[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01320827A - Control system for notch frequency - Google Patents

Control system for notch frequency

Info

Publication number
JPH01320827A
JPH01320827A JP15379788A JP15379788A JPH01320827A JP H01320827 A JPH01320827 A JP H01320827A JP 15379788 A JP15379788 A JP 15379788A JP 15379788 A JP15379788 A JP 15379788A JP H01320827 A JPH01320827 A JP H01320827A
Authority
JP
Japan
Prior art keywords
frequency
notch
khz
mixer
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15379788A
Other languages
Japanese (ja)
Other versions
JPH084237B2 (en
Inventor
Koji Ogi
広司 尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaesu Musen Co Ltd
Original Assignee
Yaesu Musen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaesu Musen Co Ltd filed Critical Yaesu Musen Co Ltd
Priority to JP63153797A priority Critical patent/JPH084237B2/en
Publication of JPH01320827A publication Critical patent/JPH01320827A/en
Publication of JPH084237B2 publication Critical patent/JPH084237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Noise Elimination (AREA)

Abstract

PURPOSE:To avoid notch effect from being lost due to a slight frequency difference by always making the frequency of a disturbed wave coincident with a notch frequency. CONSTITUTION:A frequency of a reference oscillator 33 is set the same as the notch frequency in a local oscillator 3 of a mixer stage 2 placed in front of a notch circuit 1 and a disturbed radio wave is used as a comparison input to a phase detector 32. Then a phase difference output of the phase detector 32 controls the frequency of a voltage controlled oscillator VCO 31 as a control DC voltage through an LPF 34 to constitute a phase controlled oscillation circuit through a path of pre-stage mixer 2 phase detector 32 VCO 31 so that the disturbing frequency applied to the phase detector 32 is equal to the reference frequency (=notch frequency). Thus, the disturbing wave frequency is always made coincident with the notch frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無線受信機において、通過帯域内に存在する妨
害電波を除去するためのノツチ回路を有する回路に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a circuit in a radio receiver having a notch circuit for removing interference waves existing within a pass band.

〔従来の技術〕[Conventional technology]

無線受信機では希望の受信波のみを復調器に加え、その
他の不要の妨害電波を除去するために、スーパーヘテロ
ダ′イン方式では中間周波増幅段にBPF (パントノ
やスフイルク)を設けておシ、その通過帯域幅は放送用
等のDSB (両サイドバンド)波では7〜15 kH
z 、通信用のSSB (片サイドバンド)では2〜4
kH2%CW(電信)では0.5〜3 kHz K制限
し、帯域外減衰の優れた水晶フィルタやセラミックフィ
ルタを使用することにより妨害波の除去に効果を挙げて
いる。しかしながらアマチュア無線や小形業務無線では
許容バンド内では任意の周波数で送信が出来るため、受
信帯域内に他の電波が混入する可能性は少なくない。ま
たイメージ妨害や高調波妨害、スプリアスビートの混入
といった問題も発生する。
In a wireless receiver, in order to add only the desired received wave to the demodulator and remove other unnecessary interference waves, the superheterodyne system uses a BPF (pantone or filter) in the intermediate frequency amplification stage. , its passband width is 7 to 15 kHz for DSB (both sideband) waves for broadcasting etc.
z, 2 to 4 for SSB (one side band) for communication
For kHz2%CW (telegraph), interference waves are effectively removed by limiting the frequency to 0.5 to 3 kHz and using a crystal filter or ceramic filter with excellent out-of-band attenuation. However, since amateur radio and small business radio can transmit at any frequency within the permissible band, there is a high possibility that other radio waves will mix into the receiving band. Problems such as image interference, harmonic interference, and spurious beats also occur.

このような通過帯域内の不要信号を除去するのには従来
からノツチフィルタが用いられている。
Notch filters have conventionally been used to remove such unnecessary signals within the passband.

