[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0149438B2 - - Google Patents

Info

Publication number
JPH0149438B2
JPH0149438B2 JP26188485A JP26188485A JPH0149438B2 JP H0149438 B2 JPH0149438 B2 JP H0149438B2 JP 26188485 A JP26188485 A JP 26188485A JP 26188485 A JP26188485 A JP 26188485A JP H0149438 B2 JPH0149438 B2 JP H0149438B2
Authority
JP
Japan
Prior art keywords
phosphor
intensifying screen
ray intensifying
afterglow
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26188485A
Other languages
Japanese (ja)
Other versions
JPS6257485A (en
Inventor
Shigeharu Nakajima
Motoichi Shinomya
Mizuyasu Takeda
Satoshi Taketei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nichia Chemical Industries Ltd
Original Assignee
Toshiba Corp
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nichia Chemical Industries Ltd filed Critical Toshiba Corp
Priority to JP26188485A priority Critical patent/JPS6257485A/en
Publication of JPS6257485A publication Critical patent/JPS6257485A/en
Publication of JPH0149438B2 publication Critical patent/JPH0149438B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

 産業䞊の利甚分野 本発明は、線で刺激されお発光する蛍光䜓を
䜿甚する線増感玙であ぀お、䞻ずしお、医療甚
攟射線撮圱あるいは工業甚攟射線撮圱に䜿甚され
る線増感玙に関する。  埓来の技術䞊びに問題点 線増感玙は、䞀般に写真フむルムず組み合わ
せお䜿甚され、医療甚攟射線撮圱における撮圱系
の感床を向䞊させる。かかる線増感玙に䜿甚さ
れる蛍光䜓は、線の吞収量が倚いこず、発光効
率が高いこず、残光成分が匱いこず等が芁求され
る。 線吞収量が倚い蛍光䜓が塗垃された線増感
玙は、線画像の粒状性が良く、医療甚攟射線撮
圱における蚺断胜率が向䞊する。発光効率の高い
増感玙は、少ない線照射で䜿甚でき怜怜者の被
曝線量が䜎枛する。又、残光成分が少ない増感玙
は、残像残光ノむズによる誀蚺を防止でき
る。 近幎、被怜者の被曝線量䜎枛の芁求により、埓
来の蛍光䜓、CaWO4に代わり、Gd2O2STb
BaFClEuLaOBrTmYTaO4Tm等の
蛍光䜓を䜿甚した線増感玙が実甚化されおい
る。 しかし、BaFClEuずLaOBrTmは、線
吞収量が少ない為に線写真の粒状性が悪い。
又、平板状の粒子圢状であるために、線により
生成される光の散乱が倚く、線画像の鮮鋭床が
䜎䞋する。 Gd2O2STbは、青色ないし緑色領域で発光
し、青色から緑色領域に感床をも぀オル゜フむル
ムず組み合わせお䜿甚されるために、フむルムが
暗宀で感光し易く、暗宀ランプを暗くする必芁が
あ぀お䜜業性が悪い。 YTaO4Tm蛍光䜓は、残光成分が匷く、連
続撮圱時に残光によるノむズが発生し、このこず
が甚途を制限しおいる。残光成分が匱く、しかも
YTaO4Tm蛍光䜓の特長を備える蛍光䜓が開
発されるなら、線甚ずしお理想的な特性の蛍光
䜓が実珟できる。 本発明は、このこずを実珟すべく開発されたも
ので、本発明の重芁な目的は、蛍光䜓の線吞収
量が倚くお発光効率が高く、しかも、残光成分が
匱く、これによ぀お、被怜者の被曝線量が少な
く、蚺断性の高い線増感玙を提䟛するにある。  埓来の問題点を解決するための手段 本発明者は、䞊蚘目的を達成するため、垌土類
タンタレヌト蛍光䜓、䞊びに、垌土類ニオベヌト
蛍光䜓を有する線増感玙に付いお皮々の研究を
行぀た。その結果、該蛍光䜓にBeMgCa
SrBaZnCdの内、少なくずも皮の二䟡金
属を特定の範囲で含有させるこずにより、その残
光特性を顕著に改良するこずに成功した。又、特
定量の二䟡金属を含有させお埗られた蛍光䜓は、
顕著に改良された残光特性を有するのみならず、
著しく発光効率を向䞊させるこずも可胜であ぀
た。 埓぀お、本発明の線増感玙は、支持䜓の衚面
に結合剀でも぀お分散状態に蛍光䜓が付着され、
この蛍光䜓は、䞋蚘の䞀般匏で衚される。 MaLn1-x-(2/3)aDO4xTm3+  䜆し、は、BeMgCaSrBaZnCd
の矀より遞ばれる少なくずも皮の二䟡金属であ
り、Lnは、GdLaLuの少なくずも皮
の元玠であり、は、TaNbのいずれか又は䞡
方を含み、が×10-5≊≊が≊≊
0.05の範囲にある。 蛍光䜓に含有される二䟡金属であるは、含有
量が倚いず残光特性が改良されるが、倚すぎる
ず、発光効率が䜎䞋する。 二䟡金属の含有量を瀺す䞀般匏のは、残光
特性ず発光効率ずを考慮しお、×10-5〜の範
囲に決定される。たた、付掻剀であるTm、は、
倚すぎるず発光効率が䜎䞋する。ただし、本発明
の蛍光䜓は、母䜓が発光するので、付掻剀を党く
含有させずに自己付掻で䜿甚するこずも可胜であ
る。  埓甚、効果 本発明の線増感玙に䜿甚される、䞊蚘䞀般匏
で衚わされる蛍光䜓は、優れた線吞収特
性ず発光効率を有するこずに加えお、顕著に改良
された残光特性を瀺す。又、各元玠の含有量を特
定の範囲に調敎するこずによ぀お、埓来の蛍光䜓
にくらべお、高茝床の発光を実珟できる。 䞊蚘䞀般匏で衚される蛍光䜓が䜿甚され
た線増感玙は、残光によるノむズの少ない、画
質の優れた画像を定垞的に埗るこずができ、又、
線画像の感床を向䞊させるこずも可胜であり、
被怜者の被曝像量が䜎枛できる。 本発明の特長を、第図ないし第図を参照
しお詳述する。 第図に斌お、曲線は、䞀般匏、 MaLn1-x-(2/3)aDO4xTm3+、に斌お、がSr
LnががTa0.075の堎合、即
ち、 Sr0.075Y0.950TaO4、なる蛍光䜓の残光特性を瀺
す。比范甚ずしお埓来の、の堎合、即ち、
YTaO4なる蛍光䜓の残光特性を曲線で瀺す。 第図は、瞊軞に盞察残光量log䞀定時間経
過埌の発光量線刺激時の発光量、暪軞に、
残光の枛衰時間線の照射を停止しおからの経
過時間を瀺しおいる。 第図によれば、0.075である本発明の
線増感玙に䜿甚される蛍光䜓は、の埓来に
蛍光䜓に比し、著しく残光特性が優れおいるこず
がわかる。 曎に第図においおは、䞊蚘䞀般匏 MaLn1-x-(2/3)aDO4xTm3+に斌お、がSr
LnががTaで、で、0.375
0.600の堎合、すなわち、Sr0.375Y0.750TaO4、お
よび、Sr0.600Y0.600TaO4なる蛍光䜓の残光特性
を、順番に曲線で瀺しおいる。 この図によれば、0.0750.375
0.600の本発明の線増感玙の蛍光䜓は、
の埓来の線増感玙の蛍光䜓に比范し、特に残光
特性が優れおいるこずが明らかである。 次に本発明の線増感玙の蛍光䜓 SraY1-x-(2/3)aTaO4xTm3+の発光特性を第
図及び第図に基づいお説明する。第図及び
第図は、蛍光䜓の発光スペクトルを瀺しおお
り、暪軞に発光波長単䜍nm瞊軞に発光量
任意単䜍を瀺す。 第図においお、曲線はそれぞれ
0.0750.3750.600である本発明の
線増感玙の蛍光䜓、即ち、 Sr0.075Y0.950TaO4曲線、 Sr0.375Y0.750TaO4曲線、 Sr0.600Y0.600TaO4曲線の発光スペクトル
を、曲線は、埓来の線増感玙の蛍光䜓
YTaO4発光スペクトルを瀺しおいる。 この図によれば、0.0750.3750.600の本
発明の蛍光䜓は、である埓来の線増感玙
の蛍光䜓に比し、ブロヌドな発光スペクトルを有
し、370nm付近に第の発光ピヌクを有しおいる
こずがわかる。特に、曲線で瀺される
0.075の蛍光䜓は、Srを含有しない埓来の線増
感玙の蛍光䜓に比し、著しく発光量が倚い。 たた、第図においお、曲線およびは、
埓来の線増感玙の蛍光䜓Y0.995TaO4
0.005Tm3+ず、本発明の線増感玙の蛍光䜓
Sr0.075Y0.945TaO40.005Tm3+の発光スペクトル
を瀺しおいる。 この図によれば、本発明の線増感玙の蛍光䜓
曲線は、埓来の線増感玙の蛍光䜓曲線
に比し、付掻剀であるTm3+の350nm付近の
発光ピヌクが増倧しおいるのに加え、母䜓発光で
ある300nm〜340nm及び370nm〜440nmの発光量
が著しく増倧しおいるこずがわかる。 次に、本発明の線増感玙の蛍光䜓Cda
A1-x-(2/3)aTaO4xTm3+の残光特性及び発光特
性に぀いお、第図、第図および第図を
参照しお説明する。 第図は、CdaY1-(2/3)aTaO4、蛍光䜓のカドミ
りム含有量倀が、残光特性に及がす圱響を
瀺したもので、この図に斌お、曲線
は、䞊蚘の䞀般匏に斌お、順に、
0.0300.0750.150である蛍光䜓の残光
特性を瀺す。 この図から明らかな様に、0.030
0.0750.150である本発明の線増感玙の蛍
光䜓は、の埓来の線増感玙の蛍光䜓に比
し、残光特性が著しく向䞊した。 たた、第図から明らかなように、Cda
Y1-(2/3)aTaO4蛍光䜓曲線は、埓
来の線増感玙の蛍光䜓YTaO4曲線に比し
ブロヌドな発光スペクトルを有し、特に曲線で
瀺される0.030の蛍光䜓の堎合、発光量は著
しく増倧する。さらに、第図に瀺すように、
本発明の線増感玙の蛍光䜓曲線は、埓来
の線増感玙の蛍光䜓曲線に比し、付掻剀
であるTm3+の発光ず母䜓による発光ずもに、著
しく増倧するこずが確認された。 第図、第図、第図、第図、第図
に瀺すこのような傟向は、䞀般匏に斌お、
がBeMgCaBaZnに぀いおも同様に珟
れ、残光特性ず発光量が向䞊できる。 第図および第図に、䞀般匏の、が
CaずBaで、である蛍光䜓の残光特性を瀺
す。これ等の図から明らかなように、本発明の
線増感玙の蛍光䜓は、曲線で瀺される
ように、埓来の線増感玙の蛍光䜓曲線に
比べお優れた残光特性を瀺した。 曎に、第図、第図、第図および第図
に、䞀般匏の、がMgCaBaZnで、
である本発明の線増感玙の蛍光䜓の発光
特性を瀺す。これ等の図から明らかなように、本
発明の線増感玙の蛍光䜓は、曲線で
瀺すように、埓来のの蛍光䜓曲線に
比べおブロヌドな発光スペクトルを有し、発光量
が著しく増倧した。 曎に又、前蚘の蛍光䜓を䜿甚した線増感玙
は、第衚に瀺すように、埓来のYTaO4蛍光䜓
を䜿甚した線増感玙の発光茝床を100ずするず
き、60〜140ずすぐれた発光茝床を瀺した。
線増感玙の発光茝床は、蛍光䜓粉䜓の発光茝床に
類䌌し、粉䜓で発光茝床の高い蛍光䜓を䜿甚し
た。
