[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0135062B2 - - Google Patents

Info

Publication number
JPH0135062B2
JPH0135062B2 JP6668484A JP6668484A JPH0135062B2 JP H0135062 B2 JPH0135062 B2 JP H0135062B2 JP 6668484 A JP6668484 A JP 6668484A JP 6668484 A JP6668484 A JP 6668484A JP H0135062 B2 JPH0135062 B2 JP H0135062B2
Authority
JP
Japan
Prior art keywords
graphite
cast iron
cast
astm
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6668484A
Other languages
Japanese (ja)
Other versions
JPS60211050A (en
Inventor
Hiroki Shimizu
Takayuki Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP6668484A priority Critical patent/JPS60211050A/en
Publication of JPS60211050A publication Critical patent/JPS60211050A/en
Publication of JPH0135062B2 publication Critical patent/JPH0135062B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えば内燃機関のシリンダーライナ
の如き耐摩耗性及び耐スカツフイング性を兼備し
ていることを要求される鋳鉄材摺動部材及びその
製造方法に関するものである。 近年、内燃機関では高速化、高出力化の傾向が
一層顕著になり、シリンダーライナ材には過酷な
耐摩耗性及び耐スカツフイング性が要求されてい
る。 このような過酷な要求を満たすため、現在まで
黒鉛が析出していて、耐摩耗性が良いという理由
で、シリンダーライナとして主に用いられている
鋳鉄材について、材料組成の改良、内周摺動面の
面性状の改善、内周摺動面の表面処理等が検討さ
れているが、未だ十分のものが得られていないの
が現状である。 即ち、鋳鉄材料組成の改良については合金元素
の添加によるマトリツクスの強化や炭化物の析出
等によつて、ある程度の効果が得られているが未
だ不十分であり、また黒鉛組織の改善も検討され
ており、黒鉛サイズを大きく、また多量に析出さ
せることは耐スカツフイング性の向上には一定の
効果が認められるが、強度低下、さらには耐摩耗
性の不足をきたす。 次にシリンダーライナの内周摺動面の面性状の
改善は、現在広く行われているホーニング加工の
改善が検討されているが、ホーニングにより生ず
る加工変質層が生成すること、あるいはそれによ
り、黒鉛の摺動面への露出が妨げられる等の理由
により、ホーニング加工で摺動面の面性状を大幅
に改善するには限界がある。さらに内周摺動面に
対する表面処理は排水処理等による環境汚染問題
や経済性などで難点がある。 本発明は以上の点に鑑み、鋳鉄材の成分と組織
とを限定し、かかる鋳鉄材に所定の熱処理を施す
ことにより、耐摩耗性、耐スカツフイング性に優
れた鋳鉄材及びその経済的な製造法を提供しよう
とするものである。 即ち、本発明は炭素、ケイ素、マンガン、リン
及び硫黄の主要元素の他に主としてマトリツクス
を強化する、ニツケル及び銅からなる群の中から
選択された少なくとも1種を合計で0.05及至1.0
%、及び主として炭化物を形成するクロム、モリ
ブデン、ニオブ、チタン、バナジウム、タングス
テン及びホウ素からなる群の中から選択された少
なくとも1種を、1種の場合は0.05〜1.0%、2
種以上の場合は合計で0.05〜2%を含有し、且つ
黒鉛を有する鋳鉄からなる摺動部材であつて、(イ)
該黒鉛の黒鉛サイズがASTM4ないし6であり、
(ロ)該黒鉛の形状はASTM分類A型のものが70%
以上を占め、且つ(ハ)該黒鉛の先端部と中央部の幅
が実質的に同一であるとの黒鉛組織(イ)−(ハ)を有
し、ホーニング加工が施されている該摺動部材の
摺動面に鋳鉄の黒鉛が露出していることを特徴と
する。 本発明に係る方法は、炭素、ケイ素、マンガ
ン、リン及び硫黄の主要5成分の他にニツケル及
び銅からなる群の中から選択された少なくとも1
種を合計で0.05〜1.0%、及び主として炭化物を
形成するクロム、モリブデン、ニオブ、チタン、
バナジウム、タングステン及びホウ素からなる群
より選択された少なくとも1種を、1種の場合は
0.05〜1.0%、2種以上の場合は合計で0.05〜2%
含有し、鋳放しで析出している黒鉛中のASTM
分類A型黒鉛の占有面積率が70%以上で、且つ黒
鉛サイズが4〜6である鋳鉄を1000℃以上1140℃
以下の温度で10分以上好ましくは3時間以内加熱
保持後冷却し、鋳放し状態の前記黒鉛サイズを実
質的に維持しながら黒鉛の幅が先端と中央部で実
質的に同一であるように変化させることにより、
耐摩耗性、耐スカツフイング性に優れた鋳鉄を製
造しようとするものである。 以下に本発明の限定理由を述べる。 ニツケル及び銅等は鋳鉄のマトリツクスに固溶
し、鋳鉄材料を強靭化し、ホーニング等による加
工変質層の生成を少なくし得るとともに該材料の
強靭化による耐摩耗性にも寄与するものである
が、その合計量が0.05%未満ではその効果が認め
られず、また、その合計量が1%を超えると鋳鉄
の白鉄化、黒鉛組織の微細化、マトリツクスの組
織変化等をきたす。 次に、クロム、モリブデン、ニオブ、チタン、
バナジウム、ホウ素及びタングステン等は炭化物
として析出し、摺動面においてこれらの炭化物が
一次摺動面を形成し、ベアリング効果として作用
し、耐摩耗性、耐スカツフイング性の向上に寄与
する他に、ホーニング加工等により生ずる加工変
質層の分断効果もあるが、0.05%未満ではその効
果に乏しい。また単独添加の場合、1%を超える
と鋳鉄の白鉄化、黒鉛組織の微細化、さらには多
量の炭化物析出による強度の低下、加工性の悪化
を招く。また、複合添加の場合、合計で2%を超
える場合も、鉄鋳の白鉄化、黒鉛組織の微細化、
さらには多量の炭化物の析出による強度の低下、
加工性の悪化を招く。従つて、主として炭化物を
形成するクロム、モリブデン、ニオブ、チタン、
バナジウム、ホウ素、タングステン等の中から選
択された少なくとも1種を、1種の場合は0.05〜
1.0%、2種以上の場合は合計で0.05〜2%と限
定する。 鋳鉄材に析出し摺動部材の摺動面に現われる黒
鉛組織は黒鉛自身が自己潤滑性を有しているた
め、耐スカツフイング性の向上に寄与するばかり
でなく、摩擦に伴い発生する微細な摺動キズを分
断する効果もある。さらにマトリツクスに比べ黒
鉛部は極めて軟いために凹部となり、油だまりと
して作用し、耐摩耗性、耐スカツフイング性の向
上に効果がある。このような作用を効果的に発揮
する黒鉛形状はASTM分類A型のもので、しか
も析出している黒鉛中のA型黒鉛の占有面積率が
70%以上、黒鉛サイズが4〜6のものである。析
出黒鉛中のA型黒鉛の占有面積率が70%未満では
形状は悪化し、必然的に微細化黒鉛の占める面積
率が増大し好ましくない。また黒鉛サイズが6を
越える場合も黒鉛は微細化する。黒鉛の幅が一様
ではない、微細な黒鉛はホーニング加工時に加工
面近傍に生ずる塑性流動による加工変質層で覆い
つぶされる確率が高く、黒鉛が摺動面に露出して
いなければ自己潤滑作用、油だまり効果は期待で
きず、耐スカツフイング性の劣化を招くことにな
る。一方黒鉛サイズが4未満では黒鉛が粗大化
し、耐スカツフイング性の向上には効果は認めら
れるが、鋳鉄の強度が低下する。本発明におい
て、鋳鉄の炭素及びケイ素の含有量は前記組織を
得るように調節すれば良いため、特に限定されな
いが、一般には炭素2.5〜4%、ケイ素1.5〜3%
の範囲であればよい。 本発明に係る製法によると鋳放し状態での黒鉛
組織を析出している全黒鉛中ASTM分類のA型
黒鉛の占有面積率を70%以上かつ黒鉛サイズを4
〜6と限定する。鋳放し状態において、上述した
黒鉛組織を有する一般の鋳鉄においては析出して
いる片状黒鉛は先端部ではその幅が小さくなり、
ホーニング加工等により生ずる加工変質層で覆い
つぶされる確率が高く、加工面への黒鉛の露出の
割合は低下するのをさけがたい。従つて耐摩耗
性、耐スカツフイング性の劣化を招くことにな
る。このような現象をさけるには、片状黒鉛の先
端部まで中央部と同様の幅を持たせるのが、耐摩
耗性、耐スカツフイング性の向上に有効な方法で
ある。 そこで本発明は、以上の如き化学組成、組織を
有する鋳鉄材を1000℃以上1140℃以下で熱処理を
施し、耐摩耗性、耐スカツフイング性の向上に効
果のある、いわゆるいも虫状黒鉛組織を得ようと
するものである。即ち、本発明に関する鋳鉄材を
1100℃以上1140℃以下の温度で10分以上3時間以
内加熱保持後冷却すれば、鋳放し状態で得られた
比較的大きな片状黒鉛がASTM測定法による黒
鉛サイズをほとんど変えずいも虫状黒鉛になる。
このような黒鉛はその幅が広く好ましくは4〜20
ミクロンであり、しかも均一であり、ホーニング
加工等により生ずる加工変質層により覆いつぶさ
れる確率は低下し、加工面への黒鉛の露出の割合
は増加し、耐摩耗性、耐スカツフイング性が向上
する。 加熱温度は理論的には鋳鉄のA1変態点以上融
点以下の温度であれば、黒鉛のマトリツクスへの
固溶が起こるが、1000℃未満では片状黒鉛のいも
虫状黒鉛への変化は緩慢であり、1140℃を越える
と部分的に溶融がはじまるために加熱温度は1000
℃以上1140℃以下と限定する。加熱保持時間が10
分以下では均一ないも虫状黒鉛が得られず、3時
間を越えると加熱時間は経済的に不利となるの
で、加熱保持時間を10分以上3時間以内と限定す
る。 なお、上記加熱後の冷却はパーライトマトリツ
クスの場合は炉冷あるいは空冷が必要であり焼入
