[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01317115A - Silica sol having long and thin particle form and production thereof - Google Patents

Silica sol having long and thin particle form and production thereof

Info

Publication number
JPH01317115A
JPH01317115A JP1052270A JP5227089A JPH01317115A JP H01317115 A JPH01317115 A JP H01317115A JP 1052270 A JP1052270 A JP 1052270A JP 5227089 A JP5227089 A JP 5227089A JP H01317115 A JPH01317115 A JP H01317115A
Authority
JP
Japan
Prior art keywords
sol
weight
sio
aqueous solution
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1052270A
Other languages
Japanese (ja)
Other versions
JP2803134B2 (en
Inventor
Yoshitane Watabe
渡部 淑胤
Mikio Ando
安藤 幹夫
Kenji Tanimoto
健二 谷本
Tsutomu Kagamiya
鏡宮 務
Makoto Kawashima
信 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP5227089A priority Critical patent/JP2803134B2/en
Publication of JPH01317115A publication Critical patent/JPH01317115A/en
Application granted granted Critical
Publication of JP2803134B2 publication Critical patent/JP2803134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain the subject sol exhibiting excellent film-forming property when dried on a solid surface by adding an aqueous solution containing a water-soluble Ca salt or Mg salt to an colloidal aqueous solution of active silicic acid, adding a specific alkali metal compound to the solution and heating the mixture. CONSTITUTION:An aqueous solution containing a water-soluble Ca salt and/or Mg salt is added to a colloidal aqueous solution of active silicic acid of pH2-4 having an SiO2 content of 1-6wt.%. The weight ratio of the Ca or Mg compound to SiO2 is 1,500-3,500ppm in terms of CaO or MgO. The obtained aqueous solution is mixed with an alkali metal hydroxide, a water-soluble organic base or their water-soluble silicate at a molar ratio (SiO2/M2O) of 20-200 and heated at 60-150 deg.C for 0.5-40hr to obtain a stable alkaline aqueous silica sol having an SiO2 concentration of 1-6wt.% and composed of amorphous colloidal silica particles having thin and long shape with particle diameter ratio (D1/D2) of >=5 (D1 mmu is particle diameter measured by dynamic light-scattering and D2 mmu is particle diameter measured by N2 gas adsorption), D1 of 40-300mmu and uniform thickness falling within 5-20mmu by electron microscopy and extending along only one plane.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規なるシリカゾル及びその製造方法に関す
る。更に特質的に述べれば、この新規なシリカゾルは、
そのコロイダルシリカ粒子の形状に特徴を有し、固体表
面上で乾燥されると優れた被膜性を示し、塗料その他種
々の分野に用いられる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a novel silica sol and a method for producing the same. More specifically, this new silica sol is
The shape of the colloidal silica particles is characteristic, and when dried on a solid surface, it exhibits excellent film properties and is used in various fields including paints.

(従来の技術) シリカゾルは一般に、低粘度の状態から高粘度の状態を
経て終局的にゲル化する性質を有する。従って、同一の
SiO2含量であるならば、高粘度品よりも低粘度品の
方が安定性が高いと評価される。また、シリカゾルは、
それに含まれるコロイダルシリカ粒子の形状が真珠に近
い程、−層低い粘度を示す。この故に、従来より、球状
のコロイダルシリカ粒子からなるゾルを効率よく製造す
るための改良に係わる提案は多いが、シリカゾル中に分
散しているコロイダルシリカ粒子の形状を非球状にコン
トロールすることによりシリカゾルの性能を改良しよう
とする提案は見られない。
(Prior Art) Silica sol generally has the property of changing from a low viscosity state to a high viscosity state and finally turning into a gel. Therefore, if the SiO2 content is the same, a low viscosity product is evaluated to be more stable than a high viscosity product. In addition, silica sol is
The closer the shape of the colloidal silica particles contained therein to pearls, the lower the viscosity. For this reason, there have been many proposals for improving the efficient production of sols made of spherical colloidal silica particles. There are no proposals to improve the performance of .

従来から知られているコロイダルシリカ粒子の形状とし
ては、米国特許第2680721号明細書に添付された
図面に、代表的な三つのタイプが示されている。その一
つは、上記の如き球状のものであり、同図面第1図に示
され、その二は、短径に対する長径の比がほぼ2〜3の
非球状のものであり同図面第2図下段に示されている。
As for the shapes of conventionally known colloidal silica particles, three typical types are shown in the drawing attached to US Pat. No. 2,680,721. One of them is spherical as described above, as shown in Figure 1 of the same drawing, and the second is a non-spherical one with a ratio of the major axis to the minor axis of approximately 2 to 3, and is shown in Figure 2 of the same drawing. Shown at the bottom.