A. Industrial Application Field The present invention relates to an X-ray intensifying screen that uses a phosphor that emits light when stimulated by X-rays, and is mainly used in medical radiography or industrial radiography. Regarding photosensitive paper. B. Prior Art and Problems X-ray intensifying screens are generally used in combination with photographic film to improve the sensitivity of imaging systems in medical radiography. The phosphor used in such an X-ray intensifying screen is required to have a large amount of X-ray absorption, high luminous efficiency, and weak afterglow component. An X-ray intensifying screen coated with a phosphor that absorbs a large amount of X-rays has good graininess in X-ray images and improves diagnostic efficiency in medical radiography. An intensifying screen with high luminous efficiency can be used with less X-ray irradiation, reducing the exposure dose of the examiner. Furthermore, an intensifying screen with less afterglow components can prevent misdiagnosis due to afterimages (afterglow noise). In recent years, due to the demand for reducing the exposure dose of subjects, Gd 2 O 2 S:Tb,
X-ray intensifying screens using phosphors such as BaFCl:Eu, LaOBr:Tm, and YTaO 4 :Tm have been put into practical use. However, BaFCl:Eu and LaOBr:Tm have poor X-ray granularity due to their low X-ray absorption.
Furthermore, since the grains have a tabular shape, light generated by X-rays is often scattered, reducing the sharpness of the X-ray image. Gd 2 O 2 S: Tb emits light in the blue to green region and is used in combination with orthofilm, which is sensitive in the blue to green region, so the film is easily exposed to light in the dark room, making it necessary to dim the dark room lamp. It is hot and workability is poor. YTaO 4 :Tm phosphor has a strong afterglow component and noise due to afterglow occurs during continuous shooting, which limits its uses. The afterglow component is weak, and
If a phosphor with the characteristics of YTaO 4 :Tm phosphor can be developed, it will be possible to create a phosphor with ideal characteristics for X-rays. The present invention was developed to achieve this, and an important objective of the present invention is that the phosphor has a large amount of X-ray absorption, has high luminous efficiency, and has a weak afterglow component. Therefore, it is an object of the present invention to provide an X-ray intensifying screen that reduces the exposure dose to a subject and has high diagnostic performance. C Means for Solving Conventional Problems In order to achieve the above object, the present inventor conducted various studies on X-ray intensifying screens having rare earth tantalate phosphors and rare earth niobate phosphors. . As a result, Be, Mg, Ca,
By containing at least one divalent metal among Sr, Ba, Zn, and Cd in a specific range, we succeeded in significantly improving the afterglow characteristics. In addition, the phosphor obtained by containing a specific amount of divalent metal is
Not only does it have significantly improved afterglow properties,
It was also possible to significantly improve luminous efficiency. Therefore, in the X-ray intensifying screen of the present invention, the phosphor is attached to the surface of the support in a dispersed state with a binder,
This phosphor is represented by the following general formula (). M a Ln 1-x-(2/3)a DO 4 :xTm 3+ () However, M is Be, Mg, Ca, Sr, Ba, Zn, Cd
at least one divalent metal selected from the group, Ln is at least one element of Y, Gd, La, and Lu, D includes either or both of Ta and Nb, and a is 1×10 -5 ≩a≩1, x is 0≩x≩
It is in the range of 0.05. When the content of M, which is a divalent metal contained in the phosphor, is large, the afterglow characteristics are improved, but when the content is too large, the luminous efficiency is reduced. In the general formula representing the content of the divalent metal M, a is determined in the range of 1×10 −5 to 1 in consideration of afterglow characteristics and luminous efficiency. In addition, Tm, which is an activator, is
If it is too large, the luminous efficiency will decrease. However, since the phosphor of the present invention emits light from its matrix, it can also be used in a self-activated manner without containing any activator. D Usage, Effects The phosphor represented by the above general formula () used in the X-ray intensifying screen of the present invention has excellent X-ray absorption characteristics and luminous efficiency, and has also been significantly improved. It exhibits afterglow characteristics. Furthermore, by adjusting the content of each element within a specific range, it is possible to achieve higher luminance than conventional phosphors. The X-ray intensifying screen using the phosphor represented by the above general formula () can constantly obtain images of excellent image quality with little noise due to afterglow, and
It is also possible to improve the sensitivity of X-ray images,
The amount of radiation exposure of the subject can be reduced. The features of the present invention will be explained in detail with reference to FIGS. 1 to 11. In Fig. 2, curve B is expressed by the general formula, M a Ln 1-x-(2/3)a DO 4 :xTm 3+ , where M is Sr,
When Ln is Y, D is Ta, a=0.075, x=0, that is, Sr 0.075 Y 0.950 TaO 4 The afterglow characteristic of the phosphor is shown. For comparison, the conventional case where a=0, that is,
Curve A shows the afterglow characteristics of YTaO 4 phosphor. In Figure 2, the vertical axis is the relative afterglow amount (log [light emission amount after a certain period of time/light emission amount during X-ray stimulation]), and the horizontal axis is
It shows the afterglow decay time (time elapsed after X-ray irradiation was stopped). According to FIG. 2, X of the present invention where a=0.075
