JPH0142534B2 - - Google Patents
Info
- Publication number
- JPH0142534B2 JPH0142534B2 JP56174457A JP17445781A JPH0142534B2 JP H0142534 B2 JPH0142534 B2 JP H0142534B2 JP 56174457 A JP56174457 A JP 56174457A JP 17445781 A JP17445781 A JP 17445781A JP H0142534 B2 JPH0142534 B2 JP H0142534B2
- Authority
- JP
- Japan
- Prior art keywords
- time
- transponders
- wireless transmission
- acoustic pulse
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005540 biological transmission Effects 0.000 claims description 19
- 238000005259 measurement Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B11/00—Transmission systems employing sonic, ultrasonic or infrasonic waves
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Radio Transmission System (AREA)
Description
【発明の詳細な説明】
本発明は、3次元的位置を計測する水中位置計
測システムにおいて必要となるデータを、狭帯域
で伝送することができる無線伝送装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wireless transmission device capable of transmitting data required in an underwater position measurement system that measures three-dimensional position in a narrow band.
水中での3次元的位置、すなわち航走体などの
水中を移動する物体の位置を、精度よく計測する
システムとして、海底に設置された3個以上の受
波器またはトランスポンダを基準点とし、物体と
これら基準点の間の直距離を音響的に計測し、こ
れら直距離と基準点の座標とから物体の位置を算
出する、いわゆるロングベースライン方式があ
る。すなわち、直距離を測るために物体から音響
パルス信号を送信し、この信号を基準点において
受信し、その伝搬に要した時間を計測し、この時
間に音速を乗じることにより物体と基準点の間の
直距離を得る。基準点が受波器である場合、受信
した信号を別個にケーブルまたは無線伝送路を通
して陸上または船上へ伝送し、そこで検波などの
処理を行うのが従来の方法であつた。 As a system to accurately measure the three-dimensional position underwater, that is, the position of an object moving underwater, such as a navigation vehicle, three or more receivers or transponders installed on the seabed are used as reference points to measure the three-dimensional position of underwater objects. There is a so-called long baseline method in which the direct distance between the reference point and the reference point is acoustically measured, and the position of the object is calculated from the direct distance and the coordinates of the reference point. In other words, to measure the direct distance, an acoustic pulse signal is transmitted from an object, this signal is received at a reference point, the time required for propagation is measured, and this time is multiplied by the speed of sound to determine the distance between the object and the reference point. Get the direct distance of When the reference point is a wave receiver, the conventional method is to separately transmit the received signal to land or ship via a cable or wireless transmission path, and perform processing such as detection there.
この従来の方法のうち特に無線伝送を用いる場
合の問題点は、受信信号を直接伝送するため広い
周波数帯域を必要とし、特殊な回線を必要とする
こと、および基準点の数に等しい伝送チヤネル数
が必要になるため電波の割当てが得にくいことで
ある。 Among these conventional methods, the problems with wireless transmission in particular are that it requires a wide frequency band to directly transmit the received signal, requires special lines, and that the number of transmission channels is equal to the number of reference points. This makes it difficult to obtain allocation of radio waves.
本発明はこれらの欠点を除くため、まず1個の
基準点のみを受波器とし、他の基準点をトランス
ポンダとすることにより必要な伝送路の数を1に
減らし、さらに受波器の受信信号をそのまま伝送
するのではなく、検波などの処理を施し、受信時
刻データに変換し、通常のデータ回線により伝送
可能としたものであり、以下詳細に説明する。 In order to eliminate these drawbacks, the present invention first uses only one reference point as a receiver and the other reference points as transponders, thereby reducing the number of necessary transmission lines to one, and furthermore, Rather than transmitting the signal as it is, it performs processing such as detection and converts it into reception time data, which can be transmitted over a normal data line, and will be explained in detail below.
