以上説明したように、本発明によれば、二つの
主回路の圧力差を検出する圧力差検出手段と、油
圧アクチユエータの操作指令を検出する操作指令
検出手段と、前記圧力差検出手段により検出され
た前記圧力差と前記操作指令検出手段により検出
された前記操作指令の両方に基づいて、開閉弁を
制御する制御手段とを設け、以て、開閉弁の制御
入力条件として油圧アクチユエータの操作指令を
加えるようにしたから、フラツシング機能を有す
る開閉弁が望ましくない状態で切り換わるために
発生する不具合を防止することができ、操作性を
向上させることができる。 As explained above, according to the present invention, the pressure difference detection means detects the pressure difference between the two main circuits, the operation command detection means detects the operation command of the hydraulic actuator, and the pressure difference detection means detects the pressure difference between the two main circuits. control means for controlling the on-off valve based on both the pressure difference detected by the operation command detection means and the operation command detected by the operation command detection means; By adding this feature, it is possible to prevent problems caused by switching the on-off valve having the flushing function in an undesirable state, and to improve the operability.
第1図は従来の片ロツド油圧シリンダの閉回路
駆動装置の回路図、第2図は従来の油圧モータの
閉回路駆動装置の回路図、第3図は本発明の一実
施例を示す回路図、第4図は本発明の一実施例に
おける制御回路の動作を示すフローチヤート、第
5図は第3図の実施例の変形を示す回路図、第6
図は本発明の他の実施例を示す回路図、第7図は
本発明の他の実施例における開弁設定圧力を示す
図、第8図は本発明の他の実施例における制御回
路の動作を示すフローチヤートである。
1…可変容量油圧ポンプ、2…油圧シリンダ、
4…リリーフ弁、5…タンク、8…油圧モータ、
11,12…開閉弁、13,14…切換弁、1
5,16…圧力検出器、17…制御回路、18…
操作レバー、19…レギユレータ、29,30…
開閉弁、A,B…主回路、C…低圧回路。
Fig. 1 is a circuit diagram of a conventional closed circuit drive device for a single rod hydraulic cylinder, Fig. 2 is a circuit diagram of a conventional closed circuit drive device for a hydraulic motor, and Fig. 3 is a circuit diagram showing an embodiment of the present invention. , FIG. 4 is a flowchart showing the operation of the control circuit in one embodiment of the present invention, FIG. 5 is a circuit diagram showing a modification of the embodiment of FIG. 3, and FIG.
The figure is a circuit diagram showing another embodiment of the present invention, Figure 7 is a diagram showing the valve opening setting pressure in another embodiment of the present invention, and Figure 8 is the operation of the control circuit in another embodiment of the present invention. This is a flowchart showing the following. 1...variable displacement hydraulic pump, 2...hydraulic cylinder,
4...Relief valve, 5...Tank, 8...Hydraulic motor,
11, 12...Opening/closing valve, 13,14...Switching valve, 1
5, 16...Pressure detector, 17...Control circuit, 18...
Operation lever, 19... Regulator, 29, 30...
On-off valve, A, B...main circuit, C...low pressure circuit.
Claims (1)
対して二つの主回路によつて閉回路に接続し、主
回路の油の一部をタンクへ向けて排出する低圧回
路と主回路との間に、該回路間の接続を開閉する
開閉弁を設けた油圧アクチユエータの閉回路駆動
装置において、前記二つの主回路の圧力差を検出
する圧力差検出手段と、前記油圧アクチユエータ
の操作指令を検出する操作指令検出手段と、前記
圧力差検出手段により検出された前記圧力差と前
記操作指令検出手段により検出された前記操作指
令の両方に基づいて、前記開閉弁を制御する制御
手段とを設けたことを特徴とする油圧アクチユエ
ータの閉回路駆動装置。 2 油圧アクチユエータとして片ロツド油圧シリ
ンダを用いた特許請求の範囲第1項記載の油圧ア
クチユエータの閉回路駆動装置であつて、操作指
令検出手段を、操作量の変化速度及び操作方向を
検出するものとし、制御手段を、前記操作指令検
出手段の検出結果に応じて、二つの主回路の圧力
差による開閉弁制御と、該圧力差に無関係な開閉
弁現状保持とに切り換わるものとした油圧アクチ
ユエータの閉回路駆動装置。 3 操作指令検出手段を、操作量及び操作方向を
検出するものとし、制御手段を、前記操作指令検
出手段の検出結果に応じて開閉弁の開弁設定圧力
を変更し、二つの主回路の圧力差による開閉弁制
御を行うものとした特許請求の範囲第1項記載の
油圧アクチユエータの閉回路駆動装置。[Claims] 1. A variable displacement hydraulic pump is connected to a hydraulic actuator in a closed circuit by two main circuits, and a low pressure circuit and a main circuit that discharge part of the oil in the main circuit toward a tank. In a closed circuit drive device for a hydraulic actuator, which is provided with an on-off valve that opens and closes a connection between the circuits, a pressure difference detection means for detecting a pressure difference between the two main circuits, and an operation command for the hydraulic actuator are provided. and a control means for controlling the on-off valve based on both the pressure difference detected by the pressure difference detection means and the operation command detected by the operation command detection means. A closed circuit drive device for a hydraulic actuator. 