れしたマトリツクスとしたい場合は通常用いられ
る鋳鉄の焼入れ温度まで徐冷した後、油冷あるい
は水冷によつて得られる。 このようにして得られたいも虫状黒鉛鋳鉄は第
1図及び第2図に示すように、通常の片状黒鉛に
比較し、先端が丸みを持ち、しかも幅広い黒鉛と
して分布している。これらの黒鉛は例えばホーニ
ング加工時にも加工変質層で被覆されることが少
なく第3図に示すように、加工表面に均一に約60
個/cm2の量で露出し、耐摩耗性、耐スカツフイン
グ性の向上に有益な作用をするものである。 以上述べたように本発明に係る鋳鉄材はマトリ
ツクスの強化及び炭化物析出に加えて、全黒鉛中
のASTM分類A型黒鉛の占有面積率を70%以上
有し、且つ黒鉛サイズが4〜6であり幅が先端部
と中央部で実質的に同一であるとの条件を規定し
た黒鉛を、ホーニング加工内周面に露出させたこ
と、また所定の鋳放し組織を有する鋳鉄に1000℃
以上1140℃以下で10分以上3時間以内の熱処理を
施すことにより、黒鉛形状を片状黒鉛からいも虫
状黒鉛にすることによつて、一層過酷な耐摩耗
性、耐スカツフイング性の要求に応じ得る鋳鉄材
を提供するものである。 以下実施例により、その効果を説明する。 実施例 1 銑鉄、鋼屑、フエロアロイを原料とし、化学成
分3.02%C、1.78%Si、0.74%Mn、0.29%P、
0.036%S、0.25%Cr、0.48%Ni、0.31%Nbの溶
湯を高周波誘導炉で溶解し、20〓丸棒生砂型に鋳
造した。鋳放し状態において、ASTM分類A型
黒鉛が約78%、黒鉛サイズは6であつた。この丸
棒を1130℃で30分間熱処理を施し空冷した。得ら
れた組織の顕微鏡写真を第1図に示す。黒鉛サイ
ズは6であつた。 実施例 2 銑鉄、鋼屑、フエロアロイを原料とし、化学成
分3.13%C、2.18%Si、0.74%Mn、0.47%P、
0.061%S、0.30%Cr、0.49%Cu、0.28%Nb、
0.12%Vを高周波誘導炉で溶解し、30〓丸棒生砂
型に鋳造した。鋳放し状態において、ASTM分
類A型黒鉛が約86%、黒鉛サイズは5であつた。
この丸棒を1080℃で1時間熱処理を施し空冷し
た。黒鉛サイズは5であつた。得られた組織を第
2図に示す。実施例1に比べ黒鉛形状が大きくな
つているのは、実施例1に比べ、実施例2の丸棒
の径が大きく、冷却速度が小さいためである。 実施例 3 銑鉄、鋼屑、フエロアロイを原料とし、化学成
分3.08%C、1.85%Si、0.68%Mn、0.25%P、
0.027%S、0.22%Cr、0.61%Cu、0.26%Nb、
0.06%Bの溶湯を低周波誘導炉で溶解し、シエル
砂型にシリンダーライナを鋳造した後、1080℃で
1時間熱処理を施し空冷した。鋳放し状態におい
て、ASTM分類A型黒鉛が約82%であつた。シ
リンダーライナの内周面をホーニング加工した後
のシリンダー内周面の写真を第3図に示す。黒鉛
サイズは4〜5であつた。 比較例 1 実施例1と同一化学成分、同一鋳造条件の鋳放
し材であり、その顕微鏡組織写真を第4図に示
す。黒鉛サイズは6であつた。 比較例 2 実施例2と同一化学成分、同一鋳造条件の鋳放
し材であり、その顕微鏡組織写真を第5図に示
す。黒鉛サイズは5であつた。 比較例 3 実施例3と同一化学成分、同一鋳造条件のシリ
ンダーライナの鋳放し材である。完成加工後のシ
リンダーライナの内周面の写真を第6図に示す。
黒鉛サイズは4〜5であつた。この内周面写真か
ら分かるように黒鉛はホーニング加工による加工
変質層によつて覆いつぶされており、外部に表出
していない。 比較例 4 銑鉄、鋼屑、フエロアロイを原料とし、化学成
分3.18%C、2.09%Si、0.74%Mn、0.22%P、
0.024%S、0.31%Crの溶湯を高周波誘導炉で溶
解し、20〓丸棒の金型に鋳造した。得られた黒鉛
形状はASTM分類D型であり、黒鉛サイズは7
〜8であつた。その後、1130℃で30分間熱処理を
施した後空冷した。得られた組織の顕微鏡写真を
第7図に示す。 このようにして得られた実施例1、2と比較例
1、2、4について耐スカツフイング性試験を行
つた。試験装置の略図を第8図に示す。相手材A
は硬質クロムめつきである。試験片B、相手材A
の表面は研削加工で1〜2μRZの表面あらさに仕
上げ試験に供した。潤滑は行わず乾式で試験を行
つた。 耐スカツフイング性は第8図に示した試験ロー
ターにスカツフイングが発生した時の荷重、摩擦
速度及びスカツフイング発生までの摩擦距離で評
価した。その結果を表1に示す。
The present invention relates to a cast iron sliding member that is required to have both wear resistance and scuffing resistance, such as a cylinder liner for an internal combustion engine, and a method for manufacturing the same. In recent years, the trend toward higher speeds and higher outputs in internal combustion engines has become more pronounced, and cylinder liner materials are required to have severe wear resistance and scuffing resistance. In order to meet these harsh demands, we have improved the material composition of cast iron, which has been mainly used as cylinder liners because it has graphite precipitated and has good wear resistance, and improved the inner periphery. Improvements in the surface properties of the surface, surface treatment of the inner peripheral sliding surface, etc. have been studied, but the current situation is that nothing satisfactory has been achieved yet. In other words, although some effects have been achieved in improving the composition of cast iron materials by strengthening the matrix through the addition of alloying elements and precipitating carbides, this is still insufficient, and improvements in the graphite structure have not yet been considered. Although increasing the graphite size and precipitating a large amount of graphite has a certain effect on improving scuffing resistance, it causes a decrease in strength and furthermore, a lack of wear resistance. Next, to improve the surface quality of the inner peripheral sliding surface of the cylinder liner, honing, which is currently widely used, is being considered, but honing may produce a degraded layer, or due to the graphite There is a limit to the ability of honing to significantly improve the surface properties of the sliding surface due to reasons such as the prevention of exposure to the sliding surface. Furthermore, surface treatment of the inner circumferential sliding surface has disadvantages in terms of environmental pollution caused by wastewater treatment, etc., and economic efficiency. In view of the above points, the present invention provides a cast iron material with excellent wear resistance and scuffing resistance by limiting the composition and structure of the cast iron material and subjecting the cast iron material to a prescribed heat treatment, and an economical production thereof. It seeks to provide law. That is, in the present invention, in addition to the main elements of carbon, silicon, manganese, phosphorus, and sulfur, at least one element selected from the group consisting of nickel and copper, which mainly strengthens the matrix, is added in a total of 0.05 to 1.0.