第1図は本発明の実施例であり、1は位置計測
すべき水中物体、2は音源装置、31,…,34は
トランスポンダ、4は受波器、5は中間ブイ、6
は海面ブイ、7は水上船である。水中物体1には
音響パルス信号を送信する音源装置2を取付け、
これから送出された信号をトランスポンダ31,
…,34および受波器4で受信する。トランスポ
ンダ31,…,34のうち少なくとも2つがこの信
号に応答し、それぞれ異なる周波数の音響パルス
信号を送信する。これらのトランスポンダから送
信された信号は上記の音源装置2から送信された
信号と共に受波器4で受信され、水中ケーブル8
を介して海面ブイ6に送られる。受波器4は中間
ブイ5により吊られ、トランスポンダ31,…,
34と同様に海底に対して一定の位置に保持され
る。海面ブイ6では、受波器4で受信された信号
の中から周波数の異なるパルス信号が分離して検
出され、それらの受信時刻が計測される。計測結
果は符号系列に変換され、電波に乗せられアンテ
ナから送信され、水上船7で受信される。ここ
で、符号系列が復調され、計測データが再生され
るので、このデータを船上の位置計算器に入力
し、水中物体1の位置すなわち3次元的位置を計
算する。 FIG. 1 shows an embodiment of the present invention, in which 1 is an underwater object whose position is to be measured, 2 is a sound source device, 3 1 ,..., 3 4 are transponders, 4 is a receiver, 5 is an intermediate buoy, and 6 is a transponder.
is a surface buoy, and 7 is a surface ship. A sound source device 2 that transmits an acoustic pulse signal is attached to the underwater object 1,
The signal sent from this is transmitted to the transponder 3 1 ,
..., 3 4 and receiver 4. At least two of the transponders 3 1 , . . . , 3 4 respond to this signal, each transmitting an acoustic pulse signal of a different frequency. The signals transmitted from these transponders are received by the receiver 4 together with the signals transmitted from the sound source device 2, and the underwater cable 8
is sent to sea surface buoy 6 via. The receiver 4 is suspended by an intermediate buoy 5, and the transponders 3 1 ,...,
3 Similar to 4 , it is held in a fixed position relative to the seabed. At the sea surface buoy 6, pulse signals having different frequencies are separated and detected from among the signals received by the wave receiver 4, and their reception times are measured. The measurement results are converted into a code sequence, transmitted via radio waves from an antenna, and received by the watercraft 7. Here, since the code sequence is demodulated and the measurement data is reproduced, this data is input to the onboard position calculator to calculate the position of the underwater object 1, that is, the three-dimensional position.
第2図は海面ブイ6のブロツク図であり、10
は入力端子、11はパルス検出器群、12はタイ
マ群、13は並列直列変換器、14はクロツク発
生器、15はフレーム符号結合器、16は無線送
信器、17はアンテナである。第1図の受波器4
で受信された信号は入力端子10に加えられ、パ
ルス検出器群11の各パルス検出器に入力され
る。各パルス検出器は特定の周波数のパルス信号
を検出するものであり、パルス信号を検出したな
らトリガ信号を発生し、タイマ群12のうちの対
応するタイマを起動する。クロツク発生器14は
タイマ群12の各タイマに小周期T0のクロツク
信号を供給すると共に、大周期Tfごとにこれら
各タイマの出力を並列直列変換器13に出力した
後、直ちにこれら各タイマをリセツトし、次の大
周期間における動作にそなええる。並列直列変換
器13に貯えられたタイマ群12の出力は、中周
期Ttの周期で直列に読み出され、フレーム符号
結合器15においてその先頭にフレーム符号を付
加され、無線送信器16に送られる。無線送信器
16では搬送波信号がこの中周期Ttのレートの
符号系列によつてFSK(周波数シフトキーイン
グ)などの変調を受け、アンテナ17から空中に
送出される。 Figure 2 is a block diagram of sea buoy 6 and 10
11 is an input terminal, 11 is a pulse detector group, 12 is a timer group, 13 is a parallel-to-serial converter, 14 is a clock generator, 15 is a frame code combiner, 16 is a radio transmitter, and 17 is an antenna. Receiver 4 in Figure 1
The signal received at is applied to the input terminal 10 and input to each pulse detector of the pulse detector group 11. Each pulse detector detects a pulse signal of a specific frequency, and when it detects a pulse signal, it generates a trigger signal and starts the corresponding timer of the timer group 12. The clock generator 14 supplies a clock signal with a small period T0 to each timer in the timer group 12, and outputs the output of each of these timers to the parallel-to-serial converter 13 every large period Tf , and then immediately outputs the output of each of these timers to the parallel-serial converter 13. and prepare for operation in the next major cycle. The outputs of the timer group 12 stored in the parallel-to-serial converter 13 are read out in series at a medium period Tt , a frame code is added to the beginning of the output in the frame code combiner 15, and the output is sent to the wireless transmitter 16. It will be done. In the radio transmitter 16, the carrier wave signal is subjected to modulation such as FSK (frequency shift keying) using a code sequence with a rate of medium period Tt , and is sent into the air from the antenna 17.
