JPH0150063B2 - - Google Patents
Info
- Publication number
- JPH0150063B2 JPH0150063B2 JP56012145A JP1214581A JPH0150063B2 JP H0150063 B2 JPH0150063 B2 JP H0150063B2 JP 56012145 A JP56012145 A JP 56012145A JP 1214581 A JP1214581 A JP 1214581A JP H0150063 B2 JPH0150063 B2 JP H0150063B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- titanium oxide
- electrode
- battery
- porous layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011701 zinc Substances 0.000 claims description 27
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 26
- 229910052725 zinc Inorganic materials 0.000 claims description 26
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 16
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 16
- 239000011149 active material Substances 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- -1 zincate ion Chemical class 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- DUCFBDUJLLKKPR-UHFFFAOYSA-N [O--].[Zn++].[Ag+] Chemical compound [O--].[Zn++].[Ag+] DUCFBDUJLLKKPR-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/244—Zinc electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】
本発明は、ニツケル−亜鉛電池や酸化銀−亜鉛
電池などのように、負極活物質として亜鉛を、電
解液としてアルカリ性水溶液を用いる亜鉛アルカ
リ二次電池の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in zinc-alkaline secondary batteries, such as nickel-zinc batteries and silver-zinc oxide batteries, which use zinc as a negative electrode active material and an alkaline aqueous solution as an electrolyte. be.
従来、負極活物質に亜鉛を用いた電池は、エネ
ルギー密度が高くかつ安価である利点を有する反
面、放電時に生成する酸化亜鉛ZnOが、亜鉛酸イ
オンZn(OH)4 2-となつてアルカリ電解液中に溶
解し拡散する結果、充電時の亜鉛の電析が不均一
となり、充放電サイクルの進行とともに極板の形
状変化が起こり、電池容量が減少する不具合、あ
るいは電析する際に亜鉛が針状結晶(デンドライ
ト)となつてセパレータを局部的に破損し、電池
が内部短絡を生じるといつた欠点があつた。これ
を改善するため、亜鉛活物質中に水酸化カルシウ
ムを混合すること等の提案がなされているが、亜
鉛活物質の利用率が低下する欠点もあり、未だ満
足すべき効果が得られていない。 Conventionally, batteries using zinc as the negative electrode active material have the advantages of high energy density and low cost, but on the other hand, zinc oxide ZnO generated during discharge becomes zincate ion Zn(OH) 4 2- and undergoes alkaline electrolysis. As a result of dissolving and diffusing into the liquid, zinc becomes unevenly deposited during charging, causing changes in the shape of the electrode plate as the charge/discharge cycle progresses, resulting in problems such as a decrease in battery capacity, or when zinc is deposited during electrodeposition. The drawback was that they formed into needle-shaped crystals (dendrites) that could locally damage the separator, causing internal short circuits in the battery. In order to improve this, proposals have been made such as mixing calcium hydroxide into the zinc active material, but this has the disadvantage that the utilization rate of the zinc active material decreases, and a satisfactory effect has not yet been obtained. .
本発明は、亜鉛負極の表面に、酸化チタンの多
孔質の層を密着させることにより、亜鉛活物質の
利用率を損うことなく、充放電サイクル寿命が改
善された、亜鉛アルカリ二次電池を提供しようと
するものである。 The present invention provides a zinc-alkaline secondary battery with improved charge/discharge cycle life without impairing the utilization rate of zinc active material by adhering a porous layer of titanium oxide to the surface of a zinc negative electrode. This is what we are trying to provide.
すなわち、微細な酸化チタンから成る多孔質層
を亜鉛極の反応面に配置することにより、亜鉛極
の放電時に生成する亜鉛酸イオンが電解液中に拡
散することなく、酸化チタンの多孔層の中に吸蔵
され固定化されるため、充放電サイクルの進行に
伴なう亜鉛活物質の偏在を生じることがなくなり
電池容量の低下を防ぐことができる。さらに、酸
化チタンはアルカリ電解液中で分解せず機械的強
度が強いので、充電時に生じる亜鉛の針状結晶
(デンドライト)を阻止するバリヤー層としても
有効に作用することに加えて、微細な酸化チタン
の粒子から成る多孔層は、曲りくねつた通路を形
成し亜鉛のデンドライトの成長を抑止するため、
セパレータの破損による内部短絡がなくなり、電
池寿命が著るしく改善される。なお酸化チタンは
アルカリ水溶液中でイオン伝導性を有する性質が
あるため、電池の内部抵抗の増加は極めて小さ
い。 In other words, by placing a porous layer made of fine titanium oxide on the reaction surface of the zinc electrode, the zincate ions generated during discharge of the zinc electrode do not diffuse into the electrolyte and are absorbed into the porous layer of titanium oxide. Since the zinc active material is occluded and immobilized, uneven distribution of the zinc active material as the charge/discharge cycle progresses will not occur, and a decrease in battery capacity can be prevented. Furthermore, since titanium oxide does not decompose in alkaline electrolyte and has strong mechanical strength, it not only acts effectively as a barrier layer to prevent zinc needle crystals (dendrites) that occur during charging, but also acts as a barrier layer to prevent fine oxidation. The porous layer of titanium particles forms a tortuous path and inhibits the growth of zinc dendrites.
