[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0142883B2 - - Google Patents

Info

Publication number
JPH0142883B2
JPH0142883B2 JP57093991A JP9399182A JPH0142883B2 JP H0142883 B2 JPH0142883 B2 JP H0142883B2 JP 57093991 A JP57093991 A JP 57093991A JP 9399182 A JP9399182 A JP 9399182A JP H0142883 B2 JPH0142883 B2 JP H0142883B2
Authority
JP
Japan
Prior art keywords
graphite
titanium carbide
tio
residue
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57093991A
Other languages
Japanese (ja)
Other versions
JPS58213616A (en
Inventor
Kazuteru Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP57093991A priority Critical patent/JPS58213616A/en
Publication of JPS58213616A publication Critical patent/JPS58213616A/en
Publication of JPH0142883B2 publication Critical patent/JPH0142883B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、イルメナイトの塩酸あるいは硫酸に
よるアツプルグレーデイング浸出工程から排出さ
れる浸出残渣中のTiO2と各種炭素材等を原料と
する、炭化チタン粉末または炭化チタンとグラフ
アイトの混合粉末粒子の製造法に関するものであ
る。
Detailed Description of the Invention The present invention relates to titanium carbide powder or titanium carbide graphite made from TiO 2 in the leaching residue discharged from the apple grading leaching process of ilmenite with hydrochloric acid or sulfuric acid and various carbon materials. The present invention relates to a method for producing Aite mixed powder particles.

本発明の主たる目的は、従来浸出残渣として特
に活用されることなく廃棄されていた、イルナイ
トの塩酸あるいは硫酸浸出工程から排出される浸
出残渣中の微粒のルチル型TiO2を主とするTi化
合物の新らしい有効利用法の一つとして、特に前
処理工程において残渣中に含まれるSiO2、Cr2O3
などの不純物を除去することなく、高温高真空下
で炭化、脱酸素反応を行なわせ研摩材あるいは耐
摩耗材として優れた性質を示す微粒の炭化チタン
粉末、あるいはこれに潤滑性を付加した産物とし
て炭化チタンおよびグラフアイト混合粉末の製造
法を開発することである。
The main purpose of the present invention is to recover Ti compounds mainly consisting of fine rutile-type TiO 2 in the leaching residue discharged from the hydrochloric acid or sulfuric acid leaching process of Illunite, which has conventionally been discarded without being particularly utilized as leaching residue. As one of the new effective utilization methods, SiO 2 and Cr 2 O 3 contained in the residue, especially in the pretreatment process, are
Fine titanium carbide powder is produced through carbonization and deoxidation reactions at high temperatures and high vacuum without removing impurities such as, and exhibits excellent properties as an abrasive or wear-resistant material, or carbonized as a product with added lubricity. The objective is to develop a method for producing mixed powder of titanium and graphite.

イルメナイトの浸出残渣は、ルチル型TiO2
主とするTi化合物の他にFe2O3、SiO2、Al2O3
Cr2O3などの未反応成分を含み、一般に極めて微
粒である。
The ilmenite leaching residue contains Ti compounds mainly composed of rutile-type TiO 2 as well as Fe 2 O 3 , SiO 2 , Al 2 O 3 ,
It contains unreacted components such as Cr 2 O 3 and is generally extremely fine.

浸出残渣は、中和後適当な過助剤を加えて
過水洗し、廃棄しているのが現状である。その成
分組成は原料イルメナイトの産地成分組成、浸出
条件などにより可成り広範囲に変化するものであ
るが一例として、マレー産イルメナイトと豪州産
イルメナイトを7:4で混合したものの硫酸浸出
残渣の組成を示せば次の通りである。
At present, the leaching residue is neutralized, washed with water after adding an appropriate supernatant, and then disposed of. Its composition varies over a wide range depending on the origin of the raw ilmenite, leaching conditions, etc. As an example, show the composition of the sulfuric acid leaching residue of a 7:4 mixture of Malayan ilmenite and Australian ilmenite. The example is as follows.

