JPH0135190B2 - - Google Patents
Info
- Publication number
- JPH0135190B2 JPH0135190B2 JP55125737A JP12573780A JPH0135190B2 JP H0135190 B2 JPH0135190 B2 JP H0135190B2 JP 55125737 A JP55125737 A JP 55125737A JP 12573780 A JP12573780 A JP 12573780A JP H0135190 B2 JPH0135190 B2 JP H0135190B2
- Authority
- JP
- Japan
- Prior art keywords
- slider
- swash plate
- piston
- convex curved
- curved surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 18
- 239000010959 steel Substances 0.000 claims description 18
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 239000011651 chromium Substances 0.000 claims description 11
- 229910000676 Si alloy Inorganic materials 0.000 claims description 5
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 description 20
- 239000003921 oil Substances 0.000 description 15
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 14
- 238000005461 lubrication Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 239000010687 lubricating oil Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000003746 surface roughness Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000003507 refrigerant Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010721 machine oil Substances 0.000 description 3
- FXNGWBDIVIGISM-UHFFFAOYSA-N methylidynechromium Chemical group [Cr]#[C] FXNGWBDIVIGISM-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000000573 anti-seizure effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000669 Chrome steel Inorganic materials 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/0873—Component parts, e.g. sealings; Manufacturing or assembly thereof
- F04B27/0878—Pistons
- F04B27/0886—Piston shoes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/10—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
- F04B27/1036—Component parts, details, e.g. sealings, lubrication
- F04B27/1054—Actuating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/90—Alloys not otherwise provided for
- F05C2201/906—Phosphor-bronze alloy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2203/00—Non-metallic inorganic materials
- F05C2203/08—Ceramics; Oxides
- F05C2203/0804—Non-oxide ceramics
- F05C2203/0856—Sulfides
- F05C2203/086—Sulfides of molybdenum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2253/00—Other material characteristics; Treatment of material
- F05C2253/12—Coating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
産業上の利用分野
本発明は斜板式圧縮機に関し、特に斜板とピス
トンとの間に配設される摺動子の改良に関するも
のである。
従来の技術および問題点
斜板式圧縮機の一種に、回転軸に一定角度傾斜
して固着された斜板と、回転軸に平行に設けられ
たシリンダ内に嵌装されたピストンと、斜板とピ
ストンとの間に配設された摺動部材とを含み、斜
板の回転によつてピストンが往復動させられ、シ
リンダ内に気体が導入され、圧縮されるものがあ
る。
この圧縮機の摺動部材は、従来、ピストンに設
けられた凹部に係合する鋼球と、板状体の一方の
面が前記斜板と摺接し、他方の面に設けられた凹
部が鋼球と係合するシユーとから構成されてい
た。そのため、摺動部分が多いことから製作コス
トが高くなり、部品点数が多いから小形軽量化の
障害となり、しかも組立ての作業性および部品管
理が煩雑である問題があつた。
これらの問題を解決するため、先に前記シユー
を省略した斜板式圧縮機を開発し、出願した。実
願昭53−121758号および特願昭55−29667号がそ
れである。
かかる斜板式圧縮機の摺動部材は平面部が斜板
に摺接し、球面部がピストンに設けられた凹部に
係合した半球状の摺動子のみによつて構成され、
小型軽量化、コスト低減等が達成される。
しかし、車両空調用の圧縮機においては、近時
軽量化に対する要求がさらに高まつてきたため、
本出願人は圧縮機における大形部材である斜板お
よびピストンをアルミニウム合金化することを計
画し、上述の半球状の摺動子とアルミニウム−シ
リコン系合金(以下Al−Si系合金という)製斜
板およびピストンとを組み合わせた圧縮機を試作
した。この試作機は従来のものに比較して大幅に
軽量化されたのであるが、運転試験の結果、摺動
子と斜板との間に焼付が生じ易く、また、摺動子
のピストンに対する接触面の摩耗も大きいことが
判明し、特に冷媒ガス中に油ミストを混合する潤
滑方式が適用される場合には、商品化するに十分
な耐久性を得ることが困難であることが判明し
た。
本発明の発明者等は、以上の事情を背景として
苛酷な潤滑条件下においても焼付を生じず、摺動
子の寿命が長い斜板式圧縮機を開発するために鋭
意研究を重ねた結果、前記平面部を僅かに膨出し
た凸曲面とするとともに、摺動子の硬度を一定以
上にすれば焼付が防止され、摺動子の摩耗も軽減
されて、商品化するに十分な耐久性が得られると
いう事実を見い出した。本発明はこの知見に基づ
いて為されたものである。
問題点を解決するための手段
すなわち、本発明は、a回転軸に一定角度傾斜
して固着された斜板と、b回転軸に平行に設けら
れたシリンダ内に嵌装されたピストンと、c球面
部および平面部を備え、球面部においてピストン
に設けられた凹部と係合する一方、平面部におい
て斜板と摺接して、斜板の駆動力を前記ピストン
に伝達するほぼ半球状の摺動子とを含み、斜板の
回転に伴なつてピストンが往復動させられる斜板
式圧縮機において、斜板およびピストンをアルミ
ニウム−シリコン系合金製とする一方、摺動子を
クロム含有鋼製とするとともに焼入れにより硬度
を50HRC以上とし、かつ、摺動子の平面部を、
中央を頂点とし、高さが15μm以下である滑らか
な凸曲面としたものである。
作用および効果
このように、摺動子の平面部に極めて曲率半径
の大きい凸曲面を形成すれば、斜板の回転に伴つ
て摺動子と斜板との間に油膜が形成され易くな