It can be seen that the phosphor used in the line intensifying screen has significantly better afterglow characteristics than the conventional phosphor in which a=0. Furthermore, in FIG. 2, in the above general formula () M a Ln 1-x-(2/3)a DO 4 :xTm 3+ , M is Sr,
Ln is Y, D is Ta, x=0, a=0.375, a=
In the case of 0.600, that is, the afterglow characteristics of the phosphors Sr 0.375 Y 0.750 TaO 4 and Sr 0.600 Y 0.600 TaO 4 are shown in order by curves C and D. According to this figure, a=0.075, a=0.375, a=
The phosphor of the X-ray intensifying screen of the present invention of 0.600 is a=0
It is clear that the afterglow property is especially excellent compared to the phosphors of conventional X-ray intensifying screens. Next, the emission characteristics of the phosphor Sr a Y 1-x-(2/3)a TaO 4 :xTm 3+ of the X-ray intensifying screen of the present invention are
This will be explained based on the drawings and FIG. 11. 7 and 11 show the emission spectra of the phosphors, with the horizontal axis showing the emission wavelength (in nm) and the vertical axis showing the amount of light emission (in arbitrary units). In Figure 7, curves A, B, and C are each a
=0.075, 0.375, 0.600, X of the present invention where x=0
Curve D shows the emission spectra of the phosphors of the line intensifying screen, namely, Sr 0.075 Y 0.950 TaO 4 (Curve A), Sr 0.375 Y 0.750 TaO 4 (Curve B), and Sr 0.600 Y 0.600 TaO 4 (Curve C). , conventional X-ray intensifying screen phosphor
The YTaO4 emission spectrum is shown. According to this figure, the phosphors of the present invention with a = 0.075, 0.375, and 0.600 have a broader emission spectrum in the vicinity of 370 nm, compared to the phosphor of the conventional X-ray intensifying screen with a = 0. It can be seen that there is a second emission peak at . In particular, a=
The 0.075 phosphor emits significantly more light than the phosphor of conventional X-ray intensifying screens that do not contain Sr. Moreover, in FIG. 11, curves A and B are
Conventional X-ray intensifying screen phosphor Y 0.995 TaO 4 :
0.005Tm 3+ and the phosphor of the X-ray intensifying screen of the present invention
The emission spectrum of Sr 0.075 Y 0.945 TaO 4 :0.005Tm 3+ is shown. According to this figure, the phosphor of the X-ray intensifying screen of the present invention (curve B) has a higher concentration of Tm 3+ as an activator than the phosphor of the conventional X-ray intensifying screen (curve A). It can be seen that in addition to the increase in the emission peak near 350 nm, the amount of emission in the parent emission ranges of 300 nm to 340 nm and 370 nm to 440 nm has increased significantly. Next, the phosphor Cd a of the X-ray intensifying screen of the present invention
The afterglow characteristics and luminescence characteristics of A 1-x-(2/3)a TaO 4 :xTm 3+ will be explained with reference to FIG. 4, FIG. 10, and FIG. 11. Figure 4 shows the influence of Cd a Y 1-(2/3)a TaO 4 , the cadmium content (a value) of the phosphor, on the afterglow characteristics. A, B, C,
In the above general formula, D is, in order, a=0, a=
0.030, a=0.075, and a=0.150. As is clear from this figure, a=0.030, a=
0.075, a=0.150 in the X-ray intensifying screen of the present invention, the afterglow property was significantly improved compared to the phosphor in the conventional X-ray intensifying screen in which a=0. Also, as is clear from Figure 10, Cd a
Y 1-(2/3)a TaO 4 phosphor (curves A, B, C) has a broader emission spectrum compared to YT a O 4 (curve D), a phosphor used in conventional X-ray intensifying screens. However, especially in the case of a phosphor with a=0.030 shown by curve A, the amount of light emission increases significantly. Furthermore, as shown in Figure 11,
Compared to the phosphor of the conventional X-ray intensifying screen (curve A), the phosphor of the X-ray intensifying screen of the present invention (curve C) exhibits both luminescence from Tm 3+ , which is an activator, and luminescence from the matrix. , was confirmed to increase significantly. Such trends shown in FIGS. 2, 4, 7, 10, and 11 can be seen in the general formula (),
M appears in the same way for Be, Mg, Ca, Ba, and Zn, and the afterglow characteristics and luminescence amount can be improved. In Figures 1 and 3, M in the general formula () is
The afterglow characteristics of a phosphor with Ca and Ba and x=0 are shown. As is clear from these figures, the X of the present invention
As shown by curves B, C, and D, the phosphor of the X-ray intensifying screen exhibited superior afterglow characteristics compared to the phosphor of the conventional X-ray intensifying screen (curve A). Furthermore, in FIG. 5, FIG. 6, FIG. 8, and FIG. 9, in the general formula (), M is Mg, Ca, Ba, Zn,
2 shows the emission characteristics of the phosphor of the X-ray intensifying screen of the present invention where x=0. As is clear from these figures, the phosphor of the X-ray intensifying screen of the present invention, as shown by curves A, B, and C, has a broader spectrum than the conventional phosphor of a=0 (curve D). It had a unique emission spectrum, and the amount of light emission was significantly increased. Furthermore, as shown in Table 1, the X-ray intensifying screen using the above- mentioned phosphor has a luminance of 60 to It exhibited excellent luminance of 140%. X
The luminance of the line intensifying screen was similar to that of phosphor powder, and a phosphor with high luminance was used in powder form.