これには比較的低インピーダンス回路で用いる、特定周
波数でインピーダンスが増加して不要信号の通過を阻止
する直列ノツチと、比較的高インピーダンス回路で用い
る特定周波数で並列インピーダンスが低下して不要信号
を短絡吸収する並列ノツチとがあるが、受信機回路は高
インピーダンスが多いので、通常並列ノツチが用いられ
る。そのためのノッチ素子としてはり、!:Cの直列回
路では不十分なので高Qの水晶振動子の直列共振を利用
し、さらに第6図のように直列の微少容量を加減してノ
ツチ周波数を調整できるので、ノツチで妨害信号を除去
するのには前記微少容量を加減するか、前置ミクサの局
部発振周波数を加減して妨害信号周波数とノツチ周波数
とを一致させるのであるが、妨害周波数が変動したシ、
受信波の同調を微調整したシして、妨害周波数とノツチ
周波数が少しでもすれると妨害波の除去効果はなくなる
ので、その都度合わせ直さなければならないのであり、
それもノツチ特性がシャープであるほど調整に困難を感
するという問題がある。
These include a series notch, which is used in relatively low-impedance circuits, and which increases impedance at a specific frequency to block the passage of unnecessary signals, and a series notch, which is used in relatively high-impedance circuits, where the parallel impedance decreases at a specific frequency to short-circuit unnecessary signals. There is a parallel notch for absorption, but since the receiver circuit often has high impedance, a parallel notch is usually used. As a notch element for that purpose! : Since the series circuit of C is insufficient, the notch frequency can be adjusted by using the series resonance of a high Q crystal oscillator and adding or subtracting a small series capacitance as shown in Figure 6, so the interfering signal can be removed at the notch. To do this, the interference signal frequency and the notch frequency are matched by adjusting the minute capacitance or by adjusting the local oscillation frequency of the premixer, but if the interference frequency fluctuates,
Even if you fine-tune the tuning of the received wave, if the interference frequency and the notch frequency shift even slightly, the interference wave removal effect will be lost, so you will have to readjust the tuning each time.
Another problem is that the sharper the notch characteristics, the more difficult it is to adjust.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前項に述べたように、ノツチ特性がシャープであるほど
妨害波の除去効果は大きいが、僅かの周波数差によって
も急速にノツチ効果を失うという問題がある。
As mentioned in the previous section, the sharper the notch characteristic is, the greater the interference wave removal effect is, but there is a problem in that the notch effect is quickly lost even with a slight frequency difference.

本発明においては妨害波を常にノツチ周波数に引込むこ
とにより、前記の問題点を解決しようとするものである
The present invention attempts to solve the above-mentioned problems by always drawing the interference waves into the notch frequency.

〔課題を解決するための手段〕[Means to solve the problem]

妨害波をノツチ周波数に引込むにはノツチ周波数を妨害
波周波数に合わせるのと、妨害波をノツチ周波数に合わ
せるのと2つの方法がある。本発明は後者の妨害波の周
波数を常にノツチ周波数に合致する方法によるものであ
る。
There are two ways to draw interference waves into the notch frequency: to match the notch frequency to the interference wave frequency, and to match the interference wave to the notch frequency. The present invention relies on the latter method of always matching the frequency of the interference wave with the notch frequency.

本発明は基本的には特許請求の範囲第1項記載のようで
あシ、第1図につき説明すれば、ノツチ回路を有する中
間周波増幅段1に前置するミクサ段2の局部発振器旦は
VCO(電圧制御発振器)31、位相検波器32、基準
発振器33とより成シ、基準発振周波数をノツチ周波数
と同一に設定して、位相検波器32への比較入力に妨害
電波を用いれば、32の位相差出力がLPF 34を通
って制御直流電圧としてVCO31の周波数を制御して
位相検波器32に加わる妨害波周波数が基準周波数(=
ノツチ周波数)となるように2→32→31を通して位
相制御発振回路を構成することにより、妨害波周波数を
常にノツチ周波数に合致させることが出来るものである
The present invention is basically as described in claim 1, and to explain it with reference to FIG. It is composed of a VCO (voltage controlled oscillator) 31, a phase detector 32, and a reference oscillator 33. If the reference oscillation frequency is set to be the same as the notch frequency, and the interference radio wave is used as a comparison input to the phase detector 32, 32 The phase difference output passes through the LPF 34 as a control DC voltage to control the frequency of the VCO 31, and the interference wave frequency applied to the phase detector 32 becomes the reference frequency (=
By configuring a phase controlled oscillator circuit through 2→32→31 so that the notch frequency), the interference wave frequency can always be made to match the notch frequency.