り、両者の耐摩耗性ならびに耐焼付性が著しく向
上する。
摺動子用のクロム含有鋼としては、高炭素クロ
ム軸受鋼(SUJ)、クロムモリブデン鋼(SCM)、
クロム鋼(SCr)等が好適であり、このようなク
ロム含有鋼を焼入れすれば、相当に硬いマトリツ
クス中に極めて硬いクロムカーバイドの微粒子が
均一に分散した組織が得られ、硬度が50HRC以
上と高いにも拘らず、なじみ性のよい摺動面が得
られる。
比較的柔らかい母材の摺動面に炭素等を浸透さ
せ、あるいは溶射、メツキ等を施すことによつて
硬質層を形成することも可能であるが、この場合
には硬質層は全体が極めて硬いものとなり、なじ
み性の悪いものとなるために、50HRC以上の硬
度に焼入れしたクロム含有鋼のように良好な耐焼
付性は得られないのである。
また、一般に、互いに摺動する2部材が同系統
の材料から成る場合には、焼付きが生じ易いもの
であるが、本願発明に係る斜板式圧縮機において
は斜板がアルミニウム−シリコン系合金製である
のに対し、摺動子がクロム含有鋼であり、両者が
系統の全く異なる材料から成るため、この点から
も耐焼付性が向上する効果が得られる。
このように、本発明に従えば斜板と摺動子との
焼付きが良好に回避される上、摺動子の摺動面の
硬度が高いため、この摺動面の摩耗も良好に回避
され、高さが15μm以下と極めて低い凸曲面が長
期間にわたつて良好に維持され、さらに、ピスト
ンとの摺動面である球面部の硬度も高いためにこ
の部分の摩耗も良好に回避されて、耐久性に優れ
た斜板式圧縮機が得られる。アルミニウム−シリ
コン系合金製の軽い斜板およびピストンを備える
とともに、鋼球とシユーとの組合わせに代えて半
球状の摺動子を備え、コンパクトで軽い斜板式圧
縮機が、本発明の完成によつて始めて真に実用に
適したものとなつたと言つても過言ではないので
ある。
実施例
以下、車両空調用等の冷凍装置に適用可能な斜
板式圧縮機に本発明を適用した場合の実施例を図
面に基づいて説明する。
第1図において1,2はシリンダブロツクであ
り、互に対称な形状のシリンダブロツク1,2が
2個合わせられることによつて、圧縮機本体3を
構成している。各シリンダブロツク1,2には3
個ずつ(5個ずつでもよい)のシリンダボア1
a,2aが回転軸5と平行に形成され、これらシ
リンダボア1a,2aに両頭のAl−Si系合金製
のピストン4が摺動可能に嵌合されている。圧縮
機本体3の中心孔3aには回転軸5が挿通され、
軸受6,7によつて回転可能に支承されている。
この回転軸5の中央部には重力鋳造によつて製造
されたAl−Si系合金製の斜板8がスプリングピ
ン9によつて固定されており、この斜板8が回転
するとき、ほぼ半球状で硬度が最も望ましい値で
ある60HRC(ロツクウエル硬度)以上のクロム含
有鋼製の摺動子10を介してピストン4がシリン
ダボア1a,2a内で往復運動させられるように
なつている。すなわち、第2図に示されるよう
に、摺動子10は、球面部10aと平面部10b
とを備え、平面部10bがその中央を頂点とし、
高さが最も望ましいで値である2〜5μmの極め
て曲率半径の大きい滑らかな凸面10cとされる
とともに、平面部10bの外周縁には平面部10
bに対して小さい傾斜角度を成す面取部10dが
形成されている。凸曲面10cは肉眼によれば平
面と見える程度なのでその存否が確認されない
が、測定機によると第3図に示されるプロフアイ
ルの如くに拡大されて十分確認され得、凸曲面1
0cの高さH1は、隣接する面取部10dとの境
界に形成された丸味部の円と凸曲面10cの接点
12aから頂点までの高さとして測定される。こ
のように形成された摺動子10は球面部10aが
ピストン4に設けられた凹部11に係合し、かつ
平面部10bが斜板8に摺接する状態で該斜板8
の両側にそれぞれ配設されている。13および1
4はスラスト軸受である。
なお、上記摺動子は焼入れされたクロム含有鋼
製のボールを切断し、その切断面に凸曲面10c
および面取部10dを形成するように仕上加工し
て製造してもよいし、予め半球状に鍛造加工して
焼入れした後、その表面にバフ研磨等の仕上加工
を施して製造してもよい。また、凸曲面10cは
曲率半径の大きい球面でよく、この場合には加工
が容易となる。
第1図にもどつてシリンダブロツク2の端面に
は、サクシヨンバルブシート15およびバルブプ
レート16、ガスケツト17を間に挟んでフロン
トハウジング20が固定されている。バルブプレ
ート16には3個ずつの吸入口16aおよび吐出
口16bが形成されており、それぞれサクシヨン
バルブシート15、および図示しないデイスチヤ
ージバルブリードと共同して3個の吸入弁18お
よび吐出弁19を構成している。各吸入弁18は
フロントハウジング20に形成された共通の吸入
室21から冷媒ガスを吸入し得る位置に設けられ
ており、各吐出弁19は共通の吐出室22へ冷媒
ガスを吐出し得る位置に設けられている。
前記回転軸5はフロントハウジング20の中央
部を貫通して外部に突出し、この突出端において
駆動源に接続される。回転軸5とフロントハウジ
ング20とは軸封装置23によつて気密を保たれ
ている。
一方、シリンダブロツク1の端面にはサクシヨ
ンバルブシート31、バルブプレート32、ガス
ケツト33を間に挟んでリヤハウジング34が固
定されており、各シリンダボア1aは吸入弁35
を介して吸入室36に、また吐出弁37を介して
吐出室38に接続されている。
前記吸入室21と同36とは圧縮機本体3を軸
方向に貫通して形成された図示しない吸入通路に
よつて互に連通させられ、同じく図示しない共通
の吸入フランジによつて吸入管に接続されてい
る。また、吐出室22と38とはそれぞれ、バル
ブプレート16,32に形成された孔39,40
とシリンダブロツク2,1に形成された吐出通路
41,42によつて共通の吐出フランジ43に接
続されている。
以上のように構成された斜板式圧縮機において
回転軸5が図示しないエンジン等の駆動源によつ
て回転させられると、回転軸5に固定された斜板
8が回転させられ、摺動子10を介してピストン
4を往復動させる。
このため、摺動子10は、斜板8の面のピスト
ン4に対する当り角度の変化に応じて揺動および
自転させられるとともに、摺動子10の平面部1
0bと斜板8との間の摺接部分には斜板板8の、
例えば23m/sec程度の速い周速と、例えば80
Kg/cm2程度の高い面圧(ピストンの負荷)とに基
づく激しい摩擦が発生する。とくに、冷媒ガス中
に混入させた油ミストによる潤滑方式が適用さ
れ、かつ回転軸5が低速で駆動された場合には、
摺動部分へ供給される潤滑油量が少なくなるた
め、摺動子10の焼付が容易に発生し得る状態と
なる。しかも、本実施例の斜板8がアルミニウム
合金の中では硬質で耐摩耗性および強度の高い
Al−Si系合金材で構成されているので、硬い摺
動子10との間で一層焼付き易いのである。
しかし、本発明の摺動子10の平面部10bに
は前述の如くの凸曲面10cが形成され、しかも
摺動子10は硬度が60HRC(ロツクウエル硬度)
以上に焼入れされたクロム含有鋼から成つている
ので、殆ど摺動子の焼付が発生しない。この効果
は凸曲面10cの存在、摺動子10の材質および
硬度、並びに斜板8の材質に基づくものであるか
ら、面取部10dおよび面取部10dと凸曲面1
0cとの境界の丸味部がなくても生じるが、これ
ら面取部10dおよび丸味部は斜板8の表面に付
着した油を積極的に摺動面に引き込んで油膜の形
成を促進する所謂ウエツジ効果を大きくし、層焼
付を生じ難くする作用を為す。
このように、平面部10bの中央を頂点として
僅かな高さH1に形成された凸曲面10cと摺動
子10の材質および硬度とがAl−Si系合金製の
斜板8との焼付きを防止し得るのは次の理由によ
るものと推察される。すなわち、凸曲面10cと
斜板8の表面との間に極めて角度の小さい、しか
もその角度が緩やかに減少する楔状の隙間が形成
されるため、高速で摺動が行われると斜板8の表
面に付着している潤滑油が容易に引き込まれて両
者を直接接触させない油膜が形成される、所謂ウ
エツジ効果による流体潤滑が構成されるのであ
る。また、摺動子10の前記揺動に伴つて、斜板
8と凸曲面10cとの当り部分がその回転毎に変
化し、摺接する当り部分の潤滑油の循環量を多く
することによつて、潤滑条件が一層改善されるこ
とが考えられる。
また、半球状の摺動子10は平面部10bの大
きさの割に高さが高いため、斜板8との間の摩擦
力に基づく回転モーメントの影響を強く受け、平
面部10bのリーデイングエツジ、すなわち斜板
8の回転方向に対向する側の縁が特に強く斜板8
に押圧される傾向があるのであるが、本実施例の
摺動子10においては平面部10bに凸曲面10
cが形成されているため、以下の理由でリーデイ
ングエツジの斜板への押圧が軽減されることも耐
焼付性向上の理由の一つと考えられる。摺動子1
0に上記のように回転モーメントが作用すれば、