【衚】 線増感玙は高い発光茝床を瀺した。残光特性
は蛍光䜓粉䜓の状態ず線増感玙ずした状態ずは
倉化せず優れた残光特性の線増感玙が実珟でき
た。 䜆し、第衚の枬定に斌お、蛍光䜓の茝床枬定
は、蛍光䜓に線を照射し、蛍光䜓の発光を、第
図に瀺す特性のフむルタヌに透過させた埌、
フオトマルチプラむアに照射し、これでも぀お、
発光匷床を電流に倉換し、出力電流の倧きさで比
范した。第図にフオトマルチプラむアの感床
特性を瀺す。 又、䞀般匏においお、がBeMg
CaSrBaZnCdの皮類以䞊の堎合に぀
いおも第図〜第図に瀺す優れた傟向が珟れ
た。  奜たしい実斜䟋 線増感玙は、基本的には、支持䜓ず、その䞊
に蚭けられた蛍光䜓局ずから構成され、蛍光䜓局
は、䞊蚘䞀般匏で衚される蛍光䜓を、分散
状態で含有支持する結合剀から成るものである。
蛍光䜓局は、次の様な方法により支持䜓䞊に圢成
するこずができる。 先ず、䞊蚘䞀般匏で衚される蛍光䜓ず結
合剀ずを溶剀に加え、これを混合しお、結合剀溶
液䞭に、蛍光䜓粒子が均䞀に分散しお塗垃液を調
補する。 蛍光䜓局の結合剀の䟋ずしおは、ニトロセルロ
ヌス、ポリアルキルメタアクリレヌト、線状
ポリ゚ステルおよびそれらの混合物を挙げるこず
ができる。 塗垃液調補甚の溶剀の䟋ずしおは、酢酞゚チ
ル、酢酞ブチル等の䜎玚脂肪酞ず䜎玚アルコヌル
ずの゚ステル、アセトン、メチル゚チルケトン等
のケトン、ゞオキサン、゚チレングリコヌルモノ
゚チル゚ヌテル等の゚ヌテル及びそれらの混合物
を挙げるこずができる。 塗垃液における、結合剀ず蛍光䜓ずの混合比
は、目的ずする増感玙の特性、蛍光䜓の粒子サむ
ズ等によ぀お異なるが、䞀般に、結合剀ず蛍光䜓
ずの混合比は、ないし40重量比か
ら遞ぶのが奜たしい。 又、塗垃液には、該塗垃液䞭における蛍光䜓粒
子の分散性向䞊の為の分散剀や、圢成埌の、蛍光
䜓局䞭における、結合剀ず蛍光䜓粒子ずの間の結
合力向䞊の為の可塑剀等の添加剀が混合されおい
おもよい。 䞊蚘のようにしお調補された塗垃液を、通垞の
塗垃手段、䟋えば、ドクタヌブレヌド、ロヌルコ
ヌタヌ、ナむフコヌタヌ等を甚いお、支持䜓の衚
面に均䞀に塗垃するこずにより、塗垃液の塗膜を
圢成する。 塗膜圢成埌、塗膜を也燥しお、支持䜓䞊ぞの蛍
光䜓局の圢成を完了する。蛍光䜓局の膜厚は、目
的ずする増感玙の特性、蛍光䜓の粒子サむズ、結
合剀ず蛍光䜓の混合比などによ぀お異なるが、通
åžž70ÎŒm〜700ÎŒmの範囲から遞ぶのが奜たしい。 なお蛍光䜓局は、局だけでもよいが、局以
䞊でもよい。積局する堎合、その内少なずも局
が、䞊蚘䞀般匏からなる蛍光䜓を含有す
る。 支持䜓ずしおは、増感玙の支持䜓ずしお公知の
各皮の材料から任意に遞ぶこずができる。その様
な材料の䟋ずしおセルロヌスアセテヌト、ポリ゚
ステル、ポリアミド、ポリカヌボネむト等の、プ
ラスチツク物質のフむルム、たたは、アルミニり
ム箔、アルミニりム合金箔等の金属シヌト、二酞
化チタン等を含有するピグメント玙等を挙げる事
ができる。 なお、プラスチツクフむルムを䜿甚する堎合、
カヌボンブラツク等の光吞収性物質が緎り蟌たれ
おいおもよく、あるいは二酞化チタン等の光反射
性物質が緎り蟌たれおいおもよい。前者は、高鮮
鋭床タむプの増感玙に適した支持䜓であり、埌者
は、高感床タむプの増感玙に適した支持䜓であ
る。 通垞の線増感玙は、支持䜓に接する反察偎の
蛍光䜓局の衚面に、蛍光䜓局を物理的および化孊
的に保護するための透明な保護膜が蚭けられおい
る。この様な、透明保護膜は、本発明の蛍光䜓が
䜿甚された増感玙に぀いおも蚭眮するこずが奜た
しい。 透明保護膜は、䟋えば、酢酞セルロヌス、ニト
ロセルロヌス等のセルロヌス誘導䜓、あるいは、
ポリメチルメタクリレヌト、ポリカヌボネむト、
ポリ酢酞ビニル等の透明な高分子物質を、適圓な
溶媒に溶解しお調補した溶液を、蛍光䜓局の衚面
に塗垃するこずにより圢成するこずができる。あ
るいは、ポリ゚チレン、ポリ゚チレンテレフタレ
ヌト、ポリアミド等から別に圢成した透明な薄膜
を蛍光䜓局の衚面に適圓な接着剀を甚いお接着す
る方法によ぀おも圢成出来る。 次に、本発明の線増感玙に䜿甚される蛍光䜓
䞊びに線増感玙の実斜䟋に぀いお蚘茉する。䜆
し、これらの各䟋は本発明を制限するものではな
い。 実斜䟋  酞化むツトリりムを107.26、炭酞ストロンチ
りム11.07、五酞化タンタル220.95を秀量し、
融剀ずしお塩化リチりム25を配合し、ボヌルミ
ルで粉砕混合する。 ぀いで、埗られた原料混合物をアルミナルツボ
に充填し、1200℃で10時間焌成埌、ボヌルミルで
粉砕し、デカンテヌシペンにより、玔氎で回掗
浄を繰り返し、吞匕ろ過する。 曎に、これを120℃で15時間也燥する。かくし
お埗られた蛍光䜓の䞀般匏は、Sr0.075Y0.950TaO4
で衚し埗るものであるこずが確認された。この蛍
光䜓は、第衚に瀺すように、ストロンチりムを
含有せしめない埓来品YTaO4より極めお䜎
い残光性を瀺し、盞察発光茝床は、埓来品より
44向䞊した。 次に、この蛍光䜓を甚いお、以䞋のようにしお
線増感玙を぀く぀た。蛍光䜓粒子ず線状ポリ゚
ステル暹脂ずの混合物に、メチル゚チルケトンを
添加し、さらに、硝化床11.5のニトロセルロヌ
スを添加しお蛍光䜓分散液を調補した。この分散
液に、フタル酞ゞ゚チル、フタル酞そしおメチル
゚チルケトンを添加したのち、ホモゞナむザヌを
甚いお充分に撹拌混合し、結合剀ず蛍光䜓の混合
比が20重量比、粘床30PS25℃の塗垃液
を調補した。 この塗垃液を、ガラス板䞊に氎平に眮いた二酞
化チタンに緎り蟌み、ポリ゚ステルシヌト支持
䜓、厚み200ÎŒmの䞊にドクタヌブレヌドを甚い
お均䞀に塗垃した。そしお塗垃埌に、塗膜が圢成
された支持䜓を、也燥噚䞭で塗膜の也燥を行い、
支持䜓䞊に膜厚180ÎŒmの蛍光䜓局を圢成した。 そしおこの蛍光䜓局の䞊に、ポリ゚チレン透明
フむルムをポリ゚ステル系接着剀を甚いお接着
し、透明保護膜厚み10ÎŒmを圢成し、増感玙
を䜜぀た。 この線増感玙の感床は、ストロンチりムを含
有せしめない埓来品に比し29向䞊し、曎に、残
光によるフむルムの感光もなくな぀た。第衚 実斜䟋  酞化むツトリりム107.26、炭酞カルシりム
7.51、五酞化タンタル220.95を秀量し、その
他の方法は、実斜䟋ず同様の方法で補造し、䞀
般匏Ca0.075Y0.950TaO4ずなる蛍光䜓を埗た。 この蛍光䜓は、カルシりムを含有せしめない埓
来品よ著しく残光成分が匱い。第衚 たた、盞察茝床は、カルシりムを含有せしめな
い埓来品より23向䞊した。第衚 この蛍光䜓を䜿甚した線増感玙は、カルシり
ムを含有せしめない埓来品の蛍光䜓を䜿甚した
線増感玙に比范しお、感床が21向䞊し、残光
特性も著しく優れおいるこずが確認された。 実斜䟋  酞化むツトリりム110.65、炭酞バリりム5.92
、五酞化タンタル220.95を秀量し、その他の
方法は、実斜䟋ず同様の方法で補造し、䞀般匏
Ba0.03Y0.98TaO4ずなる蛍光䜓を埗た。この蛍光
䜓の盞察茝床は、バリりムを含有せしめない埓来
品より49向䞊し、盞察残光量は、玄1/8にな
぀た。第衚 たた、この蛍光䜓を䜿甚した線増感玙は、埓
来の蛍光䜓を䜿甚した線増感玙より感床が40
向䞊した。第衚 実斜䟋  酞化むツトリりム110.65、炭酞マグネシりム
2.53、五酞化タンタル220.95を秀量し、その
他の方法は、実斜䟋ず同様の方法で補造し、䞀
般匏Mg0.03Y0.98TaO4ずなる蛍光䜓を埗た。 この蛍光䜓の盞察茝床及び盞察残光量は、マグ
ネシりムを含有せしめない埓来品に比べお、第
衚に瀺す枬光結果を埗た。 たた、この蛍光䜓を䜿甚した線増感玙の感床
は、埓来品に比し23向䞊した。 実斜䟋  酞化むツトリりム101.62、炭酞カドミりム
25.86、五酞化タンタル220.95秀量し、その
他の方法は、実斜䟋ず同様の方法で補造し、䞀
般匏 Cd0.15Y0.90TaO4ずなる蛍光䜓を埗た。この蛍
光䜓の盞察茝床は、埓来品に比し、43向䞊
し、盞察残光量は玄1/360に枛少した。 たた、この蛍光䜓を䜿甚した線増感玙の感床
は、埓来品に比范しお41向䞊した。第衚 実斜䟋  酞化むツトリりム110.65、炭酞亜鉛3.76、
五酞化タンタル220.95を秀量し、その他の方法
は、実斜䟋ず同様の方法で補造し、䞀般匏
Zn0.03Y0.98TaO4ずなる蛍光䜓を埗た。この蛍光
䜓の盞察茝床及び盞察残光量は、亜鉛を含有せし
めない埓来品ず比べお第衚に瀺す枬光結果を
瀺した。 たた、この蛍光䜓を䜿甚した線増感玙の増感
玙の感床は、埓来品に比し27向䞊した。第
衚 実斜䟋  酞化むツトリりム110.08、酞化ツリりム0.96
を340mlの10N塩酞に溶解し、玔氎を加えお
1000mlずした埌、撹拌しながら、80℃に加熱す
る。䞀方シナり酞220を玔氎1000mlに溶解した
シナり酞氎溶液を80℃に加熱し、これをかき混ぜ
ながら䞊蚘80℃に加熱した塩酞溶液に添加する。
かくしお䞊蚘混合液䞭には、むツトリりムずツリ
りムのシナり酞塩が生成し共沈する。次にこの沈
柱物を含む溶液を攟冷埌、デカンテヌシペンによ
り玔氎で回掗浄を繰り返し、沈柱を吞匕ろ過す
る。この沈柱を850℃で時間加熱分解しお、シ
ナり酞塩を酞化物ずする。 この様にしお埗られた酞化物111.04ず酞化ベ
リリりム0.75、五酞化タンタル219.85五酞化
ニブオ0.66を秀量し、その他の方法は、実斜䟋
ず同様の方法で補造し、䞀般匏Be0.03Y0.975
Ta0.995Nb0.005O40.005Tm3+、ずなる蛍光䜓を
埗た。この蛍光䜓の盞察茝床及び盞察残光量は、
ベリリりムを含有せしめない埓来品に比范し
お、第衚に瀺す枬光結果を瀺し、これを䜿甚し
た線増感玙が優れた特性を瀺すこずを実蚌し
た。 実斜䟋  酞化むツトリりム110.08、酞化ツリりム0.96
、炭酞ストロンチりム4.43、五酞化タンタル
220.95を秀量し、その他の方法は、実斜䟋ず
同様の方法で補造し、䞀般匏Sr0.030Y0.975TaO4
0.005Tm3+ずなる蛍光䜓を埗た。この蛍光䜓の盞
察茝床および盞察残光量は、ストロンチりムを含
有せしめない埓来品に比し、第衚に瀺す枬光
結果を瀺し、これを䜿甚した線増感玙が優れた
特性を瀺すこずを実蚌した。 実斜䟋  酞化むツトリりム50.53、酞化ガドリニりム
81.11、酞化ツリりム0.96、炭酞バリりム
29.60、五酞化タンタル220.95、を秀量し、
その他の方法は実斜䟋ず同様の方法で補造し、
䞀般匏Ba0.1500Y0.4475Gd0.4475TaO40.005Tm3+ ずなる蛍光䜓を埗た。 この蛍光䜓の盞察茝床及び盞察残光量は、バリ
りムを含有せしめない埓来品に比范しお第衚に
瀺す枬光結果を瀺し、これを䜿甚した線増感玙
が優れた特性を瀺すこずを実蚌した。 実斜䟋 10 酞化むツトリりム44.88、酞化ランタン64.76
、酞化ツリりム0.96、炭酞カドミりム51.72
、五酞化タンタル220.95を秀量し、その他の
方法は、実斜䟋ず同様の方法で補造し、䞀般匏
Cd0.300Y0.3975La0.3975TaO40.005Tm3+ ずなる蛍光䜓を埗た。 この蛍光䜓の盞察茝床及び盞察残光量は、カド
ミりムを含有せしめない埓来品に比范しお第
衚に瀺す枬光結果を瀺し、これを䜿甚した線増
感玙が優れた特性を瀺すこずを実蚌した。 なお、第衚に斌お、盞察残光量は、Log30
秒埌残光量発光量で衚されおいる。 本発明の線増感玙の蛍光䜓は、実斜䟋ない
し実斜䟋に瀺すように、母䜓自䜓が発光するの
で、付掻剀であるTmを党く含有させずに䜿甚で
きる。 たた、母䜓が発光する本発明の蛍光䜓は、付掻
剀ずしお、Tmに加えお、あるいはTmに代わ぀
おCePrNdSmEuTbDyYb等を䜿
甚しおもよい。
[Table] The X-ray intensifying screen showed high luminance. The afterglow properties did not change between the state of the phosphor powder and the state of the X-ray intensifying screen, and an X-ray intensifying screen with excellent afterglow properties was realized. However, in the measurements shown in Table 1, the brightness of the phosphor is measured by irradiating the phosphor with X-rays, transmitting the emitted light from the phosphor through a filter with the characteristics shown in FIG.
I irradiated the photo multiplier, and even with this,
The luminescence intensity was converted to current, and the magnitude of the output current was compared. FIG. 13 shows the sensitivity characteristics of the photomultiplier. Also, in the general formula (), M is Be, Mg,
In the case of two or more types of Ca, Sr, Ba, Zn, and Cd, the excellent trends shown in FIGS. 1 to 11 also appeared. E Preferred Embodiment An X-ray intensifying screen basically consists of a support and a phosphor layer provided thereon, and the phosphor layer is made of a phosphor represented by the above general formula (). It consists of a binder containing and supporting the following in a dispersed state.