硫酸浸出残渣組成例(重量%) TiO2:43.14%、Fe2O3:16.36%、SiO2:7.62
%Al2O3:0.72%、Cr2O3:0.06% このようにTiO2品位は高く、その有効利用が
望まれるが、浸出残渣中の組成成分がいずれも金
属酸化成分であり、しかも極めて微粒であるた
め、たとえば浮選法のような微粒の選別法として
知られる方法を適用しても浮選精鉱あるいは尾鉱
中にTiO2を十分高い品位で回収することはきわ
めて困難である。しかし資源の枯渇にともなう低
品位化への道を歩む現在、この浸出残渣を廃棄す
ることは資源の有効利用の立場から考えても適切
ではない。
Example of composition of sulfuric acid leaching residue (wt%) TiO 2 : 43.14%, Fe 2 O 3 : 16.36%, SiO 2 : 7.62
%Al 2 O 3 : 0.72%, Cr 2 O 3 : 0.06% As shown above, the TiO 2 grade is high and its effective utilization is desired, but all of the compositional components in the leaching residue are metal oxidizing components and are extremely Since the particles are fine, it is extremely difficult to recover TiO 2 in a sufficiently high grade in the flotation concentrate or tailings even if a method known as a separation method for fine particles such as flotation is applied. However, now that we are on the path to lower quality as resources are depleted, it is not appropriate to dispose of this leached residue from the standpoint of effective resource utilization.

一方現在炭化チタンは高純度のTiO2鉱物すな
わちルチル(金紅石)またはアナターゼ(鋭錐
石)を原料鉱物として、これを還元炭化すること
によつて製造されている。
On the other hand, currently, titanium carbide is produced by reducing and carbonizing high-purity TiO 2 minerals, such as rutile or anatase, as a raw material mineral.

一般にTiO2の炭化反応は TiO2(s)+3C(s)=TiC(s)+2CO(g) (1) で表わされるものである。この反応は平衡論的に
は可成り低温度から進行すると考えられるが、工
業的な製造を目的とする場合には速度論的な観点
から、たとえば千数百度の高温を用いることが必
要である。もしこのような高温領域で他の酸化物
たとえばSiO2あるいはCr2O3などを系外に除去す
ることが可能であるならば、イルメナイトの浸出
残渣を出発原料として高純度の炭化チタンを製造
することが可能になる。
Generally, the carbonization reaction of TiO 2 is expressed as TiO 2 (s) + 3C (s) = TiC (s) + 2CO (g) (1). From an equilibrium standpoint, this reaction is thought to proceed at a fairly low temperature, but for industrial production purposes, it is necessary to use a high temperature of, for example, several hundred degrees, from a kinetic standpoint. . If it is possible to remove other oxides such as SiO 2 or Cr 2 O 3 from the system in such a high temperature range, high purity titanium carbide can be produced using the ilmenite leaching residue as a starting material. becomes possible.

式(1)の反応により炭化チタンが製造されるとす
れば、反応に必要なC/O比はモル比で1.5にな
るはずであるが、このような条件下でTiO2の炭
化を行うならば必らず炭素が生成物中に残存する
ようになる。この反応に添加する炭素材としては
反応活性度の強い無定形の炭素であつても、グラ
フアイトであつてもよいが高温反応であるため直
接反応にあずからなかつた余剰の炭素分は、生成
物中ではグラフアイトの形をとる。
If titanium carbide is produced by the reaction of formula (1), the C/O ratio required for the reaction should be 1.5 in terms of molar ratio, but if TiO 2 is carbonized under these conditions, Carbon inevitably remains in the product. The carbon material added to this reaction may be amorphous carbon with strong reaction activity or graphite, but since the reaction is a high temperature reaction, the excess carbon that does not directly participate in the reaction will be In objects, it takes the form of graphite.

