[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01321623A - Manufacture of electrolytic capacitor - Google Patents

Manufacture of electrolytic capacitor

Info

Publication number
JPH01321623A
JPH01321623A JP15392588A JP15392588A JPH01321623A JP H01321623 A JPH01321623 A JP H01321623A JP 15392588 A JP15392588 A JP 15392588A JP 15392588 A JP15392588 A JP 15392588A JP H01321623 A JPH01321623 A JP H01321623A
Authority
JP
Japan
Prior art keywords
lead
capacity
capacitor
pressed compact
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15392588A
Other languages
Japanese (ja)
Inventor
Junichi Kurita
淳一 栗田
Minoru Maeda
稔 前田
Sumio Nishiyama
西山 澄夫
Yuji Uesugi
雄二 植杉
Koji Funemi
浩司 船見
Isao Irikura
入蔵 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15392588A priority Critical patent/JPH01321623A/en
Publication of JPH01321623A publication Critical patent/JPH01321623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To enable capacity to be increased as compared with the conventional products, and enable material reduction in the case where a capacitor with the same capacity is manufactured by irradiation of lasers on the lead buried part of a conventional pressed compact in a low oxygen atmosphere, and then sintering it at a specific temperature. CONSTITUTION:A pressed compact 1 that the lead wire 1a of valve acting metal is buried is formed, and laser beams 2 by YAG pulse laser are applied to that lead buried part so as to fuse and unite the lead wire 1a and a part of the pressed compact 1 in the vicinity. And the pressed compact 1 is sintered at 1200 deg.C-1600 deg.C in vacuum. Hereby, as compared with a conventional capacitor, 40% capacity-up can be realized at maximum in the same size, and in the case that a capacitor with the same capacity is to be obtained, 40% material reduction at maximum becomes possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解コンデンサの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing an electrolytic capacitor.

従来の技術 従来の電解コンデンサは、一般に第3図に示すような構
造を持ち、その製造方法は、まず始めにタンタル、アル
ミニウム、ニオブ等の弁作用金属粉末に同種の金属から
なるリード線11を埋設して加圧成形し−1600℃〜
2000℃の温度で焼結して電極体12を形成する。次
にその電極体12表面を陽極酸化して誘電体酸化皮膜1
3を形成し、次いで硝酸マンガン等の半導体母液に含浸
し、これを熱分解して二酸化マンガン層14を形成した
のち、グラフフィト層15、導電性ペイント層16を頴
次形成し、リード線11と導電性ペイント層16から半
田付は等によシ外部リード17を引出し、外装樹脂18
または金属ケースに封入して完成品としている。
2. Description of the Related Art Conventional electrolytic capacitors generally have a structure as shown in FIG. Buried and pressure molded to -1600℃~
The electrode body 12 is formed by sintering at a temperature of 2000°C. Next, the surface of the electrode body 12 is anodized to form a dielectric oxide film 1.
3 is formed, and then impregnated with a semiconductor mother liquor such as manganese nitrate, this is thermally decomposed to form a manganese dioxide layer 14, and then a graphite layer 15 and a conductive paint layer 16 are formed, and a lead wire 11 is formed. The external lead 17 is pulled out from the conductive paint layer 16 by soldering, etc., and the exterior resin 18 is pulled out.
Or it is sealed in a metal case and made into a finished product.

電解コンデンサにおいて陽極体焼結温度は容重を決定す
る重要な要因となっている。第4図に陽極体焼結温度と
コンデンサCV値の関係を示す。
In electrolytic capacitors, the anode body sintering temperature is an important factor in determining the capacity and weight. FIG. 4 shows the relationship between the anode body sintering temperature and the capacitor CV value.

第4図よシわかるように焼結温度が低くなるほど、コン
デンサは高いCv値を示すことになる。つまり高容量の
コンデンサを得るためには、低い温度で焼結を行った方
が有利である。また、第5図に陽極体焼結温度と陽極体
押しつぶし強度の関係を示す。第5図よりわかるように
焼結温度が1000℃を越えると陽極体押しつぶし強度
が上昇する。
As can be seen from FIG. 4, the lower the sintering temperature, the higher the Cv value of the capacitor. In other words, in order to obtain a capacitor with high capacity, it is advantageous to perform sintering at a low temperature. Further, FIG. 5 shows the relationship between the anode body sintering temperature and the anode body crushing strength. As can be seen from FIG. 5, when the sintering temperature exceeds 1000°C, the crushing strength of the anode body increases.

