[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0137475B2 - - Google Patents

Info

Publication number
JPH0137475B2
JPH0137475B2 JP56501232A JP50123281A JPH0137475B2 JP H0137475 B2 JPH0137475 B2 JP H0137475B2 JP 56501232 A JP56501232 A JP 56501232A JP 50123281 A JP50123281 A JP 50123281A JP H0137475 B2 JPH0137475 B2 JP H0137475B2
Authority
JP
Japan
Prior art keywords
layer
coating film
thickness
cutting
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56501232A
Other languages
Japanese (ja)
Other versions
JPS58500068A (en
Inventor
Anatorii Afuanashebitsuchi Andoreefu
Igoru Bashiriebitsuchi Gaburiruko
Arekusei Georugiebitsuchi Gaburirofu
Anatorii Sutepanobitsuchi Bereshaka
Bikutoru Petorobitsuchi Jedo
Barentein Gurebobi Padaruka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUSESO NAUCHINO ISUSUREDO INSUTORUMENTARUNUI INST
Original Assignee
FUSESO NAUCHINO ISUSUREDO INSUTORUMENTARUNUI INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/SE1981/000019 external-priority patent/WO1981002175A1/en
Application filed by FUSESO NAUCHINO ISUSUREDO INSUTORUMENTARUNUI INST filed Critical FUSESO NAUCHINO ISUSUREDO INSUTORUMENTARUNUI INST
Publication of JPS58500068A publication Critical patent/JPS58500068A/en
Publication of JPH0137475B2 publication Critical patent/JPH0137475B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)

Description

請求の範囲 1 族および族金属の窒化物層、炭化物層、
硼化物層又は珪化物層の複数の層を含む20μm以
下厚さの金属切削工具の多層コーテイング膜にお
いて、 前記族金属の窒化物層又は炭化物層と前記
族金属の窒化物層、炭化物層、硼化物層又は珪化
物層とを交互に多数回重ね、かつ、前記族金属
の窒化物層又は炭化物層の各層厚さが0.05ないし
0.5μmであり、そして前記族金属の窒化物層、
炭化物層、硼化物層又は珪化物層の各層厚さが前
記族金属の窒化物層又は炭化物層の各層厚さの
15ないし40%であることを特徴とする金属切削工
具の多層コーテイング膜。
Claim 1 Nitride layer, carbide layer of group and group metals,
In a multilayer coating film for a metal cutting tool having a thickness of 20 μm or less, which includes a plurality of boride layers or silicide layers, a nitride layer or carbide layer of the group metal and a nitride layer, carbide layer, or boron layer of the group metal. oxide layers or silicide layers are alternately stacked many times, and the thickness of each nitride layer or carbide layer of the above group metal is 0.05 to 0.05.
0.5 μm, and a nitride layer of a group metal;
The thickness of each layer of the carbide layer, boride layer or silicide layer is the same as the thickness of each layer of the nitride layer or carbide layer of the above group metal.
A multilayer coating film for metal cutting tools, characterized in that the coating film is 15 to 40%.

技術分野 本発明は金属加工、より詳しく述べるならば、
金属切削工具の多層コーテイング膜に関するもの
である。
Technical Field The present invention relates to metal processing, and more specifically,
This invention relates to a multilayer coating film for metal cutting tools.

背景技術 ひとつが族金属の窒化物又は炭化物の層であ
つて、他方が純金属の層である2つの構成要素の
層を交互に重ねることによつて構成した多層コー
テイング膜が当業者に知られている。(R.F.
Bunshan and Shebaik,Research/
Development,June,1975参照)。
BACKGROUND OF THE INVENTION Multilayer coatings constructed by alternating layers of two components, one layer of a group metal nitride or carbide and the other layer of a pure metal, are known to those skilled in the art. ing. (RF
Bunshan and Shebaik, Research/
Development, June, 1975).