そしてその三は、同図面第3図下段に示されている不定
形のものである。この3番目の不定形の粒子は、この米
国特許第2680721号明細書に説明されているよう
に、より小さいシリカ粒子が鎖状に連結することによっ
て形成された3次元網目構造体からその鎖の切断によっ
て生した分断片が粒子成長した結果束したものであり、
1個の粒子に着目すると、細長い形状を有するが、その
伸長が同一平面内に存するように制御されてはいない。
The third one is of an irregular shape as shown in the lower part of Figure 3 of the same drawing. This third amorphous particle is derived from a three-dimensional network formed by chains of smaller silica particles, as described in the '721 patent. The fragments produced by cutting are bundled as a result of particle growth.
When focusing on one particle, it has an elongated shape, but its elongation is not controlled so that it lies within the same plane.

上記米国特許第2680721号明細書は、球状のコロ
イダルシリカ粒子からなるシリカゾルをつくる方法とし
て、径5ミリミクロン以上の球状シリカゾルに1価の塩
基を加えてpH7〜10.5とし、電解質の不存在化に
160〜300℃で加熱する方法を開示している。
The above-mentioned US Pat. No. 2,680,721 discloses a method for producing a silica sol made of spherical colloidal silica particles, in which a monovalent base is added to a spherical silica sol having a diameter of 5 millimicrons or more to adjust the pH to 7 to 10.5, and the absence of an electrolyte. discloses a method of heating at 160 to 300°C.

米国特許第2900348号明細書は、水ガラスの水溶
液に酸を加えることによって生成させたゲルを水洗し、
このゲルにアルカリを加えてpH9〜95とし、更に9
5〜100℃で加熱することによるシリカゾルをつくる
方法を開示している。この方法は所謂解膠法と呼ばれる
ものであって、この方法により得られたシリカゾルのコ
ロイダルシリカ粒子は、上記2番目又は3番目のタイプ
の形状を有するものである。
US Pat. No. 2,900,348 discloses that a gel produced by adding an acid to an aqueous solution of water glass is washed with water,
Add alkali to this gel to adjust the pH to 9-95, and then
Discloses a method of making silica sol by heating at 5-100°C. This method is called a peptization method, and the colloidal silica particles of the silica sol obtained by this method have the shape of the second or third type described above.

(発明が解決しようとする課題) 粒子径4〜150ミリミクロンの球状のコロイダルシリ
カからなるゾルは安定性が高く、種々の用途分野に用い
られているが、この良好な分散性を与えている粒子の球
形は、場合によっては、例えば、このシリカゾル含有組
成物から形成された被膜にクラックを生し易くさせたり
、また、このシリカゾルとセラミックファイバーを含有
する組成物を乾燥するときにも、コロイダルシリカ粒子
の移行が起り、その乾燥物表面が粉立ち易い等の実用上
の問題を生起させる。
(Problem to be solved by the invention) A sol made of spherical colloidal silica with a particle size of 4 to 150 millimeters has high stability and is used in various fields of application, and it provides this good dispersibility. The spherical shape of the particles may, in some cases, cause cracks to form in coatings formed from this silica sol-containing composition, or may cause colloidal formation when drying a composition containing this silica sol and ceramic fibers. Migration of silica particles occurs, causing practical problems such as easy dusting on the surface of the dried product.

このような問題が起ると、シリカゾルに更に別の成分を
加えて改良することが行われるが、充分な改良を達成す
ることは容易でない。
When such a problem occurs, it is attempted to improve the silica sol by adding another component, but it is not easy to achieve a sufficient improvement.

上記通常の解膠法によって得られるシリカゾルは、その
安定性が充分でなく、場合によっては、保存中にシリカ
の沈澱が生しることもある。そのコロイダルシリカ粒子
は非球形であるが、上記球状のコロイダルシリカからな
るシリカゾルを用いた場合に生しる問題をやはり生じさ
せる。
The silica sol obtained by the above-mentioned conventional peptizing method does not have sufficient stability, and in some cases, silica precipitates may occur during storage. Although the colloidal silica particles are non-spherical, they still cause the same problems that occur when using a silica sol made of spherical colloidal silica.