凸曲面10cの存在によつて摺動子10に微小角
度の揺動が許容される(摺動子10とピストン4
との接触面は球面であるため、勿論摺動子10の
揺動を妨げることはない)。この摺動子10の揺
動に伴つて、凸曲面10cのリーデイングエツジ
に近い側の部分が斜板8に接近し、両者間の隙間
が減少するのであるが、この隙間は潤滑油が逃げ
ることを容易に許容しない程度に小さなものであ
るため、摺動子10の僅かな揺動に伴つて凸曲面
10cと斜板8との間に高い油膜圧力が発生し、
摺動子10がそれ以上揺動することを阻止する役
割を果たす。摺動子10の平面部10bが完全な
平面であれば、摺動子10が僅かな角度揺動した
だけでもリーデイングエツジが斜板8に高い面圧
で押し付けられて焼付が発生することとなるので
あるが、本摺動子10は平面部10bに凸曲面1
0cが形成されているために、そのような事態の
発生が回避され、起動トルクが減少し、発熱量が
低下して、摺動子10と斜板8との焼付が防止さ
れるのである。
更に、擢動子10は60HRCという高い硬度を
有するので、特に起動時や低速回転時等の斜板8
と摺動子10とが金属接触する機会において相互
に与え難く、このため斜板8のAl−Si系合金製
が摺動子10に凝着するのが防止されるととも
に、焼付が防止されることが考えられる。また、
摺動子10は平面部10bのみならず球面部も高
い硬度を有しているため、Al−Si系合金製であ
るピストン4との摺動面の摩耗も軽減されて、圧
縮機の耐久性がこの点からも向上すると考えられ
る。
以上の推論が妥当か否かは今後の研究に待たれ
るが、その効果は次の実験によつて証明されてい
る。
実験 1
異なる高さH1の凸曲面10cを備えた摺動子
の試料および凸曲面のない試料を使用し、斜板8
と同一材質の回転板に試料を押し付けてこの押圧
力を漸増させ、焼付が発生した場合の押付荷重
(焼付荷重)を測定した結果を表すグラフを第4
図に示す。なお、本実験は以下の条件下において
為されたものである。
回動板と摺動子との摩擦速度V:15m/秒
押付荷重:20Kg/20分漸増方式
潤滑条件:パツト給油方式(0.4cc/分)
油種:冷凍機油1/軽油9
摺動子:材質 高炭素クロム軸受鋼(SUJ−2)
球面部の直径 13.5mm
表面アラサ 0.3μm以下
回転板:真直度 1μm〜1.5μm
材質 Al−Si系合金(A390)
表面アラサ 0.7μm以下
第4図中に示された実線(凸曲面10cが形成
されたもの)によれば、凸曲面10cの高さH1
が僅かでもあれば焼付荷重が250Kgを超え、高さ
H1が約5μmのときに焼付荷重が最大(500Kg以
上)となり、その後漸減して、高さH1が15μmを
超えると焼付荷重が250Kgより小さくなる。一方、
同図中の点線(凸曲面10cが形成されないも
の)によれば、第5図に示されるような平面部1
0bに凸曲面10cが形成されず、平坦である場
合の摺動子の焼付荷重は160Kgであり、面取部1
0dと平面部10bとの間の境界に丸味部を設け
た場合にはその丸味部を含めた平面部10bの高
さH2が3μmのときに最大値(300Kgと)となり、
その後漸減する。なお、高さH2は丸味部の曲率
半径を有する円と面取部10dとの接点12bか
ら平面部10bまでの高さとして測定される。こ
のように、従来の平坦な平面部10bを有する摺
動子10に比較し、凸曲面10cを備えた摺動子
10の焼付荷重は常に優れており、特に凸曲面1
0cの高さH1が15μm以下の範囲においては従来
より高水準の250Kg以上の焼付荷重が確保される。
実験
一方、凸曲面10cの高さH1と摩耗量との関
係を調べるために行われた実験によれば、凸曲
面10cの高さH1の異なる摺動子試料を斜板8
と同じ材質(Al−Si系合金A390)の回転板に一
定荷重で押し付けると、所定時間後の高さの減少
量は第6図のグラフに示される如くとなる。な
お、本実験は以下の条件の下において為されたも
のである。
回転板と摺動子との摩擦速度V:15mm/秒
単位面積cm2あたり押付荷重:100Kg(ならし運転
中25Kg)
テスト時間:100時間(ならし運転30分後)
潤滑条件および油種:実験1と同じ
摺動子:材質 高炭素クロム軸受鋼(SUJ−2)
表面アラサ 0.3μm以下
球面部の直径 13.5mm
回転板:実験と同じ
第6図のグラフによれば凸曲面10cの高さ
H1が7μmを超えるとその高さH1の減少量(摩耗
量)が急激に増大する。この摩耗量の増大は斜板
8およびピストン4と摺動子10との間にガタを
発生させ、振動および騒音、あるいは圧縮機の寿
命短縮の原因となるものである。
したがつて、以上の両実験、の結果によれ
ば、摺動子10の摩耗量を増大させない範囲にお
いて、焼付荷重を向上させるための望ましい凸曲
面10cの高さは7μm以下であり、更に望まし
くは2−5μmである。
実験
第1表に示される各試料条件の摺動子を回転板
の表面に一定の荷重で押し付け、摺動子が焼付に
至るまでの時間を測定した結果を第7図および第
8図に示す。なお、本実験は以下の条件下におい
て為されたものである。
回転板と摺動子との摩擦速度V:15m/秒
単位面積cm2あたりの摺動子の荷重:120Kg(なら
し運転25Kg)
テスト時間:50時間(最大)
潤滑条件:パツト給油方式
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a swash plate compressor, and more particularly to an improvement in a slider disposed between a swash plate and a piston. Conventional Technology and Problems A type of swash plate compressor consists of a swash plate fixed to a rotating shaft at a fixed angle, a piston fitted in a cylinder parallel to the rotating shaft, and a swash plate. Some types include a sliding member disposed between the piston and the piston, and the piston is reciprocated by the rotation of the swash plate, and gas is introduced into the cylinder and compressed. Conventionally, the sliding member of this compressor consists of a steel ball that engages with a recess provided in a piston, one surface of a plate-shaped body slidingly contacts the swash plate, and a recess provided in the other surface made of steel. It consisted of a ball and a shoe that engaged with the ball. As a result, the manufacturing cost is high due to the large number of sliding parts, the large number of parts is an obstacle to miniaturization and weight reduction, and there are problems in that assembly workability and parts management are complicated. In order to solve these problems, we first developed a swash plate compressor that omitted the shoe and filed an application. These are Utility Application No. 53-121758 and Japanese Patent Application No. 55-29667. The sliding member of such a swash plate compressor is composed only of a hemispherical slider whose flat part slides on the swash plate and whose spherical part engages with a recess provided in the piston.