%, and at least one selected from the group consisting of chromium, molybdenum, niobium, titanium, vanadium, tungsten and boron, which mainly form carbides, in the case of 1 type, 0.05 to 1.0%, 2
If it is more than 1%, it is a sliding member made of cast iron containing 0.05 to 2% in total and containing graphite, (a)
The graphite size of the graphite is ASTM 4 to 6,
(b) 70% of the graphite is of ASTM classification A type.
and (c) has a graphite structure (a) to (c) in which the widths of the tip and center of the graphite are substantially the same, and is honed. It is characterized by the exposed graphite of cast iron on the sliding surface of the member. The method according to the present invention includes at least one component selected from the group consisting of nickel and copper in addition to the five main components of carbon, silicon, manganese, phosphorus and sulfur.
Species totaling 0.05-1.0%, and mainly chromium, molybdenum, niobium, titanium, forming carbides.
At least one selected from the group consisting of vanadium, tungsten and boron, in the case of one
0.05-1.0%, 0.05-2% in total if there are two or more types
ASTM in graphite containing and precipitating as-cast
Cast iron with a classification A type graphite occupation area ratio of 70% or more and a graphite size of 4 to 6 at a temperature of 1000℃ or higher and 1140℃
After heating and holding at the following temperature for more than 10 minutes, preferably less than 3 hours, the graphite size is changed so that the width of the graphite is substantially the same at the tip and the center while substantially maintaining the graphite size in the as-cast state. By letting
The aim is to produce cast iron with excellent wear resistance and scuffing resistance. The reasons for the limitations of the present invention will be described below. Nickel, copper, etc. form a solid solution in the matrix of cast iron, toughen the cast iron material, reduce the formation of a damaged layer due to honing, etc., and also contribute to wear resistance by toughening the material. If the total amount is less than 0.05%, no effect will be recognized, and if the total amount exceeds 1%, white ironization of cast iron, refinement of graphite structure, changes in matrix structure, etc. will occur. Next, chromium, molybdenum, niobium, titanium,
Vanadium, boron, tungsten, etc. are precipitated as carbides, and these carbides form the primary sliding surface on the sliding surface, which acts as a bearing effect and contributes to improving wear resistance and scuffing resistance. It also has the effect of dividing the process-affected layer caused by processing, etc., but if it is less than 0.05%, this effect is poor. When added alone, if it exceeds 1%, the cast iron becomes white iron, the graphite structure becomes finer, and a large amount of carbide precipitates, resulting in a decrease in strength and deterioration of workability. In addition, in the case of combined addition, even if the total amount exceeds 2%, it may cause white ironization of iron casting, refinement of graphite structure,
Furthermore, the strength decreases due to the precipitation of a large amount of carbides,
This leads to deterioration of workability. Therefore, chromium, molybdenum, niobium, titanium, and
At least one kind selected from vanadium, boron, tungsten, etc., in the case of one kind, from 0.05 to
1.0%, and in the case of two or more types, the total amount is limited to 0.05-2%. The graphite structure that precipitates in cast iron and appears on the sliding surfaces of sliding members has self-lubricating properties, so it not only contributes to improving scuffing resistance, but also reduces the fine sliding that occurs due to friction. It also has the effect of separating moving scratches. Furthermore, since the graphite portion is extremely soft compared to the matrix, it becomes a concave portion and acts as an oil pool, which is effective in improving wear resistance and scuffing resistance. The graphite shape that effectively exhibits this effect is ASTM classification type A, and moreover, the occupied area ratio of type A graphite in the precipitated graphite is