本発明は、コロイダルシリカ粒子の形状を改変すること
によって改良された性能を示す安定なシリカゾルを提供
しようとするものであり、更に、この改良に係わるシリ
カゾルを効率よく製造する方法を提供しようとするもの
である。
The present invention aims to provide a stable silica sol that exhibits improved performance by modifying the shape of colloidal silica particles, and further aims to provide a method for efficiently producing the improved silica sol. It is something.

(課題を解決するための手段) 本発明のシリカゾルはSiO□40重量%以下の濃度を
有し、安定である。そしてこのゾルの液状媒体中に分散
している非晶質コロイダルシリカ粒子の形状が、動的光
散乱法による測定粒子径D1として40〜500ミリミ
クロンの大きさを有し、電子顕微鏡によって観察すると
この粒子は5〜40ミリミクロンの範囲内の一様な太さ
で一平面内のみに長く伸長している形状を有し、そして
この伸長度として窒素ガス吸着法(以下、BET法とい
う。)によって測定されるこの粒式によって与えらえる
換算粒子径D2ミリミクロンと上記り、ミリミクロンと
の比DI/D2の値が5以上である細長い形状である点
に特徴を有する。
(Means for Solving the Problems) The silica sol of the present invention has a concentration of SiO□ of 40% by weight or less and is stable. The shape of the amorphous colloidal silica particles dispersed in the liquid medium of this sol has a particle diameter D1 of 40 to 500 millimicrons measured by dynamic light scattering, and when observed using an electron microscope. These particles have a uniform thickness within the range of 5 to 40 millimeters and have a shape that is elongated only in one plane, and the degree of elongation is measured using the nitrogen gas adsorption method (hereinafter referred to as the BET method). It is characterized by an elongated shape in which the ratio DI/D2 to millimicrons is 5 or more, with the converted particle diameter D2 given by this particle formula measured by the above-mentioned millimicrons.

この発明のゾルとして、そのコロイダルシリカ粒子の形
状が、電子顕微鏡によって観察される粒子の太さが5〜
20ミリミクロンであって、動的光散乱法による粒子径
が40〜300ミリミクロンであり、そしてり、/D2
が5以上である如きシリカゾルは、先ず、下記 (a)
、(b)及び(C)の工程: (a)S102として1〜6重量%含有し、かつ、pH
が2〜5である活性珪酸のコロイド水溶液に、水溶性の
カルシウム塩、マグネシウム塩又はこれらの混合物を含
有する水溶液を、上記活性珪酸のSiO□に対してCa
OlMgO又はこの両者として重量比1500〜850
0ppmとなる量加えて混合する工程、 (bl  (al工程により得られた水溶液に、アルカ
リ金属水酸化物、水溶性有機塩基又はそれらの水溶性珪
酸塩をSiO2/M2O  (但し、SiO□は上記活
性珪酸に由来するシリカ分と上記珪酸塩のシリカ分の含
量を、そしてMは上記アルカリ金属原子又は有機塩基の
分子を表わす。)モル比として20〜200となるよう
に加えて混合する工程、及び (cl  (b)工程によって得られた混合物を60〜
250℃て05〜40時間加熱する工程を包含すること
を特徴とする製造方法によって効率よく得られる。
As for the sol of this invention, the shape of the colloidal silica particles is such that the diameter of the particles as observed by an electron microscope is 5 to 5.
20 millimicrons, the particle size according to dynamic light scattering method is 40 to 300 millimicrons, and /D2
is 5 or more, first, the following (a)
, (b) and (C) steps: (a) Contains 1 to 6% by weight as S102, and has a pH of
An aqueous solution containing a water-soluble calcium salt, a magnesium salt, or a mixture thereof is added to a colloidal aqueous solution of activated silicic acid having an active silicic acid of 2 to 5.
Weight ratio 1500 to 850 as OlMgO or both
Step of adding and mixing an amount of 0 ppm, (bl A step of adding and mixing the silica content derived from activated silicic acid and the silica content of the silicate, and M represents the alkali metal atom or organic base molecule so that the molar ratio is 20 to 200; and (cl) The mixture obtained by step (b) is
It can be efficiently obtained by a manufacturing method characterized by including a step of heating at 250°C for 05 to 40 hours.