2. A closed-circuit drive device for a hydraulic actuator according to claim 1, which uses a single-rod hydraulic cylinder as the hydraulic actuator, wherein the operation command detection means detects the speed of change of the operation amount and the operation direction. , a hydraulic actuator in which the control means is configured to switch between on-off valve control based on the pressure difference between the two main circuits and on-off valve maintenance regardless of the pressure difference, depending on the detection result of the operation command detection means; Closed circuit drive. 3. The operation command detection means detects the operation amount and the operation direction, and the control means changes the opening setting pressure of the on-off valve according to the detection result of the operation command detection means, and controls the pressure of the two main circuits. A closed-circuit drive device for a hydraulic actuator according to claim 1, which performs open/close valve control based on a difference.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18830683A JPS6081502A (en) | 1983-10-11 | 1983-10-11 | Driving device of closed circuit of hydraulic actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18830683A JPS6081502A (en) | 1983-10-11 | 1983-10-11 | Driving device of closed circuit of hydraulic actuator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6081502A JPS6081502A (en) | 1985-05-09 |
JPH0154561B2 true JPH0154561B2 (en) | 1989-11-20 |
Family
ID=16221300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18830683A Granted JPS6081502A (en) | 1983-10-11 | 1983-10-11 | Driving device of closed circuit of hydraulic actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6081502A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002004820A1 (en) * | 2000-07-10 | 2002-01-17 | Kobelco Construction Machinery Co., Ltd. | Hydraulic cylinder circuit |
DE10303360A1 (en) * | 2003-01-29 | 2004-08-19 | O & K Orenstein & Koppel Gmbh | Hydraulic system for displacement-controlled linear drives |
US7111458B2 (en) * | 2003-07-11 | 2006-09-26 | Sauer-Danfoss Inc. | Electrical loop flushing system |
US7325398B2 (en) * | 2004-03-05 | 2008-02-05 | Deere & Company | Closed circuit energy recovery system for a work implement |
JP4565871B2 (en) * | 2004-03-29 | 2010-10-20 | 株式会社東晃製作所 | Hydraulic cylinder device |
FR2873175B1 (en) * | 2004-07-16 | 2006-10-20 | Poclain Hydraulics Ind Soc Par | HYDRAULIC CIRCUIT COMPRISING A MULTIFUNCTION SELECTOR |
CN104093995B (en) * | 2012-01-31 | 2016-01-27 | 日立建机株式会社 | Hydraulic pressure closed-loop system |
JP7393250B2 (en) * | 2020-02-28 | 2023-12-06 | カヤバ株式会社 | Fluid pressure drive unit |
-
1983
- 1983-10-11 JP JP18830683A patent/JPS6081502A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6081502A (en) | 1985-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2071195B1 (en) | Hydraulic circuit with load holding valves operated by external pilot pressure | |
JP2005265002A (en) | Hydraulic control circuit of working machine | |
EP0059406A1 (en) | Flushing valve system in closed circuit hydrostatic power transmission | |
US4464898A (en) | Hydraulic power system | |
EP0068197B1 (en) | Locking apparatus of inertial mass drive hydraulic circuit system | |
JPH0154561B2 (en) | ||
US5201803A (en) | Hydraulic system for a vehicle | |
US5285643A (en) | Hydraulic drive system for civil-engineering and construction machine | |
JP3915622B2 (en) | Load holding device for hydraulic actuator circuit | |
JPS63106404A (en) | Hydraulic device for driving inertial body | |
EP1172325A2 (en) | Control device for hydraulic drive winch | |
JP4685542B2 (en) | Hydraulic drive | |
JP2690353B2 (en) | Make-up device for hydraulic circuit using load sensing system | |
JP4344712B2 (en) | Hydraulic drive | |
JPS6314230B2 (en) | ||
US4271749A (en) | Reduced back pressure, anti-cavitation valve system | |
JPH08100805A (en) | Pressure control valve | |
JP2927308B2 (en) | Hydraulic control circuit | |
JP2555499B2 (en) | Hydraulic drive for civil engineering and construction machinery | |
JPH03290532A (en) | Hydraulic drive unit for civil engineering and building equipment | |
JPH0337642B2 (en) | ||
JPH03229003A (en) | Hydraulic motor driving circuit | |
JPS63106405A (en) | Controlling method for hydraulic device for driving inertial body | |
JPH0210321Y2 (en) | ||
JPH0118690Y2 (en) |