70% or more of the graphite size is 4 to 6. If the area ratio occupied by type A graphite in the precipitated graphite is less than 70%, the shape deteriorates and the area ratio occupied by fine graphite inevitably increases, which is not preferable. Furthermore, when the graphite size exceeds 6, the graphite becomes finer. The width of the graphite is not uniform, and there is a high probability that fine graphite will be covered with a damaged layer due to plastic flow that occurs near the machined surface during honing, and if graphite is not exposed on the sliding surface, it will have a self-lubricating effect. No oil pooling effect can be expected, leading to deterioration in scuffing resistance. On the other hand, if the graphite size is less than 4, the graphite becomes coarse, and although it is effective in improving scuffing resistance, the strength of the cast iron decreases. In the present invention, the content of carbon and silicon in cast iron is not particularly limited as it can be adjusted to obtain the above-mentioned structure, but in general, carbon and silicon are 2.5 to 4% and silicon 1.5 to 3%.
It is sufficient if it is within the range of . According to the manufacturing method of the present invention, the occupied area ratio of type A graphite of ASTM classification in all the graphite in which the graphite structure is precipitated in the as-cast state is 70% or more, and the graphite size is 4.
~6. In the as-cast state, in general cast iron having the above-mentioned graphite structure, the width of the precipitated flake graphite becomes smaller at the tip,
There is a high probability that the graphite will be covered with a damaged layer caused by honing, etc., and it is inevitable that the proportion of graphite exposed on the processed surface will decrease. This results in deterioration of wear resistance and scuffing resistance. In order to avoid such a phenomenon, an effective method for improving wear resistance and scuffing resistance is to make the tip of the flaky graphite have the same width as the center. Therefore, in the present invention, a cast iron material having the chemical composition and structure as described above is heat-treated at a temperature of 1000°C to 1140°C to obtain a so-called caterpillar-like graphite structure, which is effective in improving wear resistance and scuffing resistance. This is what we are trying to do. That is, the cast iron material related to the present invention
If the graphite is heated at a temperature of 1100°C to 1140°C for 10 minutes to 3 hours and then cooled, the relatively large flake graphite obtained in the as-cast state will hardly change the graphite size measured by the ASTM measurement method and become wormlike graphite. become.
Such graphite has a wide width, preferably 4 to 20
It is micron-sized and uniform, reducing the probability of being covered by a damaged layer caused by honing, etc., increasing the proportion of graphite exposed on the machined surface, and improving wear resistance and scuffing resistance. Theoretically, if the heating temperature is above the A1 transformation point of cast iron and below the melting point, solid solution of graphite in the matrix will occur, but below 1000℃, the transformation of flaky graphite into caterpillar graphite is slow. When the temperature exceeds 1140℃, partial melting begins, so the heating temperature is 1000℃.
Limited to above ℃ and below 1140℃. Heating retention time is 10
If the heating time is less than 1 minute, uniform vermiform graphite cannot be obtained, and if it exceeds 3 hours, the heating time becomes economically disadvantageous, so the heating and holding time is limited to 10 minutes or more and 3 hours or less. For cooling after heating, a pearlite matrix requires furnace cooling or air cooling, and if a hardened matrix is desired, it is slowly cooled to the quenching temperature of cast iron, which is commonly used, and then oil or water cooled. It will be done. As shown in FIGS. 1 and 2, the caterpillar graphite cast iron obtained in this manner has rounded tips and is distributed as graphite over a wide range compared to normal flake graphite. These graphites are less likely to be covered with a process-affected layer even during honing processing, and as shown in Figure 3, approximately 60% of graphite is uniformly coated on the processed surface.