更に、本発明のゾルとして、そのコロイダルシリカ粒子
の大きさが上記大きさからこれより大きいもの、すなわ
ち、電子顕微鏡によって観察される粒子の太さが5〜4
0ミリミクロンであって、動的光散乱法による粒子径が
40〜500ミリミクロンであり、そしてり、/D2が
5以上である如きシリカゾルは、先ず、下記(a′)、
(b′)及び(a′)の工程: (a′)平均粒子径3〜30ミリミクロンのコロイダル
シリカをSiO2として05〜25重量%を含有し、か
つ、pnが1〜5である酸性水性シリカ。
Furthermore, as the sol of the present invention, the size of the colloidal silica particles is larger than the above-mentioned size, that is, the diameter of the particles observed by an electron microscope is 5 to 4.
0 millimicrons, the particle diameter measured by dynamic light scattering is 40 to 500 millimicrons, and /D2 is 5 or more, first, the following (a'),
Steps (b') and (a'): (a') An acidic aqueous solution containing colloidal silica with an average particle size of 3 to 30 millimicrons in an amount of 05 to 25% by weight as SiO2 and having a pn of 1 to 5. silica.

ゾルに、水溶性のカルシウム塩、マグネシウム塩又はこ
れらの混合物を含有する水溶液を、上記酸性ゾルのSi
O2に対してCaOlMgO又はこの両者として0.1
5〜1.00重量%となる量加えて混合する工程、 (b’lfa′)工程により得られた液に、アルカリ金
属水酸化物、水溶性有機塩基又はそれらの水溶性珪酸塩
を5in2/M2o(但し、SiO2は上記酸性シリカ
ゾルに由来するシリカ分と上記珪酸塩のシリカ分の含量
を、そしてMは上記アルカリ金属原子又は有機塩基の分
子を表わす。)モル比として20〜300となるように
加えて混合する工程、 (c′)(b′)工程によって得られた混合物を60〜
300℃で0.5〜40時間加熱する工程を包含する方
法により、効率よく製造される。
An aqueous solution containing a water-soluble calcium salt, a magnesium salt, or a mixture thereof is added to the acidic sol.
0.1 as CaOlMgO or both for O2
5 to 1.00% by weight of an alkali metal hydroxide, a water-soluble organic base, or a water-soluble silicate thereof to the liquid obtained in the (b'lfa') step. M2o (However, SiO2 represents the silica content derived from the acidic silica sol and the silica content of the silicate, and M represents the alkali metal atom or molecule of the organic base.) so that the molar ratio is 20 to 300. (c') The mixture obtained by (b') is added to the
It is efficiently produced by a method that includes a step of heating at 300°C for 0.5 to 40 hours.

本発明のゾルを構成するコロイダルシリカ粒子は、電子
顕微鏡を用いた撮影写真によってその形状を見ることが
できる。このゾル中に存在する多数のコロイダルシリカ
粒子は、形状が同一に限られてはいないが、共通して細
長い形を有する。この多数のコロイダルシリカ粒子は、
はぼ真直なもの、屈曲しているもの、分枝な有するもの
、環を有するものの4種類に大別されるが、それらの分
率を正確な数字で表わすことは困難である。けれども写
真によれば、屈曲しているものと分枝を有するものの分
率が最も高く、これらのタイプのものが大半を占める。
The shape of the colloidal silica particles constituting the sol of the present invention can be seen in photographs taken using an electron microscope. A large number of colloidal silica particles present in this sol are not limited to the same shape, but have an elongated shape in common. This large number of colloidal silica particles is
They are roughly divided into four types: straight, curved, branched, and ringed, but it is difficult to express their fractions in exact numbers. However, according to the photographs, the proportion of curved and branched plants is highest, and these types make up the majority.

1個の粒子に着目すると、この粒子の一端から他端まで
太さがほぼ一様である。このほぼ一様であることは、ゾ
ルの製造条件に由来するものであり、そして太さもゾル
の製造条件により変り、製造の経験則に従って定められ
る。一定の方法でつくられたゾル中の多数のコロイダル
シリカ粒子は、この太さがほぼ一定している。本発明の
製造方法によって得られるゾルのコロイダルシリカ粒子
の太さは5〜40ミリミクロンの範囲内にある。しかし
、一定の方法で作られたゾル中の多数のコロイダルシリ
カ粒子の長さは一定していない。けれども写真によれば
、長さは太さの3倍以上であり、通常、数倍〜数十倍の
長さを有する粒子が大半を占める。
Focusing on a single particle, the particle has a substantially uniform thickness from one end to the other. This almost uniformity is due to the sol manufacturing conditions, and the thickness also changes depending on the sol manufacturing conditions and is determined according to the empirical rules of manufacturing. A large number of colloidal silica particles in a sol produced using a certain method have a nearly constant thickness. The thickness of the colloidal silica particles of the sol obtained by the production method of the present invention is within the range of 5 to 40 millimeters. However, the length of many colloidal silica particles in a sol produced by a certain method is not constant. However, according to the photograph, the length is more than three times the thickness, and the majority of particles are usually several to several tens of times as long.