位相検波器に加える妨害波周波数はミクサ段2の出力を
分周・逓倍または周波数変換したものでもよく、基準周
波数を同一割合で増減することにより妨害波周波数をノ
ツチ周波数に合致させる位相制御の条件は成立するので
ある。
The interference frequency applied to the phase detector may be the output of mixer stage 2 divided, multiplied, or frequency converted, and the condition for phase control is to match the interference frequency to the notch frequency by increasing or decreasing the reference frequency at the same rate. holds true.

以上の基本構成のままで良く動作するのは範囲が限定さ
れる。例えばSSB受信時には、妨害周波数が変動して
、その分だけVCO31の発振周波数が移動して妨害周
波数をノツチ周波数に引きもどすと、同時に信号周波数
も同量の移動をするので、復調段においてBFO周波数
とのズレを生じて復調が不可能に々るので、 BFO周
波数を合わせ直さなければならないという副作用を生ず
るのである。
The range in which the above basic configuration works well is limited. For example, when receiving SSB, the interfering frequency fluctuates, and the oscillation frequency of the VCO 31 moves by that amount to bring the interfering frequency back to the notch frequency. At the same time, the signal frequency also moves by the same amount, so the BFO frequency is changed at the demodulation stage. This results in a deviation from the BFO frequency, making demodulation impossible, resulting in the side effect of having to readjust the BFO frequency.

そこで、特許請求の範囲第2項においては第1図のノツ
チ回路を有する中間周波段1に後置するミクサ段を設け
、前置ミクサ2とこの後置ミクサにVCO3iより共通
の局部発振周波数を供給する構成とし、後置ミクサ出力
より復調段に供給することにより、妨害波周波数の変動
に伴う受信周波数の移動があっても後置ミクサにおいて
補償されて、復調には影響を及ぼさないノツチ周波数の
制御方式につき開示している。
Therefore, in claim 2, a mixer stage is provided after the intermediate frequency stage 1 having the notch circuit shown in FIG. By supplying the notch frequency to the demodulation stage from the output of the post-mixer, even if there is a shift in the receiving frequency due to fluctuations in the interference wave frequency, it is compensated for in the post-mixer and does not affect the demodulation. The control method is disclosed.

その構成および動作の詳細については次の実施例の項に
て説明する。
Details of its configuration and operation will be explained in the next example section.

〔実施例〕〔Example〕

アマチュア無線用のSSB受信機に本発明の特許請求の
範囲第2項を適用した実施構成例を第2図に示す。図中
で第1図と同一の記号部分は第1図と同一の動作部分で
ある。
FIG. 2 shows an example of an implementation configuration in which claim 2 of the present invention is applied to an SSB receiver for amateur radio. In the figure, the same symbol parts as in FIG. 1 are the same operating parts as in FIG. 1.

受信波はアンテナより(高周波増幅段を通って)第1ミ
クサで9000 kHzの中間周波に変換しているが、
この部分は本発明のノツチ回路に対しては前置中間周波
段となる。その出力は前置ミクサ2で455 kHzに
変換し、ノツチ回路1を通って後置ミクサ4にて再び9
000 kHzに変換して後置中間周波段を通ってプロ
ダクト検波器にょシ音声を復調している。
The received wave is converted to an intermediate frequency of 9000 kHz by the first mixer from the antenna (through a high frequency amplification stage).
This portion becomes a pre-intermediate frequency stage for the notch circuit of the present invention. The output is converted to 455 kHz by pre-mixer 2, passes through notch circuit 1, and is converted back to 9 kHz by post-mixer 4.
000 kHz, passes through a post-intermediate frequency stage, and demodulates the voice using a product detector.