It is exposed in an amount of 2.5 cm/cm 2 and has a beneficial effect on improving abrasion resistance and scuffing resistance. As described above, the cast iron material according to the present invention not only strengthens the matrix and precipitates carbides, but also has an area ratio of 70% or more of ASTM Class A graphite in all graphite, and has a graphite size of 4 to 6. Graphite, which stipulates that the dovetail width is substantially the same at the tip and center, is exposed on the inner circumferential surface of the honing process, and cast iron with a predetermined as-cast structure is heated to 1000℃.
By applying heat treatment at 1140℃ or less for 10 minutes to 3 hours, the shape of the graphite changes from flaky graphite to caterpillar graphite, meeting even harsher demands for abrasion resistance and scuffing resistance. The purpose is to provide cast iron materials that can be obtained. The effects will be explained below using examples. Example 1 Using pig iron, steel scrap, and ferroalloy as raw materials, chemical composition: 3.02%C, 1.78%Si, 0.74%Mn, 0.29%P,
Molten metal containing 0.036% S, 0.25% Cr, 0.48% Ni, and 0.31% Nb was melted in a high-frequency induction furnace and cast into a 20 mm round bar green sand mold. In the as-cast state, the ASTM classification type A graphite was approximately 78% and the graphite size was 6. This round bar was heat treated at 1130°C for 30 minutes and cooled in air. A micrograph of the obtained tissue is shown in FIG. The graphite size was 6. Example 2 Using pig iron, steel scrap, and ferroalloy as raw materials, chemical composition: 3.13%C, 2.18%Si, 0.74%Mn, 0.47%P,
0.061%S, 0.30%Cr, 0.49%Cu, 0.28%Nb,
0.12% V was melted in a high frequency induction furnace and cast into a 30㎓ round bar green sand mold. In the as-cast state, the ASTM classification type A graphite was approximately 86% and the graphite size was 5.
This round bar was heat treated at 1080°C for 1 hour and cooled in air. The graphite size was 5. The resulting structure is shown in FIG. The graphite shape is larger than in Example 1 because the diameter of the round bar in Example 2 is larger and the cooling rate is lower than in Example 1. Example 3 Using pig iron, steel scrap, and ferroalloy as raw materials, chemical composition: 3.08%C, 1.85%Si, 0.68%Mn, 0.25%P,
0.027%S, 0.22%Cr, 0.61%Cu, 0.26%Nb,
A 0.06% B molten metal was melted in a low frequency induction furnace, a cylinder liner was cast in a shell sand mold, and then heat treated at 1080°C for 1 hour and air cooled. In the as-cast condition, it was approximately 82% ASTM Classification Type A graphite. FIG. 3 shows a photograph of the inner circumferential surface of the cylinder after honing the inner circumferential surface of the cylinder liner. The graphite size was 4-5. Comparative Example 1 This is an as-cast material with the same chemical composition and the same casting conditions as in Example 1, and a micrograph of its microstructure is shown in FIG. The graphite size was 6. Comparative Example 2 This is an as-cast material with the same chemical composition and the same casting conditions as in Example 2, and a microscopic structure photograph thereof is shown in FIG. The graphite size was 5. Comparative Example 3 This is an as-cast cylinder liner material with the same chemical composition and the same casting conditions as in Example 3. Figure 6 shows a photograph of the inner peripheral surface of the cylinder liner after completion of processing.
The graphite size was 4-5. As can be seen from this photograph of the inner circumferential surface, the graphite is covered with a layer of damage caused by honing and is not exposed to the outside. Comparative Example 4 Using pig iron, steel scrap, and ferroalloy as raw materials, chemical composition: 3.18%C, 2.09%Si, 0.74%Mn, 0.22%P,
Molten metal containing 0.024% S and 0.31% Cr was melted in a high-frequency induction furnace and cast into a 20mm round bar mold. The graphite shape obtained is ASTM classification type D, and the graphite size is 7.
It was ~8. Thereafter, it was heat treated at 1130°C for 30 minutes and then air cooled. A microscopic photograph of the obtained tissue is shown in FIG. A scuffing resistance test was conducted on Examples 1 and 2 and Comparative Examples 1, 2, and 4 thus obtained. A schematic diagram of the test apparatus is shown in FIG. Mating material A
is hard chrome plated. Test piece B, counterpart material A
The surface was subjected to a finishing test by grinding to a surface roughness of 1 to 2 μRZ. The test was conducted in a dry manner without lubrication. The scuffing resistance was evaluated based on the load, friction speed, and friction distance until scuffing occurred in the test rotor shown in FIG. 8. The results are shown in Table 1.