Small size, weight reduction, cost reduction, etc. are achieved. However, in recent years, there has been an increasing demand for lighter weight compressors for vehicle air conditioning.
The applicant planned to make the swash plate and piston, which are large components in a compressor, from an aluminum alloy, and made the above-mentioned hemispherical slider and an aluminum-silicon alloy (hereinafter referred to as an Al-Si alloy). We prototyped a compressor combining a swash plate and a piston. Although this prototype machine was significantly lighter than the conventional one, as a result of operational tests, it was found that seizure was likely to occur between the slider and the swash plate, and that contact between the slider and the piston It was also found that the surface wear was large, and it was found that it was difficult to obtain sufficient durability for commercialization, especially when a lubrication method in which oil mist was mixed into the refrigerant gas was applied. Against the background of the above circumstances, the inventors of the present invention have conducted intensive research in order to develop a swash plate compressor that does not cause seizure even under severe lubrication conditions and has a long slider life. By making the flat part a convex curved surface with a slight bulge, and by making the hardness of the slider above a certain level, seizure will be prevented and wear of the slider will be reduced, resulting in sufficient durability for commercialization. I discovered the fact that it can be done. The present invention has been made based on this knowledge. Means for Solving the Problems That is, the present invention has a swash plate fixed to the rotating shaft at a fixed angle, a piston fitted in a cylinder provided parallel to the rotating shaft, and c A substantially hemispherical sliding body comprising a spherical part and a flat part, the spherical part engaging with a recess provided in the piston, and the flat part slidingly contacting the swash plate to transmit the driving force of the swash plate to the piston. In a swash plate compressor in which the piston is reciprocated as the swash plate rotates, the swash plate and piston are made of an aluminum-silicon alloy, while the slider is made of chromium-containing steel. At the same time, the hardness is made 50H R C or more by quenching, and the flat part of the slider is
It is a smooth convex curved surface with a peak at the center and a height of 15 μm or less. Function and Effect As described above, if a convex curved surface with an extremely large radius of curvature is formed on the flat part of the slider, an oil film is likely to be formed between the slider and the swash plate as the swash plate rotates. The wear resistance and seizure resistance of both are significantly improved. Chromium-containing steels for sliders include high carbon chromium bearing steel (SUJ), chromium molybdenum steel (SCM),
Chrome steel (SCr) is suitable, and when such chromium-containing steel is hardened, a structure in which extremely hard chromium carbide fine particles are uniformly dispersed in a considerably hard matrix is obtained, and the hardness is 50H R C or higher. Despite the high surface roughness, a sliding surface with good conformability can be obtained. It is also possible to form a hard layer by infiltrating the sliding surface of a relatively soft base material with carbon, etc., or by thermal spraying, plating, etc., but in this case, the hard layer as a whole is extremely hard. This results in poor conformability, and therefore, it is not possible to obtain as good seizure resistance as with chromium-containing steel that has been hardened to a hardness of 50H R C or higher. Generally speaking, seizure is likely to occur when two members that slide against each other are made of the same type of material, but in the swash plate compressor according to the present invention, the swash plate is made of an aluminum-silicon alloy. On the other hand, since the slider is made of chromium-containing steel and both are made of completely different materials, this also provides the effect of improving seizure resistance. As described above, according to the present invention, seizure between the swash plate and the slider can be effectively avoided, and since the sliding surface of the slider has a high hardness, wear on this sliding surface can also be effectively avoided. The extremely low convex curved surface with a height of 15 μm or less is well maintained over a long period of time, and the hardness of the spherical part, which is the sliding surface with the piston, is also high, so wear in this part is well avoided. As a result, a swash plate compressor with excellent durability can be obtained. The present invention has been completed to provide a compact and light swash plate compressor that is equipped with a light swash plate and piston made of aluminum-silicon alloy, and has a hemispherical slider instead of the combination of steel balls and shoes. It is no exaggeration to say that only then did it become truly suitable for practical use. Embodiments Hereinafter, embodiments in which the present invention is applied to a swash plate compressor applicable to a refrigeration system for vehicle air conditioning will be described based on the drawings. In FIG. 1, reference numerals 1 and 2 indicate cylinder blocks, and a compressor main body 3 is constructed by combining two cylinder blocks 1 and 2 of mutually symmetrical shapes. 3 for each cylinder block 1 and 2
Cylinder bore 1 each (or 5 each)
a and 2a are formed parallel to the rotating shaft 5, and a double-headed piston 4 made of an Al--Si alloy is slidably fitted into these cylinder bores 1a and 2a. A rotating shaft 5 is inserted into the center hole 3a of the compressor body 3,
It is rotatably supported by bearings 6 and 7.