本発明のゾルを構成する上記の如き細長い形状のコロイ
ダルシリカ粒子は、更にもう一つ特徴を有している。そ
れは、この細長い伸長が同一平面内に存するということ
である。屈曲していても、また、分枝状であっても同一
平面内の伸長を有するから、全ての粒子は形状が異なっ
ていても重ならない限り、同一平面内に、これら粒子の
太さに相当する高さで横たえることができる。本発明の
ゾルのコロイダルシリカ粒子の電子顕微鏡による撮影写
真では、通常、これら細長い形状のコロイダルシリカ粒
子は重なっているために、1個の粒子の一端と他端とを
見定め難く、従ってその粒子の長さを測定し難い。また
、写真では、平面から垂直な方向にも、つまり、3次元
方向の粒子の伸長が存するか否かも見定め難い。けれど
もこの3次元方向の伸長が存在すると、シリカゾルは、
3次元網目構造又はそれに近い構造の存在に特有の性質
、例えば、著しく高い粘度乃至非流動性を示し、不安定
であるが、本発明のゾルは安定な中粘度の液体である。
The above-described elongated colloidal silica particles constituting the sol of the present invention have yet another feature. That is, this elongated extension lies in the same plane. Even if they are bent or branched, they have elongation in the same plane, so even if all particles have different shapes, as long as they do not overlap, there will be a particle with the same thickness as these particles in the same plane. It can be laid down at the desired height. In an electron microscope photograph of the colloidal silica particles of the sol of the present invention, these elongated colloidal silica particles usually overlap, making it difficult to distinguish between one end and the other end of a single particle. Difficult to measure length. Furthermore, in the photograph, it is difficult to determine whether or not there is elongation of the particles in a direction perpendicular to the plane, that is, in a three-dimensional direction. However, when this three-dimensional extension exists, the silica sol becomes
The sol of the present invention is a stable medium-viscosity liquid, although it exhibits properties peculiar to the presence of a three-dimensional network structure or a structure close to it, such as significantly high viscosity or non-flowability, and is unstable.

従って、本発明のゾルを構成するコロイダルシリカ粒子
は、3次元方向には伸長を有しないものである。本発明
のゾルを構成するコロイダルシリカ粒子の形状の一特徴
である同一平面内の伸長とは、純粋に数学的に厳密な同
一平面内の伸長であるという意味ではない。むしろ、3
次元網目構造又はそれに近い構造を有するシリカゾルが
示す特性を示さないということによって意味付けられる
ものである。
Therefore, the colloidal silica particles constituting the sol of the present invention have no elongation in three-dimensional directions. The elongation within the same plane, which is a characteristic of the shape of the colloidal silica particles constituting the sol of the present invention, does not mean elongation within the same plane that is purely mathematically strict. Rather, 3
This is meant by the fact that it does not exhibit the characteristics exhibited by silica sol having a dimensional network structure or a structure close to it.

このような本発明のゾルを構成するコロイダルシリカ粒
子の大きさは、これを写真から推定される長さで表わす
ことは適切でな(、長さに対応する粒子の大きさとして
測定できる動的光散乱法による測定値で表わすのが適切
である。
It is inappropriate to express the size of the colloidal silica particles constituting the sol of the present invention by the length estimated from the photograph (it is not appropriate to express the size by the length estimated from the photograph). It is appropriate to express it as a value measured by light scattering method.