前置ミクサ2において9000 kHzを455 kH
zに変換するための局部周波数は9000±455kH
zであるから、8545 kHzと9455 kHzの
いづれでも良いが、後者ではサイドバンド周波数関係が
逆転するので、説明の便宜な8545 kHzとして述
べる。次に後置ミクサ4で455 kHzを元の900
0 kHzにもどす変換をするのに際して、局部周波数
を前置ミクサと共通の8545 kHzを使用すると、
局部周波数が変化するとそれに従って中間の455 k
Hzは変化するが、前置中間周波数と後置中間周波数は
全く変化しないばかシで々く、サイドバンドの関係にも
変化が生じないものである。このことは前置中間周波数
をfl、後置中間周波数をf 2 、局部周波数fLと
すればfl−fL + fL −f2 であシ、  こ
こで(−fL+fL)= 0    であるから、f 
s = f t           となシ、局部周
波数FLの変化の如何にかかわらず、Fl とF2とは
完全に一致することが証明できる。以上の関係を利用し
てフィルタと信号の相対位置を変化させる周波数シフト
方式は当業者間では周知であるが、本発明では別の目的
に利用しているのであって、それを第3図を参照して説
明する。
9000 kHz to 455 kHz in premixer 2
The local frequency for converting to z is 9000±455kHz
z, either 8545 kHz or 9455 kHz may be used, but since the sideband frequency relationship is reversed in the latter case, 8545 kHz will be described for convenience of explanation. Next, use postmixer 4 to convert the 455 kHz to the original 900 kHz.
When converting back to 0 kHz, if the local frequency is 8545 kHz, which is common to the premixer,
As the local frequency changes, the intermediate 455k
Although the Hz changes, the pre-intermediate frequency and the post-intermediate frequency do not change at all, and the relationship between the sidebands does not change either. This means that if the pre-intermediate frequency is fl, the post-intermediate frequency is f2, and the local frequency fL, then fl-fL + fL-f2, where (-fL+fL) = 0, so f
If s = f t , it can be proven that Fl and F2 completely match regardless of the change in the local frequency FL. The frequency shift method that uses the above relationship to change the relative position of the filter and the signal is well known among those skilled in the art, but in the present invention, it is used for another purpose, and is shown in FIG. Refer to and explain.

第3図(A)でFlは前置中間周波段における中心周波
数9000 kHzのフィルタの帯域特性を示し、90
00−1.5=8998.5 kHz75KssB信号
のキャリアポイントで、1)、20 dB程度抑圧され
たSSBのキャリアをさらに15 dB以上は減衰して
いる。したがってSSB信号は約300〜2700Hz
の上側サイドバンドのみを通過増幅しておシ、フィルタ
の通過帯域幅は約2.4 kHzである。
In FIG. 3(A), Fl indicates the band characteristic of a filter with a center frequency of 9000 kHz in the pre-intermediate frequency stage, and 90
00-1.5=8998.5 kHz At the carrier point of the 75KssB signal, 1) the SSB carrier that has been suppressed by about 20 dB is further attenuated by 15 dB or more. Therefore, the SSB signal is approximately 300-2700Hz
Only the upper sideband of the filter is passed and amplified, and the passband width of the filter is approximately 2.4 kHz.

前置ミクサ2で変換された周波数は、第3図(B)のよ
うに中心周波数は455 kHzで、キャリア周波数は
453.5 kHzである。いま前置中間波段に900
0、5 kHzの妨害波が存在し、たとすると、ミクサ
2の出力では455.5 kHzとなるから、この周波
数のノツチを入れて妨害波の大部分を除去することかで
きる。
As shown in FIG. 3(B), the frequency converted by the premixer 2 has a center frequency of 455 kHz and a carrier frequency of 453.5 kHz. Now 900 to the prefix intermediate wave stage
If there is an interference wave of 0.5 kHz, the output of mixer 2 will be 455.5 kHz, so by inserting a notch at this frequency, most of the interference wave can be removed.