【表】 表1から熱処理により鋳放し材の片状黒鉛をい
も虫状黒鉛に変化させた本発明材の耐スカツフイ
ング性が比較例に比べ向上していることが明らか
である。また比較例においても、ATSM分類A
型黒鉛を有する比較例1、2の方がASTM分類
D型黒鉛を有する鋳鉄を実施例1と同一条件で熱
処理した比較例4に比べ耐スカツフイング性が優
れていることが明らかであり、鋳放しにおいて、
ASTM分類A型黒鉛が析出黒鉛の70%以上析出
していることが、耐スカツフイングの面で重要で
あるが、その黒鉛を本発明に係わる熱処理によつ
ていも虫状黒鉛にすることが耐スカツフイング性
向上の面で優れた効果を示すことが明らかであ
る。 次に実施例3、比較例3を用いて、エンジンに
よる耐スカツフイング性試験を行つた。試験条件
を下に示す。 エンジン 水冷4気筒4サイクルデイーゼルエ
ンジン 排気量 2.96 出力 85PS−3600rpm 潤滑油 SAE#10 潤滑油温度 110〜115℃ 冷却水温度 90〜95℃ 運転方法 ならし運転30分 全負荷3600rpm2.5時間 エンジン試験終了後、供試シリンダーライナの
スカツフイング発生状況を目視により調査した。
エンジン試験に供した、シリンダーライナ数は実
施例3、比較例3共に20本であり、スカツフイン
グの発生率は、実施例3は5%、比較例3は65%
であつた。エンジン試験においても本発明材の耐
スカツフイング性が優れていることが明らかにな
つた。 さらに実施例3、比較例3を用いて、エンジン
による耐久試験を行つた。試験条件を下に示す。 エンジン 水冷4気筒4サイクルデイーゼルエ
ンジン 排気量 2.96 出力 85PS−3600rpm 潤滑油 SAE#30 潤滑油温度 110〜115℃ 冷却水温度 90〜95℃ 運転条件 全負荷3600rpm300時間 耐久試験の結果を第1圧縮リング上死点におけ
るシリンダーライナの摩耗量で比較すると実施例
3は5〜10μm、比較例3は10〜15μmであつた。 以上のように本発明に係わる鋳鉄摺動部材は耐
スカツフイング性と共に耐摩耗性の向上も明らか
である。
[Table] From Table 1, it is clear that the scuffing resistance of the material of the present invention, in which the flaky graphite of the as-cast material was changed to caterpillar graphite by heat treatment, is improved compared to the comparative example. Also in the comparative example, ATSM classification A
It is clear that Comparative Examples 1 and 2 containing Type D graphite have better scuffing resistance than Comparative Example 4, which was made of cast iron containing ASTM Class D graphite and was heat treated under the same conditions as Example 1. In,
It is important for ASTM classification A type graphite to precipitate at least 70% of the precipitated graphite in terms of scuffing resistance, but it is important to make the graphite into worm-like graphite through the heat treatment according to the present invention. It is clear that it exhibits an excellent effect in improving scuffing properties. Next, using Example 3 and Comparative Example 3, an engine scuffing resistance test was conducted. The test conditions are shown below. Engine Water-cooled 4-cylinder 4-stroke diesel engine Displacement 2.96 Output 85PS-3600rpm Lubricating oil SAE#10 Lubricating oil temperature 110-115℃ Cooling water temperature 90-95℃ Operating method Break-in 30 minutes Full load 3600 rpm 2.5 hours Engine test completed Afterwards, the occurrence of scuffing in the test cylinder liner was visually inspected.
The number of cylinder liners used in the engine test was 20 in both Example 3 and Comparative Example 3, and the scuffing occurrence rate was 5% in Example 3 and 65% in Comparative Example 3.
It was hot. The engine test also revealed that the material of the present invention has excellent scuffing resistance. Further, using Example 3 and Comparative Example 3, a durability test using an engine was conducted. The test conditions are shown below. Engine Water-cooled 4-cylinder 4-stroke diesel engine Displacement 2.96 Output 85PS-3600rpm Lubricating oil SAE #30 Lubricating oil temperature 110-115℃ Cooling water temperature 90-95℃ Operating conditions Full load 3600rpm 300 hours Durability test results are displayed on the first compression ring When comparing the amount of wear of the cylinder liner at the dead center, Example 3 had a wear amount of 5 to 10 μm, and Comparative Example 3 had a wear amount of 10 to 15 μm. As described above, it is clear that the cast iron sliding member according to the present invention has improved scuffing resistance and wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は各々実施例1、実施例2の黒
鉛組織写真、第3図は実施例3のシリンダーライ
ナ内周面の黒鉛組織写真であり、第4図、第5図
は各々比較例1、2の黒鉛組織写真、第6図は比
較例3のシリンダーライナ内周面の黒鉛組織写真
である。倍率はいずれも50倍である。第7図は比
較例4の黒鉛組織写真であり、倍率は100倍であ
る。第8図は耐スカツフイング性試験の略図であ
り、Aは硬質クロムを施した相手材であり、Bは
供試鋳鉄材ローターである。
1 and 2 are photographs of the graphite structure of Examples 1 and 2, respectively. FIG. 3 is a photograph of the graphite structure of the inner peripheral surface of the cylinder liner of Example 3. Graphite structure photographs of Comparative Examples 1 and 2, and FIG. 6 are graphite structure photographs of the inner peripheral surface of the cylinder liner of Comparative Example 3. The magnification is 50x in both cases. FIG. 7 is a photograph of the graphite structure of Comparative Example 4, and the magnification is 100 times. FIG. 8 is a schematic diagram of the scuffing resistance test, where A is a mating material coated with hard chrome, and B is a test cast iron rotor.