族金属の窒化物又は炭化物の層の微少硬度は
2200ないし3000Kg/mm2であり、そして純金属の層
の微少硬度は600ないし900Kg/mm2である。純金属
のソフトな層が脆い層のクラツク発生を防止し、
かつ全体としてコーテイング膜の強さを高めるの
に寄与する。このようなコーテイング膜は構造用
鋼の加工中にかかる変動負荷での破損に対して高
い抵抗力がありかつ工具がその切削表面のひとつ
に再ドレツシングを施こされるときにも割れな
い。しかしながら難切削材料(高合金材料)の切
削において、コーテイング膜材および被切削部分
の粘着によつて生じる付着摩耗のために工具の耐
久性は低い。切削領域での高温(前述の材料の低
い熱伝導の結果でもある)および難切削材料の切
削についての低い切削速度特性が粘着プロセスを
助長する。可塑性の活性純金属はそのより硬くか
つ不活発な化合物よりも切削した材料に容易に粘
着する。したがつて、コーテイング膜中の純金属
層包含物が全体としてコーテイング膜のより速い
付着摩耗を招く。
The microhardness of the nitride or carbide layer of group metals is
2200 to 3000 Kg/mm 2 and the microhardness of the pure metal layer is 600 to 900 Kg/mm 2 . The soft layer of pure metal prevents cracks in the brittle layer,
Moreover, it contributes to increasing the strength of the coating film as a whole. Such a coating is highly resistant to failure under fluctuating loads encountered during machining of structural steel and does not crack when the tool is redressed on one of its cutting surfaces. However, when cutting difficult-to-cut materials (high alloy materials), the durability of the tool is low due to adhesive wear caused by adhesion between the coating material and the cut portion. High temperatures in the cutting area (also a result of the low thermal conductivity of the aforementioned materials) and low cutting speed characteristics for cutting difficult-to-cut materials favor the sticking process. Plastic active pure metals adhere to cut materials more easily than their harder and more inert compounds. Therefore, pure metal layer inclusions in the coating film lead to faster adhesive wear of the coating film as a whole.

発明の開示 本発明の目的は、金属切削工具の多層コーテイ
ング膜を提供することであり、このコーテイング
膜が含んでいる構成要素はコーテイング膜の高強
度を保持し同時に難切削材料をも含む各種材料の
加工で低い粘着能力を特色としており、それによ
つてコーテイング膜の付着摩耗が最小にされかつ
コーテイング膜の摩耗抵抗が全体として高められ
る。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a multilayer coating film for a metal cutting tool, in which the constituent elements contained in the coating film maintain the high strength of the coating film, and at the same time are made of various materials including difficult-to-cut materials. The process features a low adhesion capacity, which minimizes the adhesive wear of the coating and increases the overall abrasion resistance of the coating.

この目的は、族および族金属の窒化物層、
炭化物層、硼化物層又は珪化物層の複数の層を含
む20μm以下の厚さの金属切削工具の多層コーテ
イング膜において、族金属の窒化物層又は炭化
物層と族金属の窒化物層、炭化物層、硼化物層
又は珪化物層とを交互に多数回重ね、かつ、族
金属の窒化物層又は炭化物層の各層厚さが0.05な
いし0.5μmであり、そして族金属の窒化物層、
炭化物層、硼化物層又は珪化物層の各層厚さが
族金属の窒化物層又は炭化物層の各層厚さの15な
いし40%であることを特徴とする金属切削工具の
多層コーテイング膜によつて達成される。
This purpose consists of nitride layers of group and group metals,
In a multilayer coating film for a metal cutting tool with a thickness of 20 μm or less, which includes multiple layers of carbide, boride, or silicide, a nitride or carbide layer of a group metal and a nitride or carbide layer of a group metal , boride layers or silicide layers are alternately stacked many times, and each group metal nitride layer or carbide layer has a thickness of 0.05 to 0.5 μm, and a group metal nitride layer,
By a multilayer coating film for a metal cutting tool, characterized in that the thickness of each layer of the carbide layer, boride layer, or silicide layer is 15 to 40% of the thickness of each layer of the nitride layer or carbide layer of a group metal. achieved.

本発明に係る2つの構成要素(族金属化合物
および族金属化合物)を含んでなりかつ上述し
た層厚さを有する多層コーテイング膜は被加工材
との付着相互作用の低いことを特徴としており、
その結果コーテイング膜の摩耗は減少しかつこの
ようなコーテイング膜を有する工具の摩耗抵抗は
向上する。
The multilayer coating film according to the present invention, which comprises two constituent elements (a group metal compound and a group metal compound) and has the above-mentioned layer thickness, is characterized by low adhesive interaction with the workpiece,
As a result, the wear of the coating is reduced and the wear resistance of tools with such a coating is increased.