A swash plate 8 made of an Al-Si alloy manufactured by gravity casting is fixed to the center of the rotating shaft 5 by a spring pin 9. When the swash plate 8 rotates, it forms an approximately hemispherical surface. The piston 4 is made to reciprocate within the cylinder bores 1a, 2a through a slider 10 made of chromium-containing steel with a hardness of 60H R C (Rockwell hardness) or higher, which is the most desirable value. That is, as shown in FIG. 2, the slider 10 has a spherical part 10a and a flat part 10b.
The plane part 10b has its center as its apex,
The height is a smooth convex surface 10c with an extremely large radius of curvature, which is the most desirable value of 2 to 5 μm, and a flat portion 10c is formed on the outer peripheral edge of the flat portion 10b.
A chamfered portion 10d forming a small inclination angle with respect to b is formed. The presence or absence of the convex curved surface 10c cannot be confirmed because it looks like a flat surface to the naked eye, but it can be sufficiently confirmed by a measuring machine as shown in the profile shown in FIG. 3, and the convex curved surface 1
The height H1 of 0c is measured as the height from the point of contact 12a between the convex curved surface 10c and the circle of the rounded part formed at the boundary with the adjacent chamfered part 10d to the apex. The slider 10 formed in this manner has the spherical surface portion 10a engaged with the recess 11 provided in the piston 4, and the flat surface portion 10b in sliding contact with the swash plate 8.
are placed on both sides. 13 and 1
4 is a thrust bearing. The slider is made by cutting a ball made of hardened chromium-containing steel, and has a convex curved surface 10c on the cut surface.
It may be manufactured by finishing it to form the chamfered portion 10d, or it may be manufactured by forging it into a hemispherical shape in advance and quenching it, and then subjecting its surface to finishing treatment such as buffing. . Further, the convex curved surface 10c may be a spherical surface with a large radius of curvature, and in this case, processing becomes easy. Returning to FIG. 1, a front housing 20 is fixed to the end face of the cylinder block 2 with a suction valve seat 15, a valve plate 16, and a gasket 17 interposed therebetween. Three suction ports 16a and three discharge ports 16b are formed in the valve plate 16, and each of them cooperates with a suction valve seat 15 and a discharge valve reed (not shown) to form three suction valves 18 and a discharge valve. It consists of 19. Each suction valve 18 is provided at a position where it can suck refrigerant gas from a common suction chamber 21 formed in the front housing 20, and each discharge valve 19 is located at a position where it can discharge refrigerant gas into a common discharge chamber 22. It is provided. The rotating shaft 5 passes through the center of the front housing 20 and projects to the outside, and is connected to a drive source at this projecting end. The rotating shaft 5 and the front housing 20 are kept airtight by a shaft sealing device 23. On the other hand, a rear housing 34 is fixed to the end face of the cylinder block 1 with a suction valve seat 31, a valve plate 32, and a gasket 33 in between.
It is connected to the suction chamber 36 via the valve 36 and to the discharge chamber 38 via the discharge valve 37. The suction chambers 21 and 36 are communicated with each other by a suction passage (not shown) formed by passing through the compressor body 3 in the axial direction, and are connected to a suction pipe by a common suction flange (also not shown). has been done. Further, the discharge chambers 22 and 38 are connected to holes 39 and 40 formed in the valve plates 16 and 32, respectively.
and are connected to a common discharge flange 43 by discharge passages 41, 42 formed in the cylinder blocks 2, 1. In the swash plate compressor configured as described above, when the rotating shaft 5 is rotated by a drive source such as an engine (not shown), the swash plate 8 fixed to the rotating shaft 5 is rotated, and the slider 10 is rotated. The piston 4 is reciprocated via the . Therefore, the slider 10 is swung and rotated in response to changes in the contact angle of the surface of the swash plate 8 with respect to the piston 4, and the flat portion 1 of the slider 10
The sliding contact portion between the swash plate 8 and the swash plate 8 is
For example, a high circumferential speed of about 23 m/sec and, for example, 80 m/sec.
Severe friction occurs due to the high surface pressure (piston load) of about Kg/ cm2 . In particular, when a lubrication method using oil mist mixed in refrigerant gas is applied and the rotating shaft 5 is driven at low speed,
Since the amount of lubricating oil supplied to the sliding portion decreases, seizure of the slider 10 may easily occur. Moreover, the swash plate 8 of this embodiment is hard among aluminum alloys and has high wear resistance and strength.
Since it is made of an Al-Si alloy material, it is more likely to seize with the hard slider 10. However, the flat portion 10b of the slider 10 of the present invention has a convex curved surface 10c as described above, and the hardness of the slider 10 is 60H R C (Rockwell hardness).
Since it is made of chromium-containing steel that has been hardened to the above-mentioned extent, seizure of the slider hardly occurs. This effect is based on the presence of the convex curved surface 10c, the material and hardness of the slider 10, and the material of the swash plate 8.
This occurs even if there is no rounded portion at the boundary with 0c, but these chamfered portions 10d and rounded portions act as so-called wedges that actively draw oil adhering to the surface of the swash plate 8 into the sliding surface and promote the formation of an oil film. It has the effect of increasing the effect and making it difficult for layer burn-in to occur. In this way, the material and hardness of the slider 10 and the convex curved surface 10c formed at a slight height H1 with the center of the flat portion 10b as the apex prevent seizure with the swash plate 8 made of Al-Si alloy. It is presumed that this can be prevented for the following reasons. In other words, a wedge-shaped gap is formed between the convex curved surface 10c and the surface of the swash plate 8 with an extremely small angle, and the angle gradually decreases, so that when sliding at high speed, the surface of the swash plate 8 Fluid lubrication is achieved by the so-called wedge effect, in which the lubricating oil adhering to the cylinder is easily drawn in and an oil film is formed that prevents direct contact between the two. Further, as the slider 10 swings, the contact area between the swash plate 8 and the convex curved surface 10c changes with each rotation, and by increasing the amount of lubricating oil circulating in the contact area where the swash plate 8 and the convex curved surface 10c make sliding contact. , it is thought that the lubrication conditions will be further improved. In addition, since the hemispherical slider 10 has a high height relative to the size of the flat portion 10b, it is strongly influenced by the rotational moment based on the frictional force between it and the swash plate 8, and the leading edge of the flat portion 10b , that is, the edge of the swash plate 8 on the side opposite to the rotation direction is particularly strong.
However, in the slider 10 of this embodiment, the convex curved surface 10 is formed on the flat portion 10b.