後置ミクサ4で再び変換された後置中間周波段の周波数
は第3図(C)のように中心周波数9000kHz、キ
ャリア周波数8998.5 kHz 、妨害波はノツチ
で減衰された残りのみが9000.5 kHzに残存す
る。
As shown in FIG. 3(C), the frequency of the post-intermediate frequency stage converted again by the post-mixer 4 is 9000 kHz as the center frequency, 8998.5 kHz as the carrier frequency, and only the remaining interference waves attenuated by the notch are 9000 kHz. It remains at 5 kHz.

ノツチ回路は水晶振動子の直列共振を利用するものであ
って、水晶振動子Yの電気等価回路は第5図(A) 、
 (119で示され、その直列共振周波数は2xiであ
シ、Loは極めて大きく、coは極めて小さく、R,も
小さい値となる、ため共振の尖鋭度をられない高い値と
なるので、これを伝送路間に並列に入れて共振周波数の
みを吸収して減衰するのであるが、実用上は第6図(A
)のように水晶振動子YK可変容量C8を直列に入れて
共振周波数を微調整するが、coが極めて小さな値であ
るので、CBの変化による共振周波数の変化量は小さく
て、455kHz付近で1 kHz程度に過ぎない。第
6図(B)のようにC8とインダクタンスL、を直列に
入れることにより若干は変化量を増すことができるが、
妨害周波数が変動した場合に完全に追従するのは困難で
ある。
The Notch circuit utilizes the series resonance of a crystal resonator, and the electrical equivalent circuit of the crystal resonator Y is shown in Figure 5 (A).
(119, its series resonance frequency is 2xi, Lo is extremely large, co is extremely small, and R is also a small value. Therefore, it is a high value that cannot be controlled by the sharpness of the resonance. It is placed in parallel between the transmission lines to absorb and attenuate only the resonant frequency, but in practice it is shown in Figure 6 (A
), the resonant frequency is finely adjusted by inserting a crystal oscillator YK variable capacitor C8 in series, but since co is an extremely small value, the amount of change in the resonant frequency due to a change in CB is small, and it is 1 at around 455kHz. It is only about kHz. By inserting C8 and inductance L in series as shown in FIG. 6(B), the amount of change can be increased slightly,
It is difficult to completely follow the disturbance frequency when it fluctuates.

本発明ではノツチ周波数は455 kHz付近(第2図
〜第4図では455.5 kHz )に固定し、局部発
振器3の周波数を変えることにより容易に追従している
のである。従ってノツチ用の水晶振動子の定数はさほど
厳密を要さないのである。ただしノツチ周波数と基準発
振器33の周波数は厳密に一致させる必要があるが、ノ
ツチ側と発振器側の両方で微調整ができるし、絶体値は
制約されないので量産の際は多数の振動子で一致するベ
アを組めば良いので楽である。
In the present invention, the notch frequency is fixed at around 455 kHz (455.5 kHz in FIGS. 2 to 4), and can be easily followed by changing the frequency of the local oscillator 3. Therefore, the constants of the crystal oscillator for the notch do not need to be very strict. However, the notch frequency and the frequency of the reference oscillator 33 must be exactly the same, but fine adjustments can be made on both the notch side and the oscillator side, and the absolute value is not restricted, so it can be matched with a large number of oscillators during mass production. It's easy because all you have to do is make a bear.

位相制御発振器の基本は基準発振周波数455.5kH
zと比較周波数(この場合は妨害波)を位相検波器32
に加えて、その位相差出力をLPFで積分して直流電圧
としてVCO31の周波数制御を行い、r1八1 妨害周波数と基準周波数が一致した状態でVCO31は
ロックされるのであるから、前置中間周波段で妨害周波
数が移動しても前置ミクサ2からノツチ回路への出力で
は妨害周波数が必ずノツチ周波数に一致するように追従
するのである。
The basic oscillation frequency of the phase controlled oscillator is 455.5kHz.
z and the comparison frequency (in this case, the interference wave) is detected by the phase detector 32.
In addition, the phase difference output is integrated by an LPF and used as a DC voltage to control the frequency of the VCO 31. Even if the interfering frequency moves in the wave stage, the output from the premixer 2 to the notch circuit follows the interfering frequency so that it always matches the notch frequency.