Internal short circuits due to separator damage are eliminated, and battery life is significantly improved. Note that since titanium oxide has ionic conductivity in an alkaline aqueous solution, the increase in internal resistance of the battery is extremely small.
以下、一実施例について詳説する。まず、酸化
亜鉛末70重量%、亜鉛末25重量%、フツ素樹脂デ
イスパージヨン5重量%から成る混合物を混練り
したのち、圧延ロールを用いて厚み0.8mmのシー
ト状に圧延した負極活物質を、所定の形状に裁断
し銀の網状集電体を埋込み和紙で包んで亜鉛極と
する。この亜鉛極の表面に平均粒径0.02μの酸化
チタン末80重量%に、フツ素樹脂デイスパージヨ
ン20重量%を加えて混練りしたのち、圧延ロール
により0.3mmに圧延した酸化チタンの多孔シート
を前記の亜鉛極の表面に密着させる。 An example will be explained in detail below. First, a mixture consisting of 70% by weight of zinc oxide powder, 25% by weight of zinc powder, and 5% by weight of fluororesin dispersion was kneaded, and then the negative electrode active material was rolled into a sheet with a thickness of 0.8 mm using a rolling roll. is cut into a predetermined shape, and a silver mesh current collector is embedded and wrapped in Japanese paper to form a zinc electrode. On the surface of this zinc electrode, 80% by weight of titanium oxide powder with an average particle size of 0.02 μm and 20% by weight of fluororesin dispersion were added and kneaded, and the porous sheet of titanium oxide was then rolled to 0.3 mm using a rolling roll. is brought into close contact with the surface of the zinc electrode.
なお、酸化チタンの多孔層を形成する方法は、
酸化チタン末を2重量%のポリビニルアルコール
(PVA)水溶液で練り、スラリー状としたものを
ハケ又はローラーを用いて、前記の亜鉛極の表面
に塗布し、乾燥させたのち所定の厚みにプレスす
る方法でもよい。 The method for forming a porous layer of titanium oxide is as follows:
Knead titanium oxide powder with a 2% by weight polyvinyl alcohol (PVA) aqueous solution, make a slurry, and apply it to the surface of the zinc electrode using a brush or roller, dry it, and then press it to a predetermined thickness. It may be a method.
この酸化チタンの多孔層を表面に密着させた亜
鉛極と、ニツケル極にナイロン不織布とポリプロ
ピレン製微孔膜(商品名:ジユラガード)のセパ
レータを巻いたものとを組み合わせ、比重1.30の
水酸化カリウム水溶液から成る電解液を遊離の液
がない程度の量注液し、電池とした。第1図は、
本発明によるニツケル−亜鉛電池を示し1は網状
集電体を含む亜鉛極、2は酸化チタンの多孔質
層、3は微孔性セパレータ、4は保液層、5は水
酸化ニツケルから成るニツケル極である。 A zinc electrode with a porous layer of titanium oxide adhered to the surface and a nickel electrode wrapped with a separator made of nylon nonwoven fabric and a microporous polypropylene membrane (trade name: Zyuraguard) were combined to form a potassium hydroxide aqueous solution with a specific gravity of 1.30. A battery was prepared by injecting an electrolytic solution consisting of the following in an amount such that there was no free solution. Figure 1 shows
A nickel-zinc battery according to the present invention is shown in which 1 is a zinc electrode containing a reticulated current collector, 2 is a porous layer of titanium oxide, 3 is a microporous separator, 4 is a liquid retaining layer, and 5 is a nickel electrode made of nickel hydroxide. It is extreme.
第2図は、ニツケル−亜鉛電池の充放電サイク
ル特性を示し、Aは本発明の構造の電池で、Bは
酸化チタンの多孔質層を用いないほかは、Aと同
一の構造の従来型電池である。電池はいずれも初
期容量50Ahを有し、充放電サイクル試験は、電
流5Aで端子電圧2.0Vまで充電したあと電流10A
で端子電圧1.0Vまで放電するサイクルをくり返
した。 Figure 2 shows the charge-discharge cycle characteristics of a nickel-zinc battery, where A is a battery with the structure of the present invention and B is a conventional battery with the same structure as A, except that the porous layer of titanium oxide is not used. It is. All batteries have an initial capacity of 50Ah, and the charge/discharge cycle test was conducted at a current of 5A to a terminal voltage of 2.0V, and then a current of 10A.
The cycle of discharging to a terminal voltage of 1.0V was repeated.
図から明らかなように、本発明の亜鉛極表面
に、酸化チタンの多孔質の層を密着させた構造の
電池は、充放電サイクルの進行に伴なう電池容量
の減少が改善され、かつ電池寿命が長い。 As is clear from the figure, the battery of the present invention has a structure in which a porous layer of titanium oxide is adhered to the surface of the zinc electrode, and the battery capacity decreases as the charge/discharge cycle progresses is improved. Long lifespan.