It is considered that one of the reasons for the improvement in seizing resistance is that the pressure of the leading edge on the swash plate is reduced due to the formation of the leading edge. Slider 1
If a rotational moment acts on 0 as above,
The presence of the convex curved surface 10c allows the slider 10 to swing at a minute angle (the slider 10 and the piston 4
Since the contact surface with the slider 10 is a spherical surface, it does not, of course, impede the swinging of the slider 10). As the slider 10 swings, the portion of the convex curved surface 10c closer to the leading edge approaches the swash plate 8, and the gap between them decreases, but this gap is used to prevent lubricating oil from escaping. Since it is so small that it does not easily tolerate the movement of the slider 10, high oil film pressure is generated between the convex curved surface 10c and the swash plate 8 due to the slight rocking of the slider 10.
It serves to prevent the slider 10 from swinging any further. If the flat portion 10b of the slider 10 is completely flat, even if the slider 10 swings by a slight angle, the leading edge will be pressed against the swash plate 8 with high surface pressure, causing seizure. However, the present slider 10 has a convex curved surface 1 on the flat portion 10b.
Since 0c is formed, such a situation is avoided, the starting torque is reduced, the amount of heat generated is reduced, and seizure between the slider 10 and the swash plate 8 is prevented. Furthermore, since the slider 10 has a high hardness of 60H R C, the swash plate 8 is particularly hard to use when starting up or rotating at low speed.
It is difficult for the swash plate 8 and the slider 10 to come into metal contact with each other, which prevents the Al-Si alloy of the swash plate 8 from adhering to the slider 10 and prevents seizure. It is possible that Also,
Since not only the flat part 10b but also the spherical part of the slider 10 has high hardness, wear on the sliding surface with the piston 4 made of Al-Si alloy is reduced, increasing the durability of the compressor. is expected to improve from this point as well. Whether or not the above inference is valid remains to be seen in future research, but its effectiveness has been proven by the following experiment. Experiment 1 Using slider samples with a convex curved surface 10c of different heights H1 and a sample without a convex curved surface, the swash plate 8
The fourth graph shows the results of measuring the pressing load (seizing load) when seizure occurs by pressing the sample against a rotating plate made of the same material as the sample and gradually increasing this pressing force.
As shown in the figure. Note that this experiment was conducted under the following conditions. Friction speed between rotating plate and slider V: 15m/sec Pressing load: 20Kg/20 minutes gradual increase method Lubrication conditions: Part lubrication method (0.4cc/min) Oil type: Refrigerating machine oil 1/light oil 9 Slider: Material High carbon chromium bearing steel (SUJ-2) Spherical diameter 13.5mm Surface roughness 0.3μm or less Rotating plate: Straightness 1μm to 1.5μm Material Al-Si alloy (A390) Surface roughness 0.7μm or less See Figure 4 According to the solid line shown (on which the convex curved surface 10c is formed), the height H1 of the convex curved surface 10c
If the seizure load exceeds 250 kg, the height
When H1 is approximately 5 μm, the seizure load reaches its maximum (500 Kg or more), and then gradually decreases, and when the height H1 exceeds 15 μm, the seizure load becomes smaller than 250 Kg. on the other hand,
According to the dotted line in the figure (where the convex curved surface 10c is not formed), the flat part 1 as shown in FIG.
When the convex curved surface 10c is not formed on 0b and the slider is flat, the seizure load of the slider is 160 kg, and the chamfered portion 1
When a rounded part is provided at the boundary between 0d and the flat part 10b, the maximum value (300 kg) is obtained when the height H2 of the flat part 10b including the rounded part is 3 μm.
After that, it gradually decreases. Note that the height H2 is measured as the height from the contact point 12b between the circle having the radius of curvature of the rounded portion and the chamfered portion 10d to the flat portion 10b. As described above, compared to the conventional slider 10 having a flat plane part 10b, the seizing load of the slider 10 having the convex curved surface 10c is always superior, and especially in the convex curved surface 10b.
In a range where the height H1 of 0c is 15 μm or less, a seizure load of 250 Kg or more, which is higher than before, is secured. Experiment On the other hand, according to an experiment conducted to investigate the relationship between the height H1 of the convex curved surface 10c and the amount of wear, slider samples with different heights H1 of the convex curved surface 10c were tested on the swash plate 8.
When pressed against a rotary plate made of the same material (Al--Si alloy A390) with a constant load, the amount of decrease in height after a predetermined time is as shown in the graph of FIG. Note that this experiment was conducted under the following conditions. Friction speed V between rotating plate and slider: 15 mm/sec Pressing load per unit area cm 2 : 100 Kg (25 Kg during break-in) Test time: 100 hours (after 30 minutes of break-in) Lubrication conditions and oil type: Slider: Same as experiment 1: Material High carbon chromium bearing steel (SUJ-2) Surface roughness: 0.3 μm or less Diameter of spherical part: 13.5 mm Rotating plate: Same as experiment According to the graph in Figure 6, the height of the convex curved surface 10c
When H1 exceeds 7 μm, the amount of decrease in height H1 (amount of wear) increases rapidly. This increase in the amount of wear causes play between the swash plate 8 and the piston 4 and the slider 10, causing vibration and noise, or shortening the life of the compressor. Therefore, according to the results of both of the above experiments, the height of the convex curved surface 10c is preferably 7 μm or less in order to improve the seizure load within a range that does not increase the amount of wear on the slider 10. is 2-5 μm. Experiment The slider under each sample condition shown in Table 1 was pressed against the surface of the rotary plate with a constant load, and the time taken until the slider reached seizure was measured. The results are shown in Figures 7 and 8. . Note that this experiment was conducted under the following conditions. Friction speed V between rotating plate and slider: 15 m/sec Load on slider per unit area cm 2 : 120 Kg (break-in 25 Kg) Test time: 50 hours (maximum) Lubrication conditions: Part lubrication method