Claims (1)

【特許請求の範囲】 1 炭素、ケイ素、マンガン、リン及び硫黄の主
要5元素の他に、主としてマトリツクスを強化す
るニツケル及び銅からなる群の中から選択された
少なくとも1種を合計で0.05〜1.0%、及び主と
して炭化物を形成するクロム、モリブデン、ニオ
ブ、チタン、バナジウム、タングステン及びホウ
素からなる群の中から選択された少なくとも1種
を、1種の場合は0.05〜1.0%、2種以上の場合
は合計で0.05〜2%含有し、且つ黒鉛を有する鋳
鉄からなる摺動部材であつて、(イ)該黒鉛の黒鉛サ
イズがASTM4乃至6であり、(ロ)該黒鉛の形状は
ASTM分類A型のものが70%以上を占め、且つ
(ハ)該黒鉛の先端部と中央部の幅が実質的に同じで
ある上記黒鉛組織(イ)−(ハ)を有し、ホーニング加工
が施されている該摺動部材の摺動面に前記黒鉛が
露出していることを特徴とする耐摩耗性、耐スカ
ツフイング性の優れた鋳鉄摺動部材。 2 炭素、ケイ素、マンガン、リン及び硫黄の主
要5元素の他に、主としてマトリツクスを強化す
るニツケル及び銅からなる群の中から選択された
少なくとも1種を合計で0.05〜1.0%、及び主と
して炭化物を形成するクロム、モリブデン、ニオ
ブ、チタン、バナジウム、タングステン及びホウ
素からなる群の中から選択された少なくとも1種
を、1種の場合は0.05〜1.0%、2種以上の場合
は合計で0.05〜2%含有し、鋳放しで析出してい
る黒鉛中の、ASTM分類A型黒鉛の占有面積率
が70%以上で、且つ黒鉛サイズがASTM4〜6で
ある鋳鉄を1000℃以上、1140℃以下の温度で10分
以上加熱保持後冷却し、鋳放し状態の前記黒鉛サ
イズを実質的に保ちながら黒鉛の幅が先端と中央
部が実質的に同一であるように変化させることを
特徴とする耐摩耗性、耐スカツフイング性の優れ
た鋳鉄摺動部材の製造方法。
[Claims] 1. In addition to the five main elements of carbon, silicon, manganese, phosphorus, and sulfur, at least one element selected from the group consisting of nickel and copper that mainly strengthens the matrix is added in a total of 0.05 to 1.0. %, and at least one selected from the group consisting of chromium, molybdenum, niobium, titanium, vanadium, tungsten, and boron, which mainly form carbides, in the case of one type, 0.05 to 1.0%, and in the case of two or more types. is a sliding member made of cast iron containing 0.05 to 2% in total and having graphite, (a) the graphite size is ASTM 4 to 6, and (b) the shape of the graphite is
ASTM classification type A accounts for more than 70%, and
(c) The sliding surface of the sliding member is honed and has the graphite structure (a) to (c) above, in which the width of the tip and the center of the graphite are substantially the same. A cast iron sliding member with excellent wear resistance and scuffing resistance, characterized in that the graphite is exposed. 2 In addition to the five main elements of carbon, silicon, manganese, phosphorus and sulfur, a total of 0.05 to 1.0% of at least one element selected from the group consisting of nickel and copper, which mainly strengthen the matrix, and mainly carbides. At least one selected from the group consisting of chromium, molybdenum, niobium, titanium, vanadium, tungsten, and boron to form, in the case of one type, 0.05 to 1.0%, and in the case of two or more types, 0.05 to 2% in total. %, the occupied area ratio of ASTM type A graphite in the as-cast graphite is 70% or more, and the graphite size is ASTM 4 to 6. Abrasion resistant, characterized in that the width of the graphite is changed so that the tip and center portions are substantially the same by cooling after heating and holding for 10 minutes or more, and substantially maintaining the graphite size in the as-cast state. , a method for manufacturing cast iron sliding members with excellent scuffing resistance.
JP6668484A 1984-04-05 1984-04-05 Cast iron sliding member having excellent resistance to wear and scuffing and its production Granted JPS60211050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6668484A JPS60211050A (en) 1984-04-05 1984-04-05 Cast iron sliding member having excellent resistance to wear and scuffing and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6668484A JPS60211050A (en) 1984-04-05 1984-04-05 Cast iron sliding member having excellent resistance to wear and scuffing and its production