妨害波が前置中間周波段の通過帯域端の9000±1、
5 kHzまで変化した場合の周波数関係を第4図に示
す。妨害波aがキャリアと同じ8998.5 kHzに
移動したとすると、前置ミクサ2の出力では妨害波aの
周波数が455.5 kHzのノツチ周波数と一致する
ように位相制御発振器且が動作し、VCO31の発振周
波数は8998.5−455.5=8543kHzとな
る。従って中心周波数は9000−854.3=457
 kHzとなシ、後置ミクサ4では457+8543=
9000kHzとなるので、キャリア周波数も455B
+8543補9985kHzと前置中間周波数と完全に
一致する。
The interference wave is 9000±1 at the end of the passband of the front intermediate frequency stage,
Figure 4 shows the frequency relationship when the frequency changes up to 5 kHz. Assuming that the interference wave a moves to the same frequency as the carrier, 8998.5 kHz, the phase controlled oscillator operates so that the frequency of the interference wave a matches the notch frequency of 455.5 kHz at the output of the premixer 2. The oscillation frequency of the VCO 31 is 8998.5-455.5=8543kHz. Therefore, the center frequency is 9000-854.3=457
kHz and 457+8543= for post-mixer 4
Since it is 9000kHz, the carrier frequency is also 455B.
+8543 supplementary 9985kHz completely matches the pre-intermediate frequency.

また妨害波すが反対帯域端の9001.5 kHzに出
た場合には前記と同じ原理により、VCO31の発振周
波数は9001.5−455.5=8546kHzとな
9、中心周波数は9000−8546=454kHzと
なる。後置ミクサの動作については前記と同じであるか
ら説明は省略する。
Also, if the interference wave appears at the opposite band edge at 9001.5 kHz, based on the same principle as above, the oscillation frequency of the VCO 31 will be 9001.5-455.5 = 8546 kHz9, and the center frequency will be 9000-8546 = It becomes 454kHz. The operation of the post-mixer is the same as described above, so a description thereof will be omitted.

前記妨害波aとbとは両極端周波数であるから、ノツチ
回路で必要な通過帯域は第4図(B)の〔通過帯域a十
通過帯域b〕となり、452.5〜458.5 kl(
zの範囲をカバーすれば十分である。その際のvCO周
波数は8543〜8546 kHzであるから、妨害波
不在で位相制御発振器且がロックされない場合でもVC
O31のフリーラン周波数をこの範囲に設定して置けば
受信上の支障は生じないのである。
Since the interference waves a and b have extreme frequencies, the passband necessary for the notch circuit is [passband a + passband b] in FIG. 4(B), which is 452.5 to 458.5 kl (
It is sufficient to cover the range of z. Since the vCO frequency at that time is 8543 to 8546 kHz, even if there is no interference wave and the phase controlled oscillator is not locked, the VC
If the free run frequency of O31 is set within this range, there will be no problem in reception.

ノツチ動作が不要の場合はVCO31の制御電圧回路を
スイッチ34で切換えて安定化電圧を電圧調整器を通し
て加え、発振周波数を8545 kHz付近に固定し、
同時にノツチ回路を開放するか、第4図CB)のように
ノツチ周波数を通過帯域端に1位置するようにすればノ
ツチの影響を完全に除去することができるものである。
If notch operation is not required, switch the control voltage circuit of the VCO 31 with the switch 34, apply the stabilizing voltage through the voltage regulator, fix the oscillation frequency to around 8545 kHz,
At the same time, the influence of the notch can be completely eliminated by opening the notch circuit or by setting the notch frequency to one position at the end of the passband as shown in FIG. 4 (CB).

帯域内に妨害波が2周波数以上存在するときは通常最も
強力な妨害波をノツチ周波数にロックする。またSSB
信号のサイドバンドは雑音に近い不特定周波数の集合な
ので、これによりロックされることはない。
When there are two or more frequencies of interfering waves within the band, the most powerful interfering wave is usually locked to the notch frequency. Also SSB
Since the sidebands of the signal are a collection of unspecified frequencies close to noise, they are not locked by this.