【表】【table】
【表】
油種:冷凍機油1/軽油9の混合油
摺動子:球面部の直径13.5mm
凸曲面の高さ3μm
凸曲面の表面アラサ0.3μm以下
回転板:真直度1.0μm〜1.5μm以下
表面アラサ 0.7μm以下
Al−Si系合金(10〜25%Si)
第7図および第8図によれば、焼付までの時間
は摺動子のクロム含有鋼材の種類や回転板のAl
−Si系合金のシリコン(Si)含有量にそれ程影響
されず、摺動子の硬度に最も影響され、硬度が高
くなる程焼付に至るまでの時間が長くなり、焼付
が発生し難くなる。すなわち、硬度が50HRC(ロ
ツクウエル硬度)以上であれば実用上満足し得る
従来以上の焼付防止効果が得られ、硬度が60HR
C以上であれば更に良好である。なお、第7図に
おける×印は焼付けの発生を示し、第8図の実
線、破線および一点鎖線はアルミ合金のシリコン
含有率が18%、10%および25%であることを示
す。また、Al−Si系合金の硬度はシリコン含有
率10%〜25%において17〜42HRB(ロツクウエル
硬度)である。
実験
総排気量150cc/revの斜板式圧縮機を使用して
その斜板式圧縮機内に封入された潤滑油の油量を
種々(10段階)に定め、これ等の段階的な苛酷な
潤滑条件下における所定時間後の焼付の有無を、
第1表に示される摺動子と斜板との各々の試料条
件について調べた結果を第2表および第9図に示
す。なお、本実験は以下の条件下において為され
たものである。
回転数:4000rpm
冷媒吐出圧力:4〜6Kg/cm2
冷媒吸入圧力:約−50mmHg
作動時間:20時間
冷媒ガス量:100g(正規量の10%)
摺動子および斜板:実験の摺動子および回転板
の条件と同じ
潤滑油:冷凍機油
油封入量:100〜270c.c.[Table] Oil type: Refrigerating machine oil 1/light oil 9 mixture Oil Slider: Diameter of spherical part 13.5 mm Height of convex curved surface 3 μm Surface roughness of convex curved surface 0.3 μm or less Rotating plate: Straightness 1.0 μm to 1.5 μm or less Surface roughness 0.7μm or less Al-Si alloy (10-25%Si) According to Figures 7 and 8, the time until seizure depends on the type of chromium-containing steel of the slider and the
- It is not so affected by the silicon (Si) content of the Si-based alloy, but is most affected by the hardness of the slider, and the higher the hardness, the longer it takes to reach seizure, and the more difficult it is for seizure to occur. In other words, if the hardness is 50H R C (Rockwell hardness) or higher, a practically satisfactory anti-seizure effect can be obtained, and if the hardness is 60H R
It is even better if it is C or higher. Note that the x mark in FIG. 7 indicates the occurrence of seizure, and the solid line, broken line, and dashed-dotted line in FIG. 8 indicate that the silicon content of the aluminum alloy is 18%, 10%, and 25%. Further, the hardness of the Al-Si alloy is 17 to 42H R B (Rockwell hardness) at a silicon content of 10% to 25%. Experiment Using a swash plate compressor with a total displacement of 150 cc/rev, the amount of lubricating oil sealed in the swash plate compressor was set at various levels (10 levels), and the lubrication conditions were graded under severe lubrication conditions. The presence or absence of burn-in after a predetermined time in
Table 2 and FIG. 9 show the results of an examination of the sample conditions for each of the slider and swash plate shown in Table 1. Note that this experiment was conducted under the following conditions. Rotation speed: 4000 rpm Refrigerant discharge pressure: 4 to 6 Kg/cm 2 Refrigerant suction pressure: Approximately -50 mmHg Operating time: 20 hours Refrigerant gas amount: 100 g (10% of normal amount) Slider and swash plate: Experimental slider And the same conditions as the rotating plate lubricating oil: Refrigerating machine oil Oil filling amount: 100 to 270 c.c.
【表】【table】
【表】
斜板:Al−Si系合金(10〜25%Si)
ピストン:Al−Si系合金(AC8A)
第2表および第9図によれば、焼付が発生する
潤滑油封入量は、摺動子の材質や斜板のAl−Si
系合金のシリコン(Si)含有量にそれ程影響され
ず、摺動子の硬度に最も影響され、硬度が高くな
る程焼付が発生する潤滑油封入量が少なくなる。
このことは低速で運転される場合のような苛酷な
潤滑条件下においても焼付が発生しなくなること
を意味する。すなわち、本実験結果は、前述の実
験結果同様に実用上摺動子の硬度が50HRC以上
であれば望ましい焼付防止効果が得られ、硬度が
60HRC以上であれば更に望ましいことを示して
いる。
なお、第2表における○印、△印及び×印はそ
れぞれ全数に焼付がない状態、複数個中の一部に
焼付がある状態および全数に焼付がある状態を示
す。また、第9図の実線、破線および1点鎖線は
Al−Si系合金のシリコン含有率が18%、10%お
よび25%であることを示す。
以上の実験結果、によれば、斜板8がAl
−Si系合金製であり、平面部10bに凸曲面10
cが形成されたクロム含有鋼製の摺動子10が使
用されるとき、焼付を防止するために摺動子10
の硬度が50HRC以上であれば、一応の効果が得
られ、一層確かな効果を得るためには60HRC以
上の硬度があること望ましい。なお、互に摺接す
る斜板8および凸曲面10cの表面はできる限り
平滑であることが焼付防止のためによいことは勿
論である。すなわち、斜板8の表面粗度は2μm
以下、とくに0.7μm以下が望ましく、摺動子10
の表面粗度は1μm以下、特に0.3μm以下が望まし
い。また、前記摺接面に積極的に潤滑油を引き込
んで油膜の形成を促進するための形成される面取
部10dの平面部10bに対する角度は1〜45゜
が望ましく、5〜15゜が望ましい。[Table] Swash plate: Al-Si alloy (10 to 25% Si) Piston: Al-Si alloy (AC8A) According to Table 2 and Figure 9, the amount of lubricating oil that causes seizure is Material of mover and Al-Si of swash plate
It is not so affected by the silicon (Si) content of the system alloy, but is most affected by the hardness of the slider, and the higher the hardness, the smaller the amount of lubricating oil required to cause seizure.
This means that seizure will not occur even under severe lubrication conditions such as when operating at low speeds. In other words, the results of this experiment, similar to the results of the previous experiment, indicate that in practice, if the hardness of the slider is 50H R C or higher, a desired anti-seizure effect can be obtained;
This indicates that a value of 60H R C or higher is even more desirable. In Table 2, the ○, △, and x marks respectively indicate a state in which all the samples are free of burn-in, a state in which a portion of a plurality of samples has burn-in, and a state in which all of the samples have burn-in. In addition, the solid line, broken line, and one-dot chain line in Figure 9 are
It shows that the silicon content of the Al-Si alloy is 18%, 10%, and 25%. According to the above experimental results, the swash plate 8 is made of Al
- Made of Si-based alloy, and has a convex curved surface 10 on the flat part 10b.
When the slider 10 made of chromium-containing steel is used, the slider 10 is used to prevent seizure.
If the hardness is 50H R C or more, a certain effect can be obtained, and in order to obtain a more reliable effect, it is desirable that the hardness is 60H R C or more. It goes without saying that the surfaces of the swash plate 8 and the convex curved surface 10c that are in sliding contact with each other should be as smooth as possible to prevent seizure. In other words, the surface roughness of the swash plate 8 is 2 μm.
Below, the slider 10 is preferably 0.7 μm or less.
The surface roughness of is preferably 1 μm or less, particularly 0.3 μm or less. Further, the angle of the chamfered portion 10d formed to actively draw lubricating oil into the sliding surface to promote the formation of an oil film with respect to the flat portion 10b is preferably 1 to 45 degrees, and preferably 5 to 15 degrees. .