Publications (2)

Publication Number Publication Date
JPS60211050A JPS60211050A (en) 1985-10-23
JPH0135062B2 true JPH0135062B2 (en) 1989-07-24

Family

ID=13323000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6668484A Granted JPS60211050A (en) 1984-04-05 1984-04-05 Cast iron sliding member having excellent resistance to wear and scuffing and its production

Country Status (1)

Country Link
JP (1) JPS60211050A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229743B2 (en) * 2007-06-26 2013-07-03 国立大学法人岩手大学 Flake graphite cast iron and method for producing the same
JP5712525B2 (en) * 2010-08-09 2015-05-07 Jfeスチール株式会社 Spheroidal graphite cast iron products with excellent wear resistance
CN103667861B (en) * 2012-08-30 2016-10-05 日本活塞环株式会社 Cylinder jacket

Also Published As

Publication number Publication date
JPS60211050A (en) 1985-10-23

Similar Documents

Publication Publication Date Title
EP1304393B1 (en) Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
US8333923B2 (en) High strength gray cast iron
KR100701812B1 (en) Material for sliding parts having self-lubricity and wire material for piston ring
KR20150021754A (en) Grey cast iron having excellent durability
JP3297150B2 (en) Cast iron having excellent corrosion resistance and wear resistance, and a cylinder liner formed from the cast iron
CN107723587A (en) A kind of ball mill high hardness wear-resisting ball and its preparation technology
JP4840026B2 (en) Seizure-resistant cast iron
JP6712316B2 (en) Alloy cast iron with improved wear resistance and piston ring containing it
KR0138010B1 (en) Cast iron slide member
JPH0135062B2 (en)
US3998664A (en) Cast iron
JP2909456B2 (en) Piston ring with excellent scuffing resistance
JPH0127145B2 (en)
JP2599780B2 (en) Manufacturing method for high-speed rotating members
JP2733773B2 (en) Rocker arm
JP3143835B2 (en) Combination of piston rings
JPH07316754A (en) Alloy used for cam lobe for insert-casting cam shaft and cam lobe using the same
JP2594505B2 (en) Rocker arm
JP2783153B2 (en) Cast iron crankshaft
JPH0115576B2 (en)
JPH03122257A (en) Piston ring material
JPS61281849A (en) Valve guide for internal-combustion engine
JP2001227618A (en) Camshaft
KR840001096B1 (en) A hot forging powder material
KR100196823B1 (en) Piston-ring of excellent workability