実際の反応において前記式(1)の化学的量的混合
を必要としない理由としては (1) 還元初期の低温で、かつ酸素ポテンシヤルが
高いTiO2と炭素とが反応するときには、反応
生成物は式(1)に示したごとくCOではなくむし
ろCO2として脱ガスされる。
The reasons why the chemical quantitative mixing of formula (1) is not required in the actual reaction are as follows: (1) When TiO 2 , which has a high oxygen potential, reacts with carbon at a low temperature in the initial stage of reduction, the reaction product is As shown in equation (1), it is degassed not as CO but rather as CO 2 .

(2) 還元過程で生成されるTiOが揮発性であるた
め酸素が余分に除去される、などの理由が考え
られる。このように低級酸化物が揮発性である
ことは、他のSiやCrの酸化物の場合も同様で
あり、これら不純物の低級酸化がTiOに比して
低温度でおこるため、それらの元素の除去が可
能になる。
(2) Possible reasons include that TiO produced during the reduction process is volatile, so excess oxygen is removed. The volatility of lower oxides is also the same for other Si and Cr oxides, and because the lower oxidation of these impurities occurs at lower temperatures than TiO, these elements are less volatile. Removal becomes possible.

これらの推論を支持する実験結果としては、イ
ルメナイトの硫酸浸出残渣を残渣中のTiO2に比
してモル比でC/Oが1.45になるように電極用高
純度グラフアイト粉末を加え、400Kg/cm2の加圧
下にて成形したものを1900℃、10-4Torrで1時
間反応させると、28.32wt%の炭素および残留酸
素390ppmを含有した炭化チタンとグラフアイト
の混合生成物が得られる。この生成物のX線回折
像を示すと第1図の如くである。
Experimental results supporting these inferences include adding high-purity graphite powder for electrodes to the sulfuric acid leaching residue of ilmenite so that the molar ratio of C/O to TiO 2 in the residue is 1.45. When molded under a pressure of cm 2 and reacted for 1 hour at 1900° C. and 10 −4 Torr, a mixed product of titanium carbide and graphite containing 28.32 wt% carbon and 390 ppm residual oxygen is obtained. The X-ray diffraction image of this product is shown in FIG.

この図から明らかなように炭化チタンおよびグ
ラフアイト相以外のX線回折ピークはみられな
い。事実この生成物を発光分光分析した結果は、
極く微量のSi、Cr、V、Zr、B、Fe、Al、およ
びZnの存在が認められるだけで、残渣中に存在
した不純物が殆んど完全に系外に除去されたこと
を示している。
As is clear from this figure, no X-ray diffraction peaks other than titanium carbide and graphite phases are observed. In fact, the results of emission spectroscopic analysis of this product are as follows.
The presence of very small amounts of Si, Cr, V, Zr, B, Fe, Al, and Zn indicates that the impurities present in the residue were almost completely removed from the system. There is.

理論的には原子量比でC/Ti>0.95にて炭化チ
タンとグラフアイトの混合相が生成し、C/
Ti:0.53〜0.95の範囲では炭化チタンの単相にな
ることが知られている。
Theoretically, a mixed phase of titanium carbide and graphite is formed at an atomic weight ratio of C/Ti>0.95, and C/Ti
Ti: It is known that a single phase of titanium carbide occurs in the range of 0.53 to 0.95.

同一残渣をC/Oモル比で1.35になるように加
圧成形し、温度1600℃10-4Torrで2時間還元炭
化すると第2図に示すように炭化チタンの単相が
生成される。この場合にもたとえばSiCや他の不
純物の炭化物および酸化物のX線回折ピークは認
められない。
When the same residue is pressure-molded to a C/O molar ratio of 1.35 and subjected to reductive carbonization at a temperature of 1600° C. and 10 −4 Torr for 2 hours, a single phase of titanium carbide is produced as shown in FIG. 2. In this case, for example, no X-ray diffraction peaks of carbides and oxides of SiC or other impurities are observed.

以下実施例によつて本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 出発原料として、イルメナイトの硫酸浸出残渣
の水洗、過、乾燥した産物および市販の電極用
グラフアイト粉末(99.99%、200mesh)を使用
した前者はTiO2:43.14%、Fe:11.44%、
Al2O3:0.72%、Cr2O3:0.06%を含有するもので
ある。浸出残渣中に含有されるTiO2のOを基準
としてモル比でC/O=1.48になるようにグラフ
アイトを混合し、300Kg/cm2の圧力下で柱状に成
形する。この際使用した乾燥残渣は92.59g、グ
ラフアイトは17.76gであつた。これを温度1900
℃、最終真空度10-4Torrで1時間還元炭化する
と炭素含量62.42at%残留酸素360ppmの銀黒色の
生成物が得られた。この生成物をX線回折法によ
り相同定した結果はTiCとグラフアイトの混合物
でありTiCの格子定数4.3308Åを得た。
Example 1 As starting materials, a product obtained by washing, filtering, and drying the sulfuric acid leaching residue of ilmenite and a commercially available graphite powder for electrodes (99.99%, 200mesh) were used.The former contained TiO2 : 43.14%, Fe: 11.44%,
It contains Al 2 O 3 : 0.72% and Cr 2 O 3 : 0.06%. Graphite is mixed at a molar ratio of C/O=1.48 based on O in TiO 2 contained in the leaching residue, and formed into a columnar shape under a pressure of 300 Kg/cm 2 . The amount of dried residue used at this time was 92.59 g, and the amount of graphite used was 17.76 g. This temperature is 1900
C. and a final vacuum of 10.sup. -4 Torr for 1 hour, a silver-black product with a carbon content of 62.42 at% and residual oxygen of 360 ppm was obtained. Phase identification of this product by X-ray diffraction revealed that it was a mixture of TiC and graphite, and the lattice constant of TiC was 4.3308 Å.

実施例 2 実施例1と同じ出発原料を用いC/Oモル比
1.42になるようにグラフアイトを添加後混合成形
し、1900℃、10-4Torrで1時間還元炭化を行つ
た。その結果得られた生成物は61.77at%の炭素
を含有し、残留酸素250ppmの銀黒色粉末である。
X線による相同定の結果はこの生成物がTiCとグ
ラフアイトの混合物であることを示している。得
られたTiCの格子定数は4.3305Åであつた。
Example 2 Using the same starting materials as Example 1 and C/O molar ratio
Graphite was added to give a particle diameter of 1.42, followed by mixing and molding, followed by reduction carbonization at 1900°C and 10 -4 Torr for 1 hour. The resulting product is a silver-black powder containing 61.77 at% carbon and 250 ppm residual oxygen.
X-ray phase identification results show that the product is a mixture of TiC and graphite. The lattice constant of the obtained TiC was 4.3305 Å.

実施例 3 実施例1と同じ出発原料を用いC/Oモル比
1.35になるようにグラフアイトを添加後、混合成
形し、1600℃10-4Torrで2時間還元炭化を行い、
銀黒色の粒子生成物を得た。X線相同定の結果は
格子定数4.3303ÅのTiC単相の生成を示す。生成
物の炭素含量は46.06at%残留酸素は374ppmであ
つた。
Example 3 Using the same starting materials as Example 1 and C/O molar ratio
After adding graphite to a concentration of 1.35, it was mixed and molded, and subjected to reduction carbonization for 2 hours at 1600℃ and 10 -4 Torr.
A silver-black particle product was obtained. The results of X-ray phase identification indicate the formation of a TiC single phase with a lattice constant of 4.3303 Å. The carbon content of the product was 46.06 at% and the residual oxygen was 374 ppm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により得られた炭化チタンとグ
ラフアイト混合粉末のX線回折図である。第2図
は本発明より得られた炭化チタン粉末のX線回折
図である。
FIG. 1 is an X-ray diffraction diagram of a mixed powder of titanium carbide and graphite obtained according to the present invention. FIG. 2 is an X-ray diffraction diagram of titanium carbide powder obtained according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 イルメナイトの硫酸または塩酸浸出残渣を乾
燥後、無定形炭素あるいはグラフアイトを上記残
渣中に含有されたTiO2の0に対してC/Oモル
比=1.0〜2.0となるような量で加えて圧縮成形
し、真空炉中で温度1400℃〜2700℃の範囲内で高
真空下で炭化することにより、不純物含量のレベ
ルの低い炭化チタンまたは炭化チタンとグラフア
イトの混合物の粉末粒子を得ることを特徴とする
炭化チタンの製造法。
1 After drying the sulfuric acid or hydrochloric acid leaching residue of ilmenite, add amorphous carbon or graphite in an amount such that the C/O molar ratio is 1.0 to 2.0 with respect to 0 of TiO 2 contained in the above residue. To obtain powder particles of titanium carbide or a mixture of titanium carbide and graphite with a low level of impurity content by compression molding and carbonization under high vacuum at temperatures ranging from 1400 °C to 2700 °C in a vacuum furnace. Characteristic manufacturing method of titanium carbide.
JP57093991A 1982-06-03 1982-06-03 Production of titanium carbide using leaching residue of ilmenite as raw material Granted JPS58213616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57093991A JPS58213616A (en) 1982-06-03 1982-06-03 Production of titanium carbide using leaching residue of ilmenite as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57093991A JPS58213616A (en) 1982-06-03 1982-06-03 Production of titanium carbide using leaching residue of ilmenite as raw material

Publications (2)

Publication Number Publication Date
JPS58213616A JPS58213616A (en) 1983-12-12
JPH0142883B2 true JPH0142883B2 (en) 1989-09-18

Family

ID=14097863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57093991A Granted JPS58213616A (en) 1982-06-03 1982-06-03 Production of titanium carbide using leaching residue of ilmenite as raw material

Country Status (1)

Country Link
JP (1) JPS58213616A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567970A (en) * 2016-01-05 2016-05-11 北京科技大学 Titanium carbide prepared by adopting ilmenite and smelting process and application of titanium carbide
CN109019601A (en) * 2018-08-24 2018-12-18 攀钢集团攀枝花钢铁研究院有限公司 The method for preparing carbide slag using sulfate process titanium dioxide acid hydrolysis residue

Also Published As

Publication number Publication date
JPS58213616A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
AU2006338573B2 (en) Thermal and electrochemical process for metal production
FR2545077A1 (en) PREPARATION OF METALLIC DIBORIDE POWDERS
US10316391B2 (en) Method of producing titanium from titanium oxides through magnesium vapour reduction
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US2792310A (en) Production of a mutual solid solution of tic and tio
US4105752A (en) Aluminum chloride production
US3875286A (en) Beneficiation of ilmenite ores
JPH0142883B2 (en)
US3047477A (en) Reduction of titanium dioxide
US2618531A (en) Method of purifying zirconium tetrachloride vapors
US3900552A (en) Preparation of highly pure titanium tetrachloride from perovskite or titanite
JPS6227316A (en) Production of fine power of high purity silicon carbide
US3607012A (en) Process for the production of titanium and iron material
US3914113A (en) Titanium carbide preparation
US4582696A (en) Method of making a special purity silicon nitride powder
US3739061A (en) Manufacture of synthetic rutile
US4256708A (en) Process for recovering tungsten from cemented tungsten carbide
US3397958A (en) Process for the production of purified aluminum nitride
US4425311A (en) Production of a purified alumina-silica product and substantially pure aluminum trichloride from bauxites and clays
DD240729A1 (en) METHOD FOR OBTAINING HIGH-PURITY SILICON POWDER
US3786133A (en) Titanium carbide preparation
US3056649A (en) Tantalum and columbium pentafluoride production
US1239885A (en) Process for treating ores.
US4425310A (en) Production of aluminum chlorides from bauxites and clays
US3106455A (en) Purification of metal carbides and borides