つま91200℃以上の温度で金属粉末と、金属粉末の
結合は進行することがわかる。このことよシ陽極体の焼
結温度は120C)Cまで低くすることが可能であシ、
このことによって高容量のコンデンサを得ることができ
ることになる。
It can be seen that the bond between the metal powder and the metal powder progresses at a temperature of 91,200° C. or higher. This means that the sintering temperature of the anode body can be lowered to 120C).
This makes it possible to obtain a capacitor with high capacity.

発明が解決しようとする課題 その一方で焼結温度が低くなるにしたがって陽極体とリ
ードの結合は弱くなる。第6図に陽極体焼結温度とリー
ド引き抜き強度の関係を示す。第6図よりわかるように
焼結温度が1600℃を越えると、引き抜き強度が上昇
する。つまJ16oO℃1000度では金属粉末とリー
ドの結合は進行しないことがわかる。このことより現行
のリードを埋設した陽極体では、1600℃以下の温度
では焼結できない構成になっていた。
Problems to be Solved by the Invention On the other hand, as the sintering temperature decreases, the bond between the anode body and the lead becomes weaker. FIG. 6 shows the relationship between anode body sintering temperature and lead pull-out strength. As can be seen from FIG. 6, when the sintering temperature exceeds 1600°C, the pull-out strength increases. It can be seen that the bonding between the metal powder and the lead does not proceed at a temperature of 1000 degrees. For this reason, the current anode body with embedded leads has a structure that cannot be sintered at temperatures below 1600°C.

本発明はこのような問題を解決し、容量アップを図れる
ようにすることを目的とする。
It is an object of the present invention to solve such problems and to increase capacity.

課題を解決するための手段 上記問題点を解決するために本発明は、加圧成形体の陽
極リード埋設部根元にレーザーを照射し、リードと成形
体の一部を溶融結合させた後、120゜℃〜1600℃
の温度で真空焼結を行ったものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention irradiates the base of the anode lead buried part of the pressure molded body with a laser to melt and bond the lead and a part of the molded body, and then゜℃〜1600℃
Vacuum sintering was performed at a temperature of .

作用 上記構成とすることによシ、従来のコンデンサに比べて
同一のサイズで最大で40%容量アップがはかれること
となり、また同一容量のコンデンサを得ようとした場合
最大で4Q%の材料削減が可能となる。
Effect By adopting the above configuration, the capacitance can be increased by up to 40% with the same size compared to conventional capacitors, and when trying to obtain a capacitor with the same capacity, the material can be reduced by up to 4Q%. It becomes possible.

実施例 以下、本発明の一実施例を添付の図面を用いて説明する
。第1図は本発明の電解コンデンサエレメントを示す。
Embodiment Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an electrolytic capacitor element of the present invention.

まず従来と同様に、弁作用金属のリード線11Lを埋設
した加圧成形体1を形成し、そのリード埋設部にYAG
パルスレーザ−によるレーザービーム2を照射し、リー
ド線1aとその周辺の加圧成形体1の一部を溶融結合さ
せる。第2図に本発明の電解コンデンサを示す。加圧成
形体1を真空中で1000℃〜1600℃にて焼結して
電極体3を形成し、表面に誘電体皮膜4、二酸化マンガ
ン層5、グラファイト層6、導電性ペイント層7を頴次
形成し、外部リード8を半田付は等により設け、樹脂9
で外装することによυ電解コンデンサとなる。
First, as in the conventional method, a pressure molded body 1 is formed in which a valve metal lead wire 11L is embedded, and a YAG
A laser beam 2 from a pulsed laser is irradiated to melt and bond the lead wire 1a and a portion of the pressure molded body 1 around the lead wire 1a. FIG. 2 shows an electrolytic capacitor of the present invention. The press-formed body 1 is sintered in vacuum at 1000°C to 1600°C to form an electrode body 3, and a dielectric film 4, a manganese dioxide layer 5, a graphite layer 6, and a conductive paint layer 7 are deposited on the surface. Next, the external leads 8 are provided by soldering, etc., and the resin 9
It becomes a υ electrolytic capacitor by sheathing it with .