The phosphor layer can be formed on the support by the following method. First, the phosphor represented by the above general formula () and a binder are added to a solvent and mixed to prepare a coating solution in which the phosphor particles are uniformly dispersed in the binder solution. As examples of binders for the phosphor layer, mention may be made of nitrocellulose, polyalkyl (meth)acrylates, linear polyesters and mixtures thereof. Examples of solvents for preparing coating solutions include esters of lower fatty acids and lower alcohols such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and ethylene glycol monoethyl ether, and mixtures thereof. be able to. The mixing ratio of the binder and the phosphor in the coating solution varies depending on the characteristics of the intended intensifying screen, the particle size of the phosphor, etc., but in general, the mixing ratio of the binder and the phosphor is 1. :8 to 1:40 (weight ratio) is preferable. The coating solution also contains a dispersant to improve the dispersibility of the phosphor particles in the coating solution, and a dispersant to improve the bonding force between the binder and the phosphor particles in the phosphor layer after formation. Additives such as plasticizers may be mixed. The coating solution prepared as described above is coated uniformly on the surface of the support using a conventional coating means such as a doctor blade, roll coater, knife coater, etc. to form a film of the coating solution. Form. After the coating film is formed, the coating film is dried to complete the formation of the phosphor layer on the support. The thickness of the phosphor layer varies depending on the intended characteristics of the intensifying screen, the particle size of the phosphor, the mixing ratio of the binder and the phosphor, etc., but it is usually preferably selected from the range of 70 ÎŒm to 700 ÎŒm. Note that the phosphor layer may have only one layer, but may have two or more layers. When laminated, at least one of the layers contains a phosphor represented by the above general formula (). The support can be arbitrarily selected from various materials known as supports for intensifying screens. Examples of such materials include films of plastic materials such as cellulose acetate, polyester, polyamide, polycarbonate, metal sheets such as aluminum foil, aluminum alloy foil, pigmented paper containing titanium dioxide, etc. . In addition, when using plastic film,
A light-absorbing substance such as carbon black may be incorporated, or a light-reflecting substance such as titanium dioxide may be incorporated. The former is a support suitable for a high sharpness type intensifying screen, and the latter is a support suitable for a high sensitivity type intensifying screen. In a typical X-ray intensifying screen, a transparent protective film for physically and chemically protecting the phosphor layer is provided on the surface of the phosphor layer on the opposite side that is in contact with the support. It is preferable that such a transparent protective film be provided also for an intensifying screen in which the phosphor of the present invention is used. The transparent protective film is made of, for example, a cellulose derivative such as cellulose acetate or nitrocellulose, or
polymethyl methacrylate, polycarbonate,
It can be formed by coating the surface of the phosphor layer with a solution prepared by dissolving a transparent polymeric substance such as polyvinyl acetate in an appropriate solvent. Alternatively, it can also be formed by a method in which a transparent thin film separately formed from polyethylene, polyethylene terephthalate, polyamide, etc. is adhered to the surface of the phosphor layer using a suitable adhesive. Next, examples of the phosphor and the X-ray intensifying screen used in the X-ray intensifying screen of the present invention will be described. However, these examples do not limit the present invention. Example 1 Weighed 107.26 g of yttrium oxide, 11.07 g of strontium carbonate, and 220.95 g of tantalum pentoxide.
Add 25 g of lithium chloride as a flux and mix by pulverizing with a ball mill. Next, the obtained raw material mixture is filled into an alumina crucible, calcined at 1200°C for 10 hours, pulverized in a ball mill, washed 5 times with pure water by decantation, and suction filtered. Furthermore, this is dried at 120°C for 15 hours. The general formula of the phosphor thus obtained is Sr 0.075 Y 0.950 TaO 4
It was confirmed that it can be expressed as As shown in Table 1, this phosphor exhibits significantly lower afterglow property than conventional product 1 (YTaO 4 ), which does not contain strontium, and has a relative luminance that is lower than that of conventional product 1.
Improved by 44%. Next, using this phosphor, an X-ray intensifying screen was made in the following manner. Methyl ethyl ketone was added to a mixture of phosphor particles and linear polyester resin, and nitrocellulose with a degree of nitrification of 11.5% was further added to prepare a phosphor dispersion. After adding diethyl phthalate, phthalic acid, and methyl ethyl ketone to this dispersion, they were thoroughly stirred and mixed using a homogenizer, so that the mixing ratio of binder and phosphor was 1:20 (weight ratio), and the viscosity was 30PS (at 25°C). ) was prepared. This coating liquid was kneaded into titanium dioxide placed horizontally on a glass plate, and uniformly applied onto a polyester sheet (support, thickness 200 Όm) using a doctor blade. After coating, the support on which the coating film has been formed is dried in a dryer.
A phosphor layer with a thickness of 180 ÎŒm was formed on the support. Then, a polyethylene transparent film was adhered onto this phosphor layer using a polyester adhesive to form a transparent protective film (thickness: 10 ÎŒm), thereby creating an intensifying screen. The sensitivity of this X-ray intensifying screen was improved by 29% compared to conventional products that do not contain strontium, and furthermore, the sensitivity of the film due to afterglow was eliminated. (Table 1) Example 2 Yttrium oxide 107.26g, calcium carbonate