この動的光散乱法による測定値で表わすと、本発明のゾ
ルを構成するコロイダルシリカ粒子の大きさは、40〜
500ミリミクロンである。この動的光散乱法による粒
子径の測定法は、ジャーナル・才ブ ケミカル・フィジ
ックス(Journalof Chemical Ph
ysicsl第57巻第11号(1972年12月)第
4814頁に説明されており、例えば、市販の米国Co
ulter社製N4と呼ばれる装置により容易に粒子径
を測定することができる。通常のBET法によって測定
された比表面積Srn’/gかD2 mμは、細長い形
状のコロイダルシリカ粒子の比表面積と同じ比表面積5
r11″/gを有する仮想の球状コロイダルシリカ粒子
の直径を意味する。従って、上記動的光散乱法によって
測定された粒子径り、 mgと上記D2 muとの比り
、/D2は、細長い形状のコロイダルシリカ粒子の伸長
度を意味し、本発明のシリカゾルはこのD I / D
 2の値が5以上である。けれども、通常、本発明のゾ
ルのコロイダルシリカ粒子は、上記比表面積Sとして4
5〜450mF/g程度の値を有するから、上記の式に
よってD2の値として6〜60 mμと算出される。
As measured by this dynamic light scattering method, the size of the colloidal silica particles constituting the sol of the present invention is 40 to 40.
It is 500 millimicrons. This dynamic light scattering method for measuring particle size is described in the Journal of Chemical Physics.
ysicsl, Vol. 57, No. 11 (December 1972), p. 4814, for example, commercially available
The particle size can be easily measured using a device called N4 manufactured by Ulter. The specific surface area Srn'/g or D2 mμ measured by the normal BET method is the same as the specific surface area of elongated colloidal silica particles.
It means the diameter of a hypothetical spherical colloidal silica particle having r11''/g. Therefore, the particle diameter measured by the above dynamic light scattering method, mg, and the above D2 mu, /D2 is an elongated shape. refers to the degree of elongation of colloidal silica particles, and the silica sol of the present invention has this D
The value of 2 is 5 or more. However, the colloidal silica particles of the sol of the present invention usually have a specific surface area S of 4
Since it has a value of about 5 to 450 mF/g, the value of D2 is calculated to be 6 to 60 mμ using the above formula.

本発明のゾルのコロイダルシリカ粒子は、通常、このり
、/D2で表わされる伸長度として30以下の値を有す
る。
The colloidal silica particles of the sol of the present invention usually have an elongation value of 30 or less, expressed as /D2.

本発明のゾルを構成するコロイダルシリカ粒子は、この
ゾルの製造法に由来して若干量の、通常、ゾル中のSi
O2に対して重量比1500〜110000pp程度の
カルシウム若しくはマグネシウムの酸化物又はこの両者
を含有するが、実質的に非晶質のシリカからなる。場合
によっては、このカルシウム若しくはマグネシウムの酸
化物又はこの両者の他に、更にこれら以外の多価金属の
酸化物を少量含有していてもよい。これらカルシウム酸
化物、マグネシウム酸化物等とこれら以外の多価金属酸
化物の合計量は、このゾル中のSiO2に対して重量比
1500〜15000ppm程度である。このカルシウ
ム及びマグネシウム以外1つ の多価金属としては、Sr、 Ba、 Zn、 Sn、
 Pb、Cu、 Fe、 Ni、Co、 Mn等のII
価の金属、Aj2、Fe、 Cr、 Y 、 Ti等の
111価の金属、Ti、 Zr、 Sn等のIV価の金
属等が例示される。
The colloidal silica particles constituting the sol of the present invention usually contain a small amount of Si due to the sol manufacturing method.
It contains calcium or magnesium oxides or both at a weight ratio of about 1,500 to 110,000 pp with respect to O2, and is substantially made of amorphous silica. In some cases, in addition to the oxides of calcium or magnesium, or both, a small amount of oxides of other polyvalent metals may be contained. The total amount of these calcium oxides, magnesium oxides, etc. and polyvalent metal oxides other than these is about 1500 to 15000 ppm by weight relative to SiO2 in this sol. The polyvalent metals other than calcium and magnesium include Sr, Ba, Zn, Sn,
II such as Pb, Cu, Fe, Ni, Co, Mn, etc.
Examples include valent metals, 111-valent metals such as Aj2, Fe, Cr, Y, and Ti, and IV-valent metals such as Ti, Zr, and Sn.