難切削材料の加工において、族金属の炭化物
および窒化物の高微少硬度がコーテイング膜表面
に対して直角に向けられた塑性変形を防止する。
強化されたコーテイング膜は、界面で分けられた
族金属化合物層および族金属化合物層の交互
に重なつている層を500以下含んでなる。各界面
は、切削過程における上側層内のクラツク形成の
際にクラツク形成エネルギーを散逸させかつ実質
的にクラツクが下側層内へ伸びるのを抑える。
In machining difficult-to-cut materials, the high microhardness of group metal carbides and nitrides prevents plastic deformation directed at right angles to the coating surface.
The reinforced coating comprises no more than 500 alternating layers of group metal compound layers and group metal compound layers separated by interfaces. Each interface dissipates crack formation energy during crack formation in the upper layer during the cutting process and substantially inhibits crack extension into the lower layer.

より薄い層を形成している族金属化合物は摩
耗抵抗を改善し、切削領域内で高温にて酸化され
た摩耗生成物が硬い潤滑材として働き、このよう
にして工具切削リツプの摩耗、切削力および温度
を下げ、そしてモリブデン、クロムおよびタング
ステンの酸化物が不活性バリヤを形成し、このバ
リヤがコーテイング膜と被加工材料との間の付着
相互作用を防止しかつコーテイング膜の摩耗を全
体として減らす。
The group metal compounds forming a thinner layer improve the wear resistance, and the wear products oxidized at high temperatures in the cutting zone act as a hard lubricant, thus reducing the wear of the tool cutting lip and the cutting force. and lowering the temperature, and the oxides of molybdenum, chromium and tungsten form an inert barrier that prevents adhesive interactions between the coating film and the workpiece material and reduces overall wear of the coating film. .

金属化合物層の厚さは、最適の潤滑特性および
コーテイング膜と被加工材料との間の付着相互作
用のため対策を考慮して、実験によつて定めた。
The thickness of the metal compound layer was determined experimentally, taking into account optimal lubrication properties and measures for adhesive interaction between the coating film and the workpiece material.

発明を実施するための最良の形態 本明細書中で提案した多層コーテイング膜は簡
単な技術によつて、例えば、従来のイオン衝撃を
伴なう材料の凝結方法によつて作ることができ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The multilayer coating membrane proposed herein can be made by simple techniques, for example by conventional ion bombardment material condensation methods.

上述した構成要素の複数の層を単一プロセスサ
イクルによつてコーテイングする。この目的のた
めに金属切削工具を真空室内部の回転プラツトホ
ーム上に置く。この真空室は族耐火金属製カソ
ードおよび族耐火金属製カソードを備えてい
る。工具を陰極としてアーク放電を工具とこれら
カソードとの間の空間に発生させる。その結果、
カソードから追い出された金属相原子がアーク領
域内でイオン化される。結果としてのプラスイオ
ンが工具の陰極によつて加速され、工具表面に衝
突してこの表面をクリーニングしかつ加熱する。
Multiple layers of the components described above are coated in a single process cycle. For this purpose, a metal cutting tool is placed on a rotating platform inside the vacuum chamber. The vacuum chamber includes a Group refractory metal cathode and a Group refractory metal cathode. Using the tool as a cathode, an arc discharge is generated in the space between the tool and these cathodes. the result,
Metal phase atoms expelled from the cathode are ionized within the arc region. The resulting positive ions are accelerated by the tool's cathode and impinge on the tool surface, cleaning and heating the surface.

工具表面が必要な温度に加熱された後で、反応
ガス(窒素、メタン、シランあるいはボロンな
ど)を真空室内へ導入して耐火金属の耐摩耗性か
つ耐熱性化合物を工具表面に析出させる。
After the tool surface is heated to the required temperature, a reactive gas (such as nitrogen, methane, silane or boron) is introduced into the vacuum chamber to deposit the wear-resistant and heat-resistant compounds of the refractory metal onto the tool surface.

本発明を良く理解するために下記実施例である
本発明の特別な実施態様を説明する。
For a better understanding of the invention, the following examples describe specific embodiments of the invention.