いま、同時に計測できる水中物体の数を2と
し、トランスポンダの数を4とする。各水中物体
の送出するパルス信号の周波数を0および0′と
し、これらに応答して各トランスポンダから送出
されるパルス信号の周波数を1、2、3、4およ
び1′、2′、3′、4′とする。このときの送信
符号
系列は第3図のようになる。ここで、Fはフレー
ムコード、0、1、…はそれぞれ周波数0、1、
…のパルス信号の検出の有無と受信時刻を表わす
コードである。フレームコードFの先頭の位置を
各タイマの読出しの時刻とすると、各受信時刻の
コードはこの読出し時刻を基準として小周期T0
を単位として測つた時間(負値と解釈する)を表
わしている。フレームコードFの発生時刻は、船
上の無線受信器によつて海面ブイ6の送信信号を
受信し、標準時計と照合することにより分かるの
で、このフレームコードFに引き続く受信時刻コ
ード(負値)をフレームコードの発生時刻に加え
ることにより、音響パルスの受信時刻を知ること
ができる。したがつて、水中物体1に取付られた
音源装置2の送信信号の送信タイミングを予め標
準時計に同期させておけば、各音響パルスの伝搬
時間を計測できることになり、この伝搬時間に水
中での音速を乗ずることにより伝搬距離が求めら
れ、これとトランスポンダ31,…,34および受
波器4の座標とから水中物体1の位置が算出され
る。トランスポンダ31,…,34および受波器4
の座標は、前もつて、通常の音響航法におけるの
と同様のキヤリブレーシヨンの操作により定めら
れる。 Assume now that the number of underwater objects that can be measured simultaneously is two, and the number of transponders is four. The frequencies of the pulse signals sent by each underwater object are 0 and 0 ', and the frequencies of the pulse signals sent from each transponder in response are 1 , 2 , 3 , 4, and 1 ', 2 ', 3 ', 4 ′. The transmission code sequence at this time is as shown in FIG. Here, F is the frame code, and 0 , 1 , ... are the frequencies 0 , 1, ..., respectively.
This code indicates whether or not a pulse signal is detected and the reception time. Assuming that the start position of the frame code F is the readout time of each timer, the code at each reception time has a short cycle T 0 with this readout time as a reference.
It represents time measured in units of (interpreted as a negative value). The time of occurrence of frame code F can be determined by receiving the transmission signal from the sea surface buoy 6 using the onboard radio receiver and comparing it with the standard clock. Therefore, the reception time code (negative value) following this frame code By adding this to the frame code generation time, the reception time of the acoustic pulse can be determined. Therefore, if the transmission timing of the transmission signal of the sound source device 2 attached to the underwater object 1 is synchronized with the standard clock in advance, the propagation time of each acoustic pulse can be measured, and the The propagation distance is determined by multiplying by the speed of sound, and the position of the underwater object 1 is calculated from this and the coordinates of the transponders 3 1 , . . . , 3 4 and the receiver 4. Transponders 3 1 ,..., 3 4 and receiver 4
The coordinates of are previously determined by a calibration operation similar to that in normal acoustic navigation.