〔発明の効果〕〔Effect of the invention〕

無線受信機において、受信帯域内の妨害波を除去するの
にはノツチ回路が有効であるが、ノツチ用素子として通
常水晶振動子の直列共振を利用するためノツチ周波数の
可変範囲が極めて狭く限定されるため、ノツチ周波数を
帯域内の任意の周波数に合わせるのには困難がちシ、前
置ミクサの局部発振周波数を変えて妨害周波数をノツチ
周波数に合わせるのは受信信号が帯域の適正位置からず
れるという問題があったのであるが、本発明によれば一
定周波数関係にある妨害波の除去には特許請求の範囲第
1項の適用により比較的簡易な構成でノツチ周波数の制
御が可能であり、また特許請求の範囲第2項の適用によ
り任意の妨害周波数や大きく変動する妨害波を除去する
ノツチ方式として広く利用できる効果は前記〔課題を解
決するだめの手段〕および〔実施例〕の項の記述にて明
らかである。
In radio receivers, notch circuits are effective in eliminating interference waves within the receiving band, but because the notch element usually uses the series resonance of a crystal oscillator, the variable range of the notch frequency is extremely narrow. Therefore, it is often difficult to match the notch frequency to an arbitrary frequency within the band, and changing the local oscillation frequency of the premixer to match the interfering frequency to the notch frequency may cause the received signal to deviate from its proper position in the band. However, according to the present invention, the notch frequency can be controlled with a relatively simple configuration by applying claim 1 to remove interference waves having a constant frequency relationship. The effects that can be widely used as a notch method for removing arbitrary interference frequencies and greatly fluctuating interference waves by applying Claim 2 are as described in the above [Means for Solving the Problems] and [Example] sections. It is clear that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成図、第2図は本発明を用いた
SSB受信機の一実施例を示すブロック図、第3図、第
4図は第2図の回路の各中間周波段の周波数関係を示す
図、第5図は水晶振動子の電気等価回路、第6図は水晶
振動子のノツチ回路である。 1・・・ノツチ回路、2,4・・・ミクサ、31・・・
VCO。 32・・・位相検波器、33・・・基準発振器。 特許出願人 八重洲無線株式会社 第  1  図 伯iミフす 第  2  図 第  3  図 9000 KHz 9000KH2 第  4  因 5図 B 6凶 辛 口Y
FIG. 1 is a basic configuration diagram of the present invention, FIG. 2 is a block diagram showing an embodiment of an SSB receiver using the present invention, and FIGS. 3 and 4 are each intermediate frequency stage of the circuit in FIG. 2. FIG. 5 is an electrical equivalent circuit of a crystal resonator, and FIG. 6 is a notch circuit of a crystal resonator. 1...notch circuit, 2, 4...mixer, 31...
V.C.O. 32... Phase detector, 33... Reference oscillator. Patent Applicant Yaesu Musen Co., Ltd. No. 1 No. 2 No. 3 No. 9000 KHz No. 5 No. 5 B No. 6 Dry Y

Claims (1)

【特許請求の範囲】 1、妨害周波数除去のためのノッチ回路を有する中間周
波増幅段に前置するミクサ段の局部発振器に位相制御発
振器を用い、その位相検波器には前置ミクサ段よりの妨
害波出力を直接あるいは分周・逓倍または周波数変換し
て加えると共に、比較基準周波数をノッチ周波数に相当
する周波数に設定することにより、妨害波周波数をノッ
チ周波数に一致させることを特徴とする、ノッチ周波数
の制御方式。 2、妨害周波数除去のためのノッチ回路を有する中間周
波増幅段に後置するミクサ段を設け、前置ミクサと後置
ミクサに共通の局部発振周波数を前記第1項記載の位相
制御発振器より供給する、ノッチ周波数の制御方式。
[Claims] 1. A phase-controlled oscillator is used as a local oscillator in a mixer stage preceding an intermediate frequency amplification stage having a notch circuit for removing interference frequencies; A notch, characterized in that the interference wave frequency is made to match the notch frequency by adding the interference wave output directly or by dividing/multiplying or converting the frequency, and by setting the comparison reference frequency to a frequency corresponding to the notch frequency. Frequency control method. 2. A mixer stage is provided after the intermediate frequency amplification stage having a notch circuit for removing interference frequencies, and a common local oscillation frequency is supplied to the pre-mixer and the post-mixer from the phase-controlled oscillator described in item 1 above. Notch frequency control method.
JP63153797A 1988-06-22 1988-06-22 Receiving machine Expired - Lifetime JPH084237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63153797A JPH084237B2 (en) 1988-06-22 1988-06-22 Receiving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63153797A JPH084237B2 (en) 1988-06-22 1988-06-22 Receiving machine