次に、具体的実施例を従来例と比較して説明する。第2
図のように重量40■、径1.8mm、長さ2 、4 
m1Inに線径s−ommのリード線を埋設した加圧成
形体1のリード埋設部へ真空度10= torrの酸素
分圧中においてYAGパルスレーザ−によるレーザービ
ーム2を3.0ジュール/ハルスの出力で照射し、リー
ド線1aとその周辺部の加圧成形体1の一部を溶融結合
させた後、真空度10〜1゜torr温度1200℃に
て焼結して電極体3とする。この電極体3に1@次誘電
体皮膜4、二酸化マンガン層5、グラファイト層6、導
電性ペイント層アを形成した後、陽極のリード線1aK
溶接によって陽極引出しリードを接続し、また導電性ペ
イント層7には半田付けによって陰極の外部引出しり−
ド8を接続し、そして外装樹脂を施し、定格16v10
μFの製品を得た。なお従来品はレーザー照射をせず1
600℃にて電極体3の焼結を行った以外は同一の条件
にて製造した。製品の特性を表1に示す。
Next, a specific example will be described in comparison with a conventional example. Second
As shown in the picture, weight 40cm, diameter 1.8mm, length 2,4
A laser beam 2 from a YAG pulse laser of 3.0 joules/hulls was applied to the lead-embedded part of the pressure molded body 1 in which a lead wire with a wire diameter of s-omm was embedded in m1In in an oxygen partial pressure of 10 torr in vacuum. The lead wire 1a and a part of the press-molded body 1 in the vicinity thereof are irradiated with a high power and melted and bonded, and then sintered at a vacuum degree of 10 to 1 torr and a temperature of 1200 degrees Celsius to form an electrode body 3. After forming a primary dielectric film 4, a manganese dioxide layer 5, a graphite layer 6, and a conductive paint layer a on this electrode body 3, the anode lead wire 1aK
The anode lead is connected by welding, and the cathode external lead is connected to the conductive paint layer 7 by soldering.
Connect cable 8, apply exterior resin, and set the rating to 16v10.
A μF product was obtained. In addition, the conventional product does not require laser irradiation.
The electrode body 3 was manufactured under the same conditions except that the electrode body 3 was sintered at 600°C. Product characteristics are shown in Table 1.

表1 製品特性 本発明によって製造された製品は、損失、漏れ電流は従
来品と同等にもかかわらず、容量は約40%アップして
おり、容量向上が図られることが確認できる。また本発
明品を従来品と同等の容量に合わせて製造すると、コン
デンサの主材料が40%削減されることになシ材料削減
の効果があることも併せて確認できる。
Table 1 Product Characteristics Although the loss and leakage current of the product manufactured according to the present invention are the same as those of conventional products, the capacity is increased by approximately 40%, confirming that the capacity is improved. It can also be confirmed that if the product of the present invention is manufactured to the same capacity as the conventional product, the main material of the capacitor can be reduced by 40%, which is an effect of material reduction.