上述のように、本発明によれば、亜鉛酸イオン
を捕捉する酸化チタンの微孔を有する多孔質層
が、亜鉛極表面に密着して形成されているので、
亜鉛活物質の利用率を低下させることがなく、か
つ亜鉛極の形状変化を有効に防止する特徴を有
し、亜鉛アルカリ二次電池のサイクル寿命の改善
に大きな効果が得られる。 As described above, according to the present invention, the porous layer of titanium oxide having micropores that captures zincate ions is formed in close contact with the surface of the zinc electrode.
It has the characteristics of not reducing the utilization rate of the zinc active material and effectively preventing changes in the shape of the zinc electrode, and is highly effective in improving the cycle life of zinc-alkaline secondary batteries.
第1図は、本発明亜鉛アルカリ二次電池の縦断
面図、第2図は同上電池の充放電サイクル特性図
である。
1……亜鉛極、2……酸化チタン多孔層、3…
…セパレータ、4……保液層、5……ニツケル
極。
FIG. 1 is a longitudinal cross-sectional view of the zinc-alkaline secondary battery of the present invention, and FIG. 2 is a charge-discharge cycle characteristic diagram of the same battery. 1...Zinc electrode, 2...Titanium oxide porous layer, 3...
...Separator, 4...Liquid retaining layer, 5...Nickel electrode.
Claims (1)
ンの多孔質の層を密着せしめたことを特徴とする
亜鉛アルカリ二次電池。1. A zinc-alkaline secondary battery characterized by having a porous layer of titanium oxide adhered to the surface of a negative electrode containing zinc as an active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56012145A JPS57126068A (en) | 1981-01-28 | 1981-01-28 | Zinc alkaline secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56012145A JPS57126068A (en) | 1981-01-28 | 1981-01-28 | Zinc alkaline secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57126068A JPS57126068A (en) | 1982-08-05 |
JPH0150063B2 true JPH0150063B2 (en) | 1989-10-27 |
Family
ID=11797324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56012145A Granted JPS57126068A (en) | 1981-01-28 | 1981-01-28 | Zinc alkaline secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57126068A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2943127B2 (en) * | 1992-11-30 | 1999-08-30 | キヤノン株式会社 | Rechargeable battery |
CA2110097C (en) * | 1992-11-30 | 2002-07-09 | Soichiro Kawakami | Secondary battery |
WO2012165578A1 (en) | 2011-06-02 | 2012-12-06 | 協立化学産業株式会社 | Coating agent composition for battery electrodes or separators |
US10476075B2 (en) | 2015-11-06 | 2019-11-12 | Nissan Motor Co., Ltd. | Zinc negative electrode material for secondary cell |
JP2020061222A (en) * | 2018-10-05 | 2020-04-16 | 日立化成株式会社 | Negative electrode for nickel zinc battery and nickel zinc battery |
CN113046795B (en) * | 2021-03-09 | 2022-02-18 | 山东大学 | Three-dimensional flexible zinc cathode with three-dimensional titanium structure and long service life, and preparation method and application thereof |
-
1981
- 1981-01-28 JP JP56012145A patent/JPS57126068A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57126068A (en) | 1982-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120018669A1 (en) | Pasted nickel hydroxide electrode for rechargeable nickel-zinc batteries | |
US3516862A (en) | Rechargeable alkaline-zinc cell with porous matrix containing trapping material to eliminate zinc dendrites | |
EP0021735B1 (en) | Zinc electrode for secondary electrochemical cells and electrochemical cells including said electrode | |
JPS6157661B2 (en) | ||
US4358517A (en) | Nickel-zinc cell | |
JPH0150063B2 (en) | ||
JPS5935359A (en) | Zinc electrode | |
JP4240030B2 (en) | Alkaline zinc storage battery | |
JPH0429189B2 (en) | ||
JPS5769677A (en) | Alkaline zinc storage battery | |
JPH0357006Y2 (en) | ||
JP3944887B2 (en) | Alkaline zinc storage battery | |
JPH0430713B2 (en) | ||
JP2755634B2 (en) | Alkaline zinc storage battery | |
JP3185244B2 (en) | Zinc negative electrode plate for alkaline batteries | |
JPH071732Y2 (en) | Alkaline zinc secondary battery | |
JP2001283902A (en) | Alkaline battery | |
JPH06310116A (en) | Zinc alkaline secondary battery | |
JPH0722028A (en) | Sealed alkaline zinc storage battery | |
JPH0550814B2 (en) | ||
JPS63261670A (en) | Alkaline zinc storage battery | |
JPH01100872A (en) | Sealed type nickel-zinc cell | |
JPH0552028B2 (en) | ||
JPH02155159A (en) | Alkaline zinc storage battery | |
JPH02216757A (en) | Alkaline zinc storage battery |