Publications (2)

Publication Number Publication Date
JPH01320827A true JPH01320827A (en) 1989-12-26
JPH084237B2 JPH084237B2 (en) 1996-01-17

Family

ID=15570339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63153797A Expired - Lifetime JPH084237B2 (en) 1988-06-22 1988-06-22 Receiving machine

Country Status (1)

Country Link
JP (1) JPH084237B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266742A (en) * 2006-03-27 2007-10-11 Matsushita Electric Ind Co Ltd Wireless receiver
JP2009510862A (en) * 2005-10-03 2009-03-12 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Apparatus and method for reducing interference
JP2010508755A (en) * 2006-11-01 2010-03-18 トムソン ライセンシング Co-channel interference canceller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374307A (en) * 1976-12-15 1978-07-01 Saibanetsuto Kougiyou Kk Phase synchronization tuning receiver
JPS63142726A (en) * 1986-12-04 1988-06-15 Japan Radio Co Ltd Receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374307A (en) * 1976-12-15 1978-07-01 Saibanetsuto Kougiyou Kk Phase synchronization tuning receiver
JPS63142726A (en) * 1986-12-04 1988-06-15 Japan Radio Co Ltd Receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510862A (en) * 2005-10-03 2009-03-12 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Apparatus and method for reducing interference
US8699614B2 (en) 2005-10-03 2014-04-15 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for interference mitigation
JP2007266742A (en) * 2006-03-27 2007-10-11 Matsushita Electric Ind Co Ltd Wireless receiver
JP2010508755A (en) * 2006-11-01 2010-03-18 トムソン ライセンシング Co-channel interference canceller
US8290464B2 (en) 2006-11-01 2012-10-16 Thomson Licensing Co-channel interference remover

Also Published As

Publication number Publication date
JPH084237B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
US5568098A (en) Frequency synthesizer for use in radio transmitter and receiver
EP0356096B1 (en) Multiple reuse of an FM band
KR100279031B1 (en) Frequency Modulation Receiver
EP0546088B1 (en) Frequency modulated synthesizer using low frequency offset mixed vco
JPH0548483A (en) Frequency conversion circuit
EP0305604B1 (en) Receiver comprising parallel signal paths
US7027505B2 (en) System and method for bandwidth compression of frequency and phase modulated signals and suppression of the upper and lower sidebands from the transmission medium
JPH01320827A (en) Control system for notch frequency
JPH04160926A (en) Transmitter-receiver
EP0576078A1 (en) FM receiver
US6259315B1 (en) FM demodulator being tuned to reference frequency by auxiliary detector
KR950022207A (en) Receiver in Satellite Communication Using El-Band Phase Shift Keying Modulation
EP0720315B1 (en) Method for narrow band frequency modulation or phase modulation; transmitter and receiver for carrying out the method
JP3399135B2 (en) High frequency digital signal receiver
KR970001861B1 (en) Radio telephone
JPH04245814A (en) Fm transmission circuit
JPH0730332A (en) Fm modulator
JPH0897638A (en) High frequency digital signal receiver
KR0168204B1 (en) Improved tuner of satellite receiver
KR0168205B1 (en) Improved tuner of satellite receiver
JPS6089155A (en) Phase locked loop system
JPH07177051A (en) Fm radio telephone equipment
Kikkert New method for generating frequency modulation
JP3063346B2 (en) Wireless transmission device
JP3274203B2 (en) Clock recovery circuit of MSK demodulator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13