第1図は本発明の一実施例を示す斜板式圧縮機
の軸心に沿つた断面図である。第2図は第1図の
摺動子を示す正面図である(凸曲面10cの凹凸
は誇張して示されている)。第3図は第2図の摺
動子の凸曲面の拡大プロフアイルを表す図であ
る。第4図は実験の結果を表すグラフである。
第5図は実験に使用された凸曲面のない摺動子
の平面部の拡大プロフアイルを表す図である。第
6図は実験の結果を表すグラフである。第7図
および第8図は実験の結果を表すグラフであ
る。第9図は実験の結果を表すグラフである。
1a,2a:シリンダボア、4:ピストン、
5:回転軸、8:斜板、10:摺動子、10a:
球面部、10b:平面部、10c:凸面部、10
d:面取部、11:凹部。
FIG. 1 is a sectional view taken along the axis of a swash plate compressor showing an embodiment of the present invention. FIG. 2 is a front view of the slider shown in FIG. 1 (the unevenness of the convex curved surface 10c is exaggerated). FIG. 3 is a diagram showing an enlarged profile of the convex curved surface of the slider shown in FIG. 2. FIG. FIG. 4 is a graph showing the results of the experiment.
FIG. 5 is a diagram showing an enlarged profile of the flat part of the slider without a convex curved surface used in the experiment. FIG. 6 is a graph showing the results of the experiment. FIGS. 7 and 8 are graphs representing the results of the experiment. FIG. 9 is a graph showing the results of the experiment. 1a, 2a: cylinder bore, 4: piston,
5: Rotating shaft, 8: Swash plate, 10: Slider, 10a:
Spherical part, 10b: Plane part, 10c: Convex part, 10
d: Chamfered portion, 11: Recessed portion.
Claims (1)
と、前記回転軸に平行に設けられたシリンダ内に
嵌装されたピストンと、 球面部及び平面部を備え、該球面部において前
記ピストンに設けられた凹部と係合する一方、前
記平面部において前記斜板と摺接して、該斜板の
駆動力を前記ピストンに伝達するほぼ半球状の摺
動子とを 含み、前記斜板の回転に伴つて前記ピストンが
往復動させられる斜板式圧縮機において、 前記斜板およびピストンをアルミニウム−シリ
コン系合金製とする一方、前記摺動子をクロム含
有鋼製とするとともに焼入れにより硬度を50HR
C以上とし、かつ、該摺動子の前記平面部を、中
央を頂点とし、高さが15μm以下である滑らかな
凸曲面としたことを特徴とする斜板式圧縮機。[Scope of Claims] 1. A swash plate fixed to a rotating shaft at a predetermined angle, a piston fitted in a cylinder provided parallel to the rotating shaft, a spherical part and a flat part, a substantially hemispherical slider that engages with a recess provided in the piston in a spherical part, and slides in sliding contact with the swash plate in the flat part to transmit the driving force of the swash plate to the piston. , in a swash plate compressor in which the piston is reciprocated as the swash plate rotates, the swash plate and the piston are made of an aluminum-silicon alloy, and the slider is made of chromium-containing steel; Hardness reduced to 50H R by quenching
C or more, and the flat portion of the slider is a smooth convex curved surface with a vertex at the center and a height of 15 μm or less.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55125737A JPS5751976A (en) | 1980-09-10 | 1980-09-10 | Swash-plate type compressor |
BR8105720A BR8105720A (en) | 1980-09-09 | 1981-09-04 | OSCILLATING PLATE TYPE COMPRESSOR |
US06/736,397 US4568252A (en) | 1980-03-07 | 1985-05-17 | Swash-plate type compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55125737A JPS5751976A (en) | 1980-09-10 | 1980-09-10 | Swash-plate type compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5751976A JPS5751976A (en) | 1982-03-27 |
JPH0135190B2 true JPH0135190B2 (en) | 1989-07-24 |
Family
ID=14917533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55125737A Granted JPS5751976A (en) | 1980-03-07 | 1980-09-10 | Swash-plate type compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5751976A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997042411A1 (en) * | 1996-05-08 | 1997-11-13 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Reciprocating compressor |
WO2006117901A1 (en) * | 2005-04-27 | 2006-11-09 | Taiho Kogyo Co., Ltd. | Sliding device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5060804A (en) * | 1973-10-03 | 1975-05-26 | ||
JPS541410A (en) * | 1977-06-06 | 1979-01-08 | Hitachi Ltd | Swash plate type motion transforming device member |
-
1980
- 1980-09-10 JP JP55125737A patent/JPS5751976A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5060804A (en) * | 1973-10-03 | 1975-05-26 | ||
JPS541410A (en) * | 1977-06-06 | 1979-01-08 | Hitachi Ltd | Swash plate type motion transforming device member |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997042411A1 (en) * | 1996-05-08 | 1997-11-13 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Reciprocating compressor |
WO2006117901A1 (en) * | 2005-04-27 | 2006-11-09 | Taiho Kogyo Co., Ltd. | Sliding device |
Also Published As
Publication number | Publication date |
---|---|
JPS5751976A (en) | 1982-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100493218B1 (en) | Sliding member and sliding device | |
US4568252A (en) | Swash-plate type compressor | |
US4683804A (en) | Swash plate type compressor shoe | |
JP3503154B2 (en) | Swash plate compressor | |
EP1262662A1 (en) | Swash plate type compressor | |
EP1262661A1 (en) | Shoe for swash plate type compressor and method of producing the same | |
JPH0151675B2 (en) | ||
US20020046647A1 (en) | Compressors | |
JPH0135190B2 (en) | ||
JPH0128311Y2 (en) | ||
US20030121412A1 (en) | Shoe for swash plate type compressor and swash plate type compressor equipped with the shoe | |
JPS6327554B2 (en) | ||
US20020046646A1 (en) | Compressors | |
JPS601384A (en) | Swash plate type compressor | |
US7455008B2 (en) | Swash plate compressor | |
EP1669600A1 (en) | Variable displacement swash plate type compressor | |
JPH08254180A (en) | Swash plate compressor | |
JP2003183685A (en) | Sliding member | |
JP4431912B2 (en) | Swash plate compressor | |
JP2005009526A (en) | Thrust needle bearing, roller, and compressor for car air conditioner | |
JPS6232356B2 (en) | ||
JPH02202976A (en) | Combined sliding member | |
JPH11336658A (en) | Swash plate compressor | |
JPH11351132A (en) | Cam plate type hydraulic machine | |
JP2003254232A (en) | Compressor for automobile air-conditioner and piston used for the same |