7.51 g of tantalum pentoxide and 220.95 g of tantalum pentoxide were weighed, and the other methods were the same as in Example 1 to obtain a phosphor having the general formula Ca 0.075 Y 0.950 TaO 4 . This phosphor has a significantly weaker afterglow component than conventional products that do not contain calcium. (Table 1) Furthermore, the relative brightness was improved by 23% compared to the conventional product that does not contain calcium. (Table 1) The X-ray intensifying screen using this phosphor has a 21% improvement in sensitivity compared to the X-ray intensifying screen using conventional product 1, which does not contain calcium. It was confirmed that the optical properties were also extremely excellent. Example 3 Yttrium oxide 110.65g, barium carbonate 5.92g
g, 220.95 g of tantalum pentoxide were weighed, and the other methods were manufactured in the same manner as in Example 1, and the general formula
A phosphor of Ba 0.03 Y 0.98 TaO 4 was obtained. The relative brightness of this phosphor was 49% higher than conventional product 1, which does not contain barium, and the relative afterglow amount was approximately 1/8. (Table 1) In addition, the X-ray intensifying screen using this phosphor has a sensitivity of 40° compared to the conventional X-ray intensifying screen using phosphor 1.
% improved. (Table 1) Example 4 Yttrium oxide 110.65g, magnesium carbonate
2.53 g of tantalum pentoxide and 220.95 g of tantalum pentoxide were weighed, and the other methods were the same as in Example 1 to obtain a phosphor having the general formula Mg 0.03 Y 0.98 TaO 4 . The relative brightness and relative afterglow of this phosphor are the first in comparison to conventional products that do not contain magnesium.
The photometric results shown in the table were obtained. Furthermore, the sensitivity of the X-ray intensifying screen using this phosphor was improved by 23% compared to conventional product 1. Example 5 Yttrium oxide 101.62g, cadmium carbonate
25.86 g of tantalum pentoxide and 220.95 g of tantalum pentoxide were weighed, and the other methods were the same as in Example 1 to obtain a phosphor having the general formula Cd 0.15 Y 0.90 TaO 4 . The relative brightness of this phosphor was improved by 43% compared to conventional product 1, and the relative afterglow amount was reduced to about 1/360. Furthermore, the sensitivity of the X-ray intensifying screen using this phosphor was improved by 41% compared to conventional product 1. (Table 1) Example 6 Yttrium oxide 110.65g, zinc carbonate 3.76g,
Weighed 220.95 g of tantalum pentoxide, otherwise manufactured in the same manner as in Example 1, and obtained the general formula
A phosphor of Zn 0.03 Y 0.98 TaO 4 was obtained. The relative brightness and relative afterglow amount of this phosphor showed the photometric results shown in Table 1 compared to Conventional Product 1 which does not contain zinc. Furthermore, the sensitivity of the X-ray intensifying screen using this phosphor was improved by 27% compared to conventional product 1. (Table 1) Example 7 Yttrium oxide 110.08g, Thulium oxide 0.96
Dissolve g in 340ml of 10N hydrochloric acid and add pure water.
After reducing the volume to 1000 ml, heat to 80°C while stirring. On the other hand, an oxalic acid aqueous solution prepared by dissolving 220 g of oxalic acid in 1000 ml of pure water is heated to 80°C, and added to the hydrochloric acid solution heated to 80°C while stirring.
In this way, yttrium and thulium oxalates are produced and co-precipitated in the mixed solution. Next, the solution containing the precipitate is left to cool, and then washed with pure water five times by decantation, and the precipitate is suction-filtered. This precipitate is thermally decomposed at 850° C. for 3 hours to convert oxalate into an oxide. 111.04 g of the thus obtained oxide, 0.75 g of beryllium oxide, 219.85 g of tantalum pentoxide, and 0.66 g of nibium pentoxide were weighed. 0.03 Y 0.975
A phosphor with Ta 0.995 Nb 0.005 O 4 :0.005Tm 3+ was obtained. The relative brightness and relative afterglow amount of this phosphor are
Compared to Conventional Product 2 which does not contain beryllium, the photometric results shown in Table 1 are shown, demonstrating that the X-ray intensifying screen using this screen exhibits excellent characteristics. Example 8 Yttrium oxide 110.08g, thulium oxide 0.96
g, strontium carbonate 4.43g, tantalum pentoxide
220.95g was weighed, and the other methods were the same as in Example 7, and the general formula Sr 0.030 Y 0.975 TaO 4 :
A phosphor with 0.005Tm 3+ was obtained. The relative brightness and relative afterglow amount of this phosphor showed the photometric results shown in Table 1 compared to conventional product 2 which does not contain strontium, and the X-ray intensifying screen using this phosphor showed superior characteristics. was demonstrated. Example 9 Yttrium oxide 50.53g, gadolinium oxide
81.11g, thulium oxide 0.96g, barium carbonate
Weighed 29.60g, tantalum pentoxide 220.95g,
Other methods were similar to those in Example 7,
A phosphor having the general formula Ba 0.1500 Y 0.4475 Gd 0.4475 TaO 4 :0.005Tm 3+ was obtained. The relative brightness and relative afterglow of this phosphor show the photometric results shown in Table 1 compared to conventional products that do not contain barium, and it is clear that the X-ray intensifying screen using this phosphor exhibits excellent characteristics. Proven. Example 10 Yttrium oxide 44.88g, lanthanum oxide 64.76
g, thulium oxide 0.96g, cadmium carbonate 51.72g
g, 220.95 g of tantalum pentoxide were weighed, and the other methods were the same as in Example 7, and the general formula
A phosphor with Cd 0.300 Y 0.3975 La 0.3975 TaO 4 :0.005Tm 3+ was obtained. The relative brightness and relative afterglow amount of this phosphor are the first compared to conventional product 4 that does not contain cadmium.
The photometric results shown in the table demonstrate that the X-ray intensifying screen using this screen exhibits excellent characteristics. In Table 1, the relative afterglow amount is Log[30
Afterglow amount after seconds/light emission amount]. As shown in Examples 1 to 6, the phosphor of the X-ray intensifying screen of the present invention emits light itself, so it can be used without containing any Tm as an activator. Furthermore, in the phosphor of the present invention whose matrix emits light, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb, etc. may be used as an activator in addition to or in place of Tm. .