実施例 1 ISOのP,M系の超硬合金で作られた三角形ス
ローアウエイチツプを使用している切削工具を前
述した方法によつて合計厚さ20μmの多層コーテ
イング膜で被覆した。多層コーテイング膜はそれ
ぞれの層厚さが0.05μmと0.015μmであるTiN層
−Mo2N層の交互に重なつている層からなつてい
た。すなわち、0.05μm厚さのTiN層とその30%
厚さである0.015μm厚さのMo2N層とを交互に多
数積層して20μm厚さの多層コーテイング膜を形
成した。
Example 1 A cutting tool using a triangular throw-away tip made of ISO P,M cemented carbide was coated with a multilayer coating film with a total thickness of 20 μm by the method described above. The multilayer coating consisted of alternating layers of TiN-Mo 2 N layers with respective layer thicknesses of 0.05 μm and 0.015 μm. i.e. 0.05μm thick TiN layer and its 30%
A multilayer coating film with a thickness of 20 μm was formed by alternately laminating a large number of Mo 2 N layers with a thickness of 0.015 μm.

組成(重量%)がC 0.03−0.07%、Si<0.5
%、Mn<0.4%、Cr13−16%、Ni73%、Ti2.5
%、Al1.45−1.2%、Mo2.8−3.2%、Co1.9−2.2%
およびFe残部である耐熱高合金の旋削によつて
工具サンプルを試験した。
Composition (wt%): C 0.03-0.07%, Si<0.5
%, Mn<0.4%, Cr13−16%, Ni73%, Ti2.5
%, Al1.45−1.2%, Mo2.8−3.2%, Co1.9−2.2%
Tool samples were tested by turning of heat-resistant high alloys with Fe and Fe balance.

切削条件は切り込み0.3−0.5mm、切削速度37.6
m/min、送り0.15mm/revであつた。
Cutting conditions: depth of cut 0.3-0.5mm, cutting speed 37.6
The feed rate was 0.15 mm/rev.

多層コーテイング膜を使用している工具の耐久
度は20.2分に達した。
The durability of the tool using the multilayer coating film reached 20.2 minutes.

同様にして実施例2ないし9を本発明明で規定
した範囲で各ケースにおいて多層コーテイング膜
の構成要素およびそれぞれの厚さを変えて行なつ
た。
Similarly, Examples 2 to 9 were carried out by changing the constituent elements of the multilayer coating film and their respective thicknesses in each case within the range specified by the present invention.

実施例1ないし9の試験結果を第1表に示す。 The test results of Examples 1 to 9 are shown in Table 1.

加えて、実施例1にて述べた工具と同様であつ
て合計厚さ20μmのチタン窒化物層およびチタン
層の交互に重なつている層の先行技術のコーテイ
ング膜で被膜した切削工具を比較データを得るた
めに試験した。従来のコーテイング膜を有する切
削工具を試験して得られた結果を第1表中に比較
例AおよびBで示した。
In addition, comparative data is provided for a cutting tool similar to the tool described in Example 1 but coated with a prior art coating of alternating layers of titanium nitride and titanium layers with a total thickness of 20 μm. Tested to obtain. The results obtained by testing cutting tools with conventional coatings are shown in Table 1 as Comparative Examples A and B.

【表】 ※…比較例
上記試験結果から、本発明に係る多層コーテイ
ング膜を有する切削工具の耐久度は先行技術のチ
タン窒化物およびチタンの多層コーテイング膜を
有する切削工具の耐久性よりも4ないし5倍良
い。
[Table] *Comparative example From the above test results, the durability of the cutting tool having the multilayer coating film according to the present invention is 4 to 4 times higher than the durability of the cutting tool having the multilayer coating film of titanium nitride and titanium of the prior art. 5 times better.

実施例 10 W18重量%、V2重量%、Co8重量および残部
Feの合金で作られたヘリングボーンカツター
(直径80×45mm)に上述した方法によつて合計厚
さ20μmでそれぞれの層厚さが0.05μmおよび
0.015μmであるTiN層−Mo2N層の多層コーテイ
ング膜を被覆した。
Example 10 W18 weight%, V2 weight%, Co8 weight and balance
A herringbone cutter (diameter 80 x 45 mm) made of Fe alloy was prepared using the method described above with a total thickness of 20 μm and each layer thickness of 0.05 μm.
A multilayer coating of TiN layer-Mo 2 N layer with a thickness of 0.015 μm was applied.

このカツターを、Cr20重量%、Mn<1重量
%、Ti<1重量%およびFe残部の合金サンプル
を切削して試験した。切削条件は: (a)速度…… 18rpm (b)送り…… 31.5mm/min (c)切り込み…… 4mm であつた。
This cutter was tested by cutting an alloy sample of 20 wt.% Cr, <1 wt.% Mn, <1 wt.% Ti, and balance Fe. The cutting conditions were: (a) Speed... 18 rpm (b) Feed... 31.5 mm/min (c) Depth of cut... 4 mm.