発明の効果 以上のように従来の加圧成形体のリード埋設部に低酸素
雰囲気でレーザー照射を行った後、1200℃〜160
0℃で焼結を行うことにより、従来の製品に比べて最大
で40%容量アップが可能であり、また同一容量のコン
デンサを製造した場合最大で40%の材料削減が可能と
なシ、本発明の実用的効果は非常に大きい。
Effects of the Invention As described above, after laser irradiation is performed on the lead-buried portion of a conventional pressure-molded body in a low oxygen atmosphere,
By sintering at 0°C, it is possible to increase the capacity by up to 40% compared to conventional products, and when manufacturing capacitors with the same capacity, it is possible to use up to 40% less material. The practical effects of the invention are very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による電解コンデンサの製造
方法を示す断面図、第2図は本発明の方法による電解コ
ンデンサを示す断面図、第3図は従来の電解コンデンサ
の断面図、第4図は陽極体焼結温度とコンデンサCV値
の関係を示す特性図、第5図は陽極体焼結温度と陽極体
押しつぶし強度の関係を示す特性図、第6図は陽極体焼
結温度とリード引き抜き強度の関係を示す特性図である
。 1・・・・・・加圧成形体、1a・・・・・・リード線
、2・・・・・・レーザービーム、3・・・・・・電極
体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第 4 図 !2θo    taoo    t4oo   ts
aρ   ttao    tqoty涜瑠温度(0り 第5図 境装:A度Cc)
FIG. 1 is a cross-sectional view showing a method of manufacturing an electrolytic capacitor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing an electrolytic capacitor manufactured by the method of the present invention, and FIG. Figure 4 is a characteristic diagram showing the relationship between anode body sintering temperature and capacitor CV value, Figure 5 is a characteristic diagram showing the relationship between anode body sintering temperature and anode body crushing strength, and Figure 6 is a characteristic diagram showing the relationship between anode body sintering temperature and anode body crushing strength. FIG. 3 is a characteristic diagram showing the relationship between lead pull-out strength. DESCRIPTION OF SYMBOLS 1... Pressure molded body, 1a... Lead wire, 2... Laser beam, 3... Electrode body. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4! 2θo taoo t4oo ts
aρ ttao tqoty temperature (0ri 5th illustration: A degree Cc)

Claims (1)

【特許請求の範囲】[Claims] タンタル,アルミニウム,ニオブ等の弁作用を有する金
属粉末を加圧成形すると共に、弁作用を有する金属部材
を陽極リードとして埋設し、そのリード根元部にレーザ
ーを照射し、リードと成形体の一部を溶融結合させた後
、1200℃〜1600℃の温度で真空焼結することを
特徴とする電解コンデンサの製造方法。
A metal powder with a valve action such as tantalum, aluminum, niobium, etc. is pressure-molded, a metal member with a valve action is buried as an anode lead, and the base of the lead is irradiated with a laser to form a part of the lead and the molded body. 1. A method for manufacturing an electrolytic capacitor, which comprises melting and bonding and then vacuum sintering at a temperature of 1200°C to 1600°C.
JP15392588A 1988-06-22 1988-06-22 Manufacture of electrolytic capacitor Pending JPH01321623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15392588A JPH01321623A (en) 1988-06-22 1988-06-22 Manufacture of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15392588A JPH01321623A (en) 1988-06-22 1988-06-22 Manufacture of electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH01321623A true JPH01321623A (en) 1989-12-27

Family

ID=15573080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15392588A Pending JPH01321623A (en) 1988-06-22 1988-06-22 Manufacture of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01321623A (en)

Similar Documents

Publication Publication Date Title
US6819544B1 (en) Dual-anode electrolytic capacitor for use in an implantable medical device
US6801424B1 (en) Electrolytic capacitor for use in an implantable medical device
US6807048B1 (en) Electrolytic capacitor for use in an implantable medical device
US6319292B1 (en) Method for making capacitor pellet and lead assembly
US5483415A (en) Solid electrolytic capacitor and method of making the same
JPH01321623A (en) Manufacture of electrolytic capacitor
JP2969692B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2004014667A (en) Solid electrolytic capacitor
JPH05234828A (en) Manufacture of solid electrolytic capacitor
JPH05299309A (en) Manufacture of electrode for chip type solid electrolytic capacitor
JP4424658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3266205B2 (en) Method for manufacturing solid electrolytic capacitor
JP4090021B2 (en) Capacitor element in solid electrolytic capacitor, method for manufacturing the capacitor element, and solid electrolytic capacitor using the capacitor element
JP3294362B2 (en) Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JPH09120935A (en) Tantalum solid-state electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JP3233972B2 (en) Chip type solid electrolytic capacitor
JPS61278124A (en) Manufacture of solid electrolytic capacitor
JPH09223644A (en) Structure of capacitor element in solid electrolytic capacitor and its manufacture
JP2615710B2 (en) Manufacturing method of electrolytic capacitor
JP2850819B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JP3294361B2 (en) Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JPS5915484Y2 (en) solid electrolytic capacitor
JPH01268014A (en) Manufacture of tantalum solid electrolytic capacitor
JPH01223716A (en) Manufacture of electrolytic capacitor