この装置を用いれば、大周期Tfの間に各周波
数について1個のパルス信号の検出の有無とその
検出時刻が伝送できるから、音源装置2の送信周
期Taを大周期Tfより大きくとれば、位置計測に
必要なすべての時刻データを1チヤネルの無線伝
送路によつて目的地まで伝送できる。例えば、上
記の例においてフレームコード語長を40ビツト、
受信時刻コードを20ビツト、Tf=1秒とすると、
伝送ルートは(40+20×5×2)=240ビツト/秒
となり、低速のデータ伝送路によつて伝送可能に
なるから、通常の無線回線を使用できる。 If this device is used, it is possible to transmit the presence or absence of detection of one pulse signal for each frequency and the detection time during the large period T f , so the transmission period T a of the sound source device 2 can be set to be larger than the large period T f . For example, all the time data necessary for position measurement can be transmitted to the destination via a single channel wireless transmission path. For example, in the above example, if the frame code word length is 40 bits,
Assuming that the reception time code is 20 bits and T f = 1 second,
The transmission route is (40 + 20 x 5 x 2) = 240 bits/sec, and since transmission is possible through a low-speed data transmission path, a normal wireless line can be used.
以上の説明では、計測すべき水中物体数を2、
トランスポンダの数を4、受波器の数を1とした
が、標準的使用法としては6個のトランスポンダ
を正六角形の頂点付近に、1個の受波器をその中
心付近に配置する。この場合、35波の音響パルス
信号を用いれば5個の水中物体を同時計測可能に
なる。しかも、伝送ルートは1000ビツト/秒以下
でよく、通常の無線回線で楽に伝送できる。 In the above explanation, the number of underwater objects to be measured is 2,
Although the number of transponders is four and the number of receivers is one, standard usage is to arrange six transponders near the vertices of a regular hexagon and one receiver near the center. In this case, five underwater objects can be measured simultaneously by using a 35-wave acoustic pulse signal. What's more, the transmission route requires less than 1000 bits/second, making it easy to transmit over ordinary wireless lines.
水中の計測範囲をより広くするには、上記の標
準的使用法で示したトランスポンダ6個、受波器
1個の組を1つの単位とし、複数の組を用いれば
よい。ただし、無線の回線は別にしなければなら
ないので計測範囲を広げると無線回線数を増さな
ければならないが、低速データ回線であるから回
線の割当て取得は比較的容易である。 In order to further widen the underwater measurement range, a set of six transponders and one receiver shown in the above standard usage may be used as one unit, and a plurality of sets may be used. However, since the wireless line must be separate, expanding the measurement range requires increasing the number of wireless lines, but since it is a low-speed data line, it is relatively easy to obtain a line assignment.
本発明は多周波の音響パルス信号を直接伝送す
る代りに、多周波数の音響パルス信号を分離して
検出し、その受信時刻を符号化し、多重化して、
1回線の無線伝送路で伝送できるようにしたの
で、移動式の水中位置計測システムに適用すれば
効果が大きい。 Instead of directly transmitting multi-frequency acoustic pulse signals, the present invention separates and detects multi-frequency acoustic pulse signals, encodes the reception time, and multiplexes the signals.
Since it is possible to transmit data using a single wireless transmission line, it will be highly effective if applied to a mobile underwater position measurement system.
第1図は本発明の実施例を示す説明図、第2図
は第1図における海面ブイ6のブロツク図、第3
図はその出力信号のタイムチヤートである。
1……水中物体、31,…,34……トランスポ
ンダ、4……受波器、6……海面ブイ、7……水
上船。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, FIG. 2 is a block diagram of the sea surface buoy 6 in FIG. 1, and FIG.
The figure is a time chart of the output signal. 1... Underwater object, 3 1 ,..., 3 4 ... Transponder, 4... Receiver, 6... Sea surface buoy, 7... Surface ship.