本発明に係るコーテイング膜を有するカツター
は44部品の切削に耐えることがわかつた。
It was found that the cutter having the coating film according to the present invention could withstand cutting of 44 parts.

Tin層−Ti層の交互に重なつている層の従来の
コーテイング膜を有する同様なカツターを試験し
て、このカツターはたつたの8部品の加工に耐え
ることがわかつた。
A similar cutter with a conventional coating of alternating layers of Tin-Ti layers was tested and found to withstand machining of just eight parts.

実施例 11 多層コーテイング膜の構成要素をZrN層−
MoC層としそれぞれの層厚さを0.5μmおよび
0.15μmとしたことのみを違えて実施例10と同じ
ようにして試験を行なつた。試験から上述したコ
ーテイング膜を有するカツターが42部品の加工
に耐えるのに適すること、すなわち、このカツタ
ーの耐久度が先行技術の多層コーテイング膜を有
するカツターの耐久度よにも約5倍良いことがわ
かつた。
Example 11 The component of the multilayer coating film is a ZrN layer.
As a MoC layer, each layer thickness is 0.5μm and
The test was conducted in the same manner as in Example 10, except that the thickness was 0.15 μm. Tests have shown that the cutter with the above-mentioned coating film is suitable for withstanding the machining of 42 parts, that is, the durability of this cutter is about 5 times better than that of the cutter with the multilayer coating film of the prior art. I understand.

実施例 12 多層コーテイング膜の構成要素をHfC層−WC
層としそれぞれの層厚さが0.1μmおよび0.03μm
であることだけを違えて実施例10と同じようにし
て試験を行なつた。試験から上述したコーテイン
グ膜を有するカツターが49部品の加工に耐えるの
に適すること、すなわち、耐久度が約6倍高いこ
とがわかつた。
Example 12 Components of multilayer coating film are HfC layer-WC
The thickness of each layer is 0.1μm and 0.03μm.
The test was conducted in the same manner as in Example 10 with the only difference that . The tests showed that the cutter with the above-mentioned coating film was suitable for withstanding the processing of 49 parts, that is, the durability was about 6 times higher.

実施例 13 W 18重量%およびFe残部の合金で作られた
ブローチ(寸法150×25×30)に上述した寸法に
よつて合計厚さ20μmでそれぞれの層厚さが0.3μ
mおよび0.1μmであるTiC層−CrC層の交互に重
なつている層からなる多層コーテイング膜を被覆
した。
Example 13 A brooch (dimensions 150 x 25 x 30) made of an alloy with 18% by weight of W and a balance of Fe was given a total thickness of 20 μm and a layer thickness of 0.3 μm in each case according to the dimensions mentioned above.
A multilayer coating consisting of alternating TiC-CrC layers of 0.1 μm and 0.1 μm was applied.

下記組成(重量%):C0.13−0.18%、Si<0.6
%、Mn<0.6%、Cr11−13%、Ni1.5−2.0%、W
<1%、Mo1.35−1.65%、V0.18−0.3%、Nb0.3
%およびFe残部からなるステンレス鋼のサンプ
ルを加工することによつてブローチを試験した。
The following composition (wt%): C0.13-0.18%, Si<0.6
%, Mn<0.6%, Cr11-13%, Ni1.5-2.0%, W
<1%, Mo1.35-1.65%, V0.18-0.3%, Nb0.3
The broach was tested by processing stainless steel samples consisting of % and Fe balance.

このブローチが197部品の加工に耐えるとわか
つた。
It turned out that this brooch could withstand the processing of 197 parts.

比較のために、TiN層−Ti層の従来の多層コ
ーテイング膜を有する同様なブローチを試験し
た。先行技術のコーテイング膜を有するブローチ
が45部品の加工に適すること、すなわち、その耐
久度が4.5分1と低いことがわかつた。
For comparison, a similar broach with a conventional multilayer coating of TiN layer-Ti layer was tested. It was found that the broach with the coating film of the prior art is suitable for processing 45 parts, ie its durability is 4.5 times lower.