本発明のシリカゾルは、通常、40重重量以下、好まし
くは5〜30重量%のSiO2を含有する。このゾルの
粘度は、ゾル中のSiO2の含有率が高い程高い値とな
るが、上記Si0□30重量%以下では、室温で数cp
〜50[]cp程度である。そしてこのゾルは、安定性
が極めて高く、保存中にシリカの沈澱が生ずることも、
増粘が起ることもない。更にこのゾルは、媒体が水、有
機溶媒、水溶性有機溶媒と水との溶液のいずれであって
もよい。媒体が水である水性のゾル、媒体が有機溶媒で
あるオルガノゾルのいずれも、そのコロイダルシリカ粒
子表面に存在するシラノール基によって活性であり、媒
体の除去につれて終局的に不可逆的にゲルに変る。オル
ガノシリカゾルの媒体である有機溶媒としては、このコ
ロイダルシリカ粒子の活性を阻害しないような通常のも
のでよく、例えば、メタノール、エタノール、イソプロ
パツール、ブタノール等のアルコール類、エチレングリ
コール等多価アルコール類、ジメチルエーテル、エチレ
ングリコールのモノメチルエーテル等エーテル類、トル
エン、キシレン等炭化水素溶媒、ジメチルアセトアミド
、ジメチルホルムアミド、その他等が挙げられる。
The silica sol of the present invention usually contains up to 40% by weight, preferably from 5 to 30% by weight of SiO2. The viscosity of this sol increases as the content of SiO2 in the sol increases;
It is about ~50[]cp. This sol is extremely stable and does not cause silica precipitation during storage.
No thickening occurs. Furthermore, the medium of this sol may be water, an organic solvent, or a solution of a water-soluble organic solvent and water. Both an aqueous sol, in which the medium is water, and an organosol, in which the medium is an organic solvent, are active due to the silanol groups present on the surface of the colloidal silica particles, and eventually irreversibly transform into a gel as the medium is removed. The organic solvent that is the medium for the organosilica sol may be any ordinary solvent that does not inhibit the activity of the colloidal silica particles, such as alcohols such as methanol, ethanol, isopropanol, butanol, and polyhydric alcohols such as ethylene glycol. Examples include ethers such as dimethyl ether and monomethyl ether of ethylene glycol, hydrocarbon solvents such as toluene and xylene, dimethylacetamide, dimethylformamide, and others.

本発明のシリカゾルとして、そのコロイダルシリカ粒子
の太さが5〜20ミリミクロンであって、動的光散乱法
による粒子径が40〜300ミリミクロンであるものは
、前記の如く、(a)、(b)及び(c)の各工程を経
ることにより先ずアルカリ性の水性のシリカゾルとして
得られる。
The silica sol of the present invention, whose colloidal silica particles have a thickness of 5 to 20 millimicrons and a particle diameter of 40 to 300 millimicrons as measured by dynamic light scattering, is as described above (a), By going through the steps (b) and (c), an alkaline aqueous silica sol is first obtained.

この(a)工程に用いられる活性珪酸のコロイド水溶液
は、珪酸及び粒子径3ミリミクロン未満の珪酸の重合体
粒子が共存する液であり、公知の方法により容易に得ら
れる。好ましい活性珪酸のコロイド水溶液は、水溶性珪
酸塩、例えば、5j02/M20(但し、Mはアルカリ
土属原子を示す。)モル比が1〜45程度の水ガラスの
希釈水溶液を陽イオン交換処理することにより得られ、
通常6重量%以下、好ましくは1〜6重量%のSiO□
を含有し、そしてpH5以下、好ましくは2〜5である
ものが用いられる。そしてこのpHは、上記水ガラス水
溶液を陽イオン交換処理する際、その中の陽イオンの一
部を残存させることによっても、あるいは、その中の陽
イオンの全部又は一部を除いた後、得られた活性珪酸の
コロイド水溶液に少量のアルカリ金属水酸化物、水溶性
有機塩基等を加えることによっても容易に調節すること
ができる。この活性珪酸のコロイド水溶液は不安定であ
って、ゲル化し易い性質を有するので、このゲル化を促
進する如き不純物をなるべく含有しないものが好ましく
、また、調製直後のものが好ましい。
The colloidal aqueous solution of activated silicic acid used in step (a) is a liquid in which silicic acid and polymer particles of silicic acid having a particle size of less than 3 millimicrons coexist, and can be easily obtained by a known method. A preferable colloidal aqueous solution of activated silicic acid is a water-soluble silicate, for example, a diluted aqueous solution of water glass having a molar ratio of about 1 to 45 (5j02/M20 (where M represents an alkaline earth atom)) is subjected to cation exchange treatment. obtained by
Usually 6% by weight or less, preferably 1 to 6% by weight of SiO□
and has a pH of 5 or less, preferably 2 to 5. This pH can be obtained by leaving some of the cations in the water glass aqueous solution during cation exchange treatment, or by removing all or part of the cations. It can also be easily adjusted by adding a small amount of an alkali metal hydroxide, a water-soluble organic base, etc. to the colloidal aqueous solution of activated silicic acid. Since this colloidal aqueous solution of activated silicic acid is unstable and tends to gel, it is preferable that it contains as few impurities as possible that would promote gelation, and it is preferable that it be immediately prepared.