Claims (1)
数のトランスポンダとを備え、 前記受波器は、位置計測すべき物体から送出さ
れる音響パルス信号と複数の前記トランスポンダ
から送出される音響パルス信号とを受信するもの
であり、 前記受波器で受信した信号を無線伝送路を介し
て伝送し、且つ前記物体及び前記トランスポンダ
の音警パルス信号の周波数はそれぞれ異なるよう
に設定してある無線伝送装置において、 異なる周波数を持つ複数の音響パルスを分離し
て検出する手段と、 その検出の時刻とある基準の時刻との間の時間
を計時する手段と、 計時結果を直列に読み出す手段と、 上記基準の時刻を表わすコード(フレームコー
ド)と直列に読み出された計時結果とを直列に結
合して伝送する手段とを備えた無線伝送装置。[Claims] 1. As a reference point for position measurement, one wave receiving station and a plurality of transponders are provided, and the wave receiver receives an acoustic pulse signal sent from an object whose position is to be measured and a plurality of the transponders. The device receives an acoustic pulse signal sent from a transponder, and transmits the signal received by the receiver via a wireless transmission path, and the frequencies of the acoustic pulse signals of the object and the transponder are different from each other. In a wireless transmission device configured as described above, a means for separately detecting a plurality of acoustic pulses having different frequencies, a means for measuring the time between the time of detection and a certain reference time, and a time measurement result. A wireless transmission device comprising: means for serially reading out the reference time; and means for serially combining and transmitting a code (frame code) representing the reference time and a time measurement result read out in series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17445781A JPS5877338A (en) | 1981-11-02 | 1981-11-02 | Radio transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17445781A JPS5877338A (en) | 1981-11-02 | 1981-11-02 | Radio transmission system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5877338A JPS5877338A (en) | 1983-05-10 |
JPH0142534B2 true JPH0142534B2 (en) | 1989-09-13 |
Family
ID=15978819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17445781A Granted JPS5877338A (en) | 1981-11-02 | 1981-11-02 | Radio transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5877338A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61228371A (en) * | 1985-04-01 | 1986-10-11 | Unyusho Daiyon Kowan Kensetsu Kyokucho | Apparatus for detecting position in water |
CN104360314B (en) * | 2014-10-16 | 2017-01-25 | 浙江省计量科学研究院 | Metering and calibrating method and metering and calibrating device for sound source identifying and positioning system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485761A (en) * | 1977-12-20 | 1979-07-07 | Shin Meiwa Ind Co Ltd | Sound signal processor and its method |
JPS54136369A (en) * | 1978-04-14 | 1979-10-23 | Komatsu Mfg Co Ltd | Location detecting system of underwater moving body |
-
1981
- 1981-11-02 JP JP17445781A patent/JPS5877338A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485761A (en) * | 1977-12-20 | 1979-07-07 | Shin Meiwa Ind Co Ltd | Sound signal processor and its method |
JPS54136369A (en) * | 1978-04-14 | 1979-10-23 | Komatsu Mfg Co Ltd | Location detecting system of underwater moving body |
Also Published As
Publication number | Publication date |
---|---|
JPS5877338A (en) | 1983-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0447783B1 (en) | Hydroacoustic ranging system | |
JP2904241B2 (en) | Transmission method of differential data signal | |
US6532192B1 (en) | Subsea positioning system and apparatus | |
US4879713A (en) | Satellite-based vehicle communication/position determination system | |
CN103823205B (en) | Underwater locating navigation system and method | |
US4516226A (en) | Acoustic positioning system | |
US5214617A (en) | Hydroacoustic ranging system | |
US4559621A (en) | Telemetering acoustic method for determining the relative position of a submerged object with respect to a vehicle and device therefor | |
WO2003100451A3 (en) | Gps-based underwater cable positioning system | |
US20200271780A1 (en) | Underwater acoustic tracking and two way messaging system | |
US3864662A (en) | Telemetry systems employing active transponders | |
US3066279A (en) | Sonic ship speed indicator | |
US4924446A (en) | Navigation system and method for determining the position of a relatively noisy platform using underwater transponders | |
US5142507A (en) | Hydroacoustic ranging system | |
JPH0142534B2 (en) | ||
JP5114768B2 (en) | Structure of acoustic multistatic system | |
JPH08136650A (en) | Acoustic position measuring instrument | |
US4042904A (en) | Hydroways | |
JP2916362B2 (en) | Apparatus and method for correcting sound velocity in position measurement | |
JPS6336174A (en) | Buoy for underwater position measurement | |
JPS6037432B2 (en) | Ultrasonic distance measuring device | |
JP2591484B2 (en) | Buoy positioning device | |
JPH0230788Y2 (en) | ||
CN109975763B (en) | Underwater asynchronous positioning method and system based on-demand transceiving | |
JPH08114665A (en) | Radio sonobuoy position detecting system |