実施例 14 多層コーテイング膜の構成要素をZrN層−
MoSi2層としそれぞれの層厚さが0.2μmおよび
0.03μmであることだけを違えて実施例13の場
合と同様に試験を行なつた。このブローチは165
部品の加工に耐えた、すなわち、ブローチの耐久
度は先行技術の多層コーテイング膜を有するブロ
ーチと比較して3.1倍高い。
Example 14 A ZrN layer is used as a component of a multilayer coating film.
Two layers of MoSi, each with a thickness of 0.2 μm and
The test was carried out in the same manner as in Example 13, except that the thickness was 0.03 μm. This brooch is 165
The parts withstood the processing, i.e. the durability of the broach is 3.1 times higher compared to broaches with multi-layer coating film of the prior art.

産業上の利用可能性 本発明に係る多層コーテイング膜は、ドリル、
カツター、切削工具などあらゆる金属切削工具の
耐久度を高めることを意図した処理に最も有利に
使用することができそして高合金鋼(難切削鋼)
および高合金を加工するのに用いる工具の場合に
特に役立つ。
Industrial applicability The multilayer coating film according to the present invention can be applied to drills,
It can be most advantageously used in treatments intended to increase the durability of any metal cutting tools, such as cutters, cutting tools, etc. and high-alloy steels (difficult-to-cut steels)
It is particularly useful in the case of tools used to machine and high alloys.

JP50123281A 1981-01-26 1981-02-23 Multilayer coating for metal cutting tools Granted JPS58500068A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE1981/000019 WO1981002175A1 (en) 1980-01-25 1981-01-26 Procedure to raise a building and an arrangement carrying out the procedure

Publications (2)

Publication Number Publication Date
JPS58500068A JPS58500068A (en) 1983-01-13
JPH0137475B2 true JPH0137475B2 (en) 1989-08-07

Family

ID=20342812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50123281A Granted JPS58500068A (en) 1981-01-26 1981-02-23 Multilayer coating for metal cutting tools

Country Status (1)

Country Link
JP (1) JPS58500068A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062937B2 (en) * 1986-08-06 1994-01-12 住友金属鉱山株式会社 Method for manufacturing surface-coated steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152942A (en) * 1974-11-05 1976-05-11 Toyoda Chuo Kenkyusho Kk Daigoeezokugenso mataha chitanno tankabutsusoto kuromuno tankabutsusono nijuhifukusoojusuru kobuzai
JPS52110209A (en) * 1976-03-15 1977-09-16 Mitsubishi Metal Corp Coated hard alloy tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152942A (en) * 1974-11-05 1976-05-11 Toyoda Chuo Kenkyusho Kk Daigoeezokugenso mataha chitanno tankabutsusoto kuromuno tankabutsusono nijuhifukusoojusuru kobuzai
JPS52110209A (en) * 1976-03-15 1977-09-16 Mitsubishi Metal Corp Coated hard alloy tool

Also Published As

Publication number Publication date
JPS58500068A (en) 1983-01-13

Similar Documents

Publication Publication Date Title
US4554201A (en) Multilayer coatings of metal-cutting tools
KR101616600B1 (en) Tool coated with hard coating
KR102198744B1 (en) Surface covering cutting tool
JP4704335B2 (en) Surface coated cutting tool
JP2009203489A (en) Coating member
WO1991005076A1 (en) Surface-coated hard member for cutting and abrasion-resistant tools
JP4393650B2 (en) Wear-resistant coated tool
JP2014079834A (en) Surface-coated cutting tool
WO2016181813A1 (en) Hard coating and hard coating-covered member
JPH05116003A (en) Tool member excellent in chipping resistance
JPH0137475B2 (en)
JP4350822B2 (en) Hard film and hard film coated member with excellent wear resistance
KR930010709B1 (en) Surface-coated hard member having excellent abrasion resistance
CN114761606B (en) Cutting tool with hard coating film formed thereon
JP5234332B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP6959577B2 (en) Surface coating cutting tool
JP2000017423A (en) Tool coated with high toughness hard laminated coating
JP2021088039A (en) Surface coating-cutting tool
JP4702535B2 (en) Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2008260098A (en) Surface-coated cutting tool
JP4582412B2 (en) Cutting tool made of surface-coated high-speed tool steel that provides excellent wear resistance with a hard coating layer in high-speed cutting of high-hardness steel
JP2012143851A (en) Surface-coated cutting tool
JP5975339B2 (en) Surface coated cutting tool
JP4771199B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2008260097A (en) Surface-coated cutting tool