【図面の簡単な説明】[Brief explanation of drawings]

第図ないし第図は、線で刺激されお発光
する蛍光䜓の残光特性を瀺すグラフ、第図ない
し第図は、䞀般匏におけるの元玠お
よびの倀を倉化させた蛍光䜓の発光スペクトル
を衚すグラフ、第図は蛍光䜓の茝床枬定に䜿
甚されたフむルタヌの特性図、第図は蛍光䜓
の茝床枬定に䜿甚されたフオトマルチプラむアの
感床特性図である。
Figures 1 to 4 are graphs showing the afterglow characteristics of phosphors that emit light when stimulated by X-rays, and Figures 5 to 11 are graphs showing changes in the element M and the value of a in the general formula (). Figure 12 is a characteristic diagram of the filter used to measure the luminance of the phosphor, and Figure 13 is a sensitivity characteristic diagram of the photomultiplier used to measure the luminance of the phosphor. be.

Claims (1)

【特蚱請求の範囲】  支持䜓ず、この支持䜓䞊に蚭けられた蛍光䜓
を分散状態で含有支持する結合剀を有する蛍光䜓
局ずから構成されおいる線増感玙においお、該
蛍光䜓局の蛍光䜓が、䞀般匏で衚され、 MaLn1-x-(2/3)aDO4xTm3+  がBeMgCaSrBaZnCdの矀より
遞ばれる少なくずも皮の二䟡金属であり、Ln
はGdLaLuの少なくずも皮の元玠であ
り、はTaNbのいずれか又は䞡方を含み、
が×10-5≊≊が≊≊0.05の範囲に
あるこずを特城ずする線増感玙。  蛍光䜓の組成を瀺す䞀般匏に斌お、
がCaで、が、×10-5≊≊×10-1である特
蚱請求の範囲第項蚘茉の線増感玙。  蛍光䜓の組成を瀺す䞀般匏に斌お、
がSrで、が×10-5≊≊×10-1である特蚱
請求の範囲第項蚘茉の線増感玙。  蛍光䜓の組成を瀺す䞀般匏に斌お、
がBaで、が×10-5≊≊×10-1である特
蚱請求の範囲第項蚘茉の線増感玙。  蛍光䜓の組成を瀺す䞀般匏に斌お、
がCdで、が×10-5≊≊×10-1である特蚱
請求の範囲第項蚘茉の線増感玙。  蛍光䜓の組成を瀺す䞀般匏に斌お、
がZnで、が×10-5≊≊×10-1である特蚱
請求の範囲第項蚘茉の線増感玙。
[Scope of Claims] 1. An X-ray intensifying screen comprising a support and a phosphor layer provided on the support and having a binder containing and supporting the phosphor in a dispersed state. The phosphor in the body layer is expressed by the general formula (), where M is Be, Mg, Ca , Sr, Ba, Zn, or Cd. At least one divalent metal selected from the group Ln
is at least one element of Y, Gd, La, and Lu, D includes either or both of Ta and Nb, and a
is in the range of 1×10 -5 ≩a≩1, and x is in the range of 0≩x≩0.05. 2 In the general formula () showing the composition of the phosphor, M
The X-ray intensifying screen according to claim 1, wherein is Ca and a is 1×10 −5 ≩a≩3×10 −1 . 3 In the general formula () showing the composition of the phosphor, M
The X-ray intensifying screen according to claim 1, wherein is Sr and a is 1×10 −5 ≩a≩6×10 −1 . 4 In the general formula () showing the composition of the phosphor, M
The X-ray intensifying screen according to claim 1, wherein is Ba and a is 1×10 −5 ≩a≩6×10 −1 . 5 In the general formula () showing the composition of the phosphor, M
The X-ray intensifying screen according to claim 1, wherein Cd is Cd and a is 1×10 −5 ≩a≩6×10 −1 . 6 In the general formula () showing the composition of the phosphor, M
The X-ray intensifying screen according to claim 1, wherein is Zn and a is 1×10 −5 ≩a≩6×10 −1 .
JP26188485A 1985-11-20 1985-11-20 X-ray intensifying screen Granted JPS6257485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26188485A JPS6257485A (en) 1985-11-20 1985-11-20 X-ray intensifying screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26188485A JPS6257485A (en) 1985-11-20 1985-11-20 X-ray intensifying screen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19805285A Division JPS6258244A (en) 1985-05-18 1985-09-06 Phosphor which emits light when stimulated by x-ray and x-ray sensitized sheet using said phosphor