更に好ましい活性珪酸のコロイド水溶液は、SiO2/
Na2Oモル比2〜4程度の市販工業製品のナトリウム
水ガラスの希釈水溶液を水素型陽イオン交換樹脂層を通
過せしめることにより得られる。本発明の目的とするゾ
ルが得られる限り、この活性珪酸のコロイド水溶液は、
他の成分を含有していてもよく、そして微量の陽イオン
、陰イオン等を含有していてもよい。
A more preferred colloidal aqueous solution of activated silicic acid is SiO2/
It is obtained by passing a dilute aqueous solution of sodium water glass, a commercially available industrial product, with a Na2O molar ratio of about 2 to 4 through a hydrogen type cation exchange resin layer. As long as the sol targeted by the present invention can be obtained, this colloidal aqueous solution of activated silicic acid can be used as follows:
It may contain other components, and may contain trace amounts of cations, anions, etc.

(al工程において、この活性珪酸のコロイド水溶液に
は、水溶性のカルシウム塩、マグネシウム塩又はそれら
の混合物が、好ましくはその水溶液として加えられる。
(In the al step, a water-soluble calcium salt, magnesium salt, or a mixture thereof is added to the colloidal aqueous solution of activated silicic acid, preferably as an aqueous solution thereof.

この添加されるカルシウム塩、マグネシウム塩又はそれ
らの混合物の量としては、上記活性珪酸のコロイド水溶
液中のSiO□に対し重量比1500〜85[10pp
mとなる量である。また、この添加は、撹拌下に行うの
がよく、混合温度及び時間には特に制限はなく、2〜5
0℃で5〜30分程度でよい。加えられるカルシウム塩
及びマグネシウム塩の例としては、カルシウム又はマグ
ネシウムの塩化物、硝酸塩、硫酸塩、スルファミン酸塩
、蟻酸塩、酢酸塩等の無機酸塩及び有機酸塩が挙げられ
る。これらカルシウム塩とマグネシウム塩は混合して用
いてもよい6加えられるこれら塩の水溶液の濃度として
は、特に制限はなく、2〜20重量%程度でよい。この
カルシウム塩、マグネシウム塩等と共に、カルシウム及
びマグネシウム以外の多価金属成分が上記活性珪酸のコ
ロイド水溶液に含まれていると、更に好ましくゾルを製
造できる。このカルシウム及びマグネシウム以外の多価
金属の例としては、Sr、 Ba、、Zn、 Sn、A
I2、Pb、 Cu、 Fe、 Ni、Co1.Mn、
 Cr、 Y 、 Ti、Zr等のII価、III価又
はTV価の金属が挙げられる。これら多価金属成分の量
としては、 (al工程に加えられるカルシウム塩、マ
グネシウム塩等の量をCaOlMgO等の量に換算した
とき、これらCaOlMgO等に対し多価金属酸化物と
して10〜80重量%程度が好ましい。
The amount of the calcium salt, magnesium salt, or mixture thereof to be added is 1500 to 85 [10 pp] by weight relative to SiO□ in the colloidal aqueous solution of activated silicic acid.
m. In addition, this addition is preferably carried out under stirring, and there are no particular restrictions on the mixing temperature and time;
It may take about 5 to 30 minutes at 0°C. Examples of calcium and magnesium salts that may be added include inorganic and organic acid salts of calcium or magnesium, such as chlorides, nitrates, sulfates, sulfamates, formates, acetates, and the like. These calcium salts and magnesium salts may be used as a mixture.6 The concentration of the aqueous solution of these salts to be added is not particularly limited and may be about 2 to 20% by weight. When a polyvalent metal component other than calcium and magnesium is contained in the colloidal aqueous solution of activated silicic acid together with the calcium salt, magnesium salt, etc., a sol can be produced more preferably. Examples of polyvalent metals other than calcium and magnesium include Sr, Ba, Zn, Sn, and A.
I2, Pb, Cu, Fe, Ni, Co1. Mn,
Examples thereof include II-valent, III-valent, or TV-valent metals such