Publications (2)

Publication Number Publication Date
JPS6257485A JPS6257485A (en) 1987-03-13
JPH0149438B2 true JPH0149438B2 (en) 1989-10-24

Family

ID=17368100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26188485A Granted JPS6257485A (en) 1985-11-20 1985-11-20 X-ray intensifying screen

Country Status (1)

Country Link
JP (1) JPS6257485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3975326A1 (en) 2020-08-25 2022-03-30 Prime Planet Energy & Solutions, Inc. Power storage device and method of manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108974B2 (en) * 1993-03-18 1995-11-22 日亜化孊工業株匏䌚瀟 Phosphor for X-ray intensifying screen and X-ray intensifying screen using the same
JP2008231185A (en) * 2007-03-19 2008-10-02 Konica Minolta Medical & Graphic Inc Scintillator composition, its manufacturing method and radiation detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3975326A1 (en) 2020-08-25 2022-03-30 Prime Planet Energy & Solutions, Inc. Power storage device and method of manufacturing same

Also Published As

Publication number Publication date
JPS6257485A (en) 1987-03-13

Similar Documents

Publication Publication Date Title
US5023014A (en) Phosphor
US5250366A (en) Phosphor which emits light by the excitation of X-ray, and a X-ray intensifying screen using the phosphor
US5120619A (en) X-ray phosphors and X-ray intensifying screen using the phosphor
US4959174A (en) Phosphor which emits light by the excitation of X-ray
JPH0344115B2 (en)
US4011455A (en) Phosphor screen
EP0202875B1 (en) X-ray phosphors and the process for producing the same
JPH0475480B2 (en)
JPS63309583A (en) Method of converting x ray to visible light
JPS59162499A (en) Radiation image conversion panel
US4839243A (en) Radiographic intensifying screen
JPH0149438B2 (en)
JP3480247B2 (en) X-ray phosphor and X-ray intensifying screen using the same
JPH0475951B2 (en)
JPH0668559B2 (en) Radiation sensitization screen
JPH0427534B2 (en)
EP0240272A2 (en) X-ray intensifying screen
JPS6233268B2 (en)
JP3487132B2 (en) X-ray phosphor and X-ray intensifying screen using the same
JPH0526838B2 (en)
JPS6198787A (en) Radiation image-conversion method, and radiation image-conversion panel used therefor
JP3561855B2 (en) Radiation intensifying screen and radiation image conversion panel
JPH07108974B2 (en) Phosphor for X-ray intensifying screen and X-ray intensifying screen using the same
JPH0527675B2 (en)
JPS6261043A (en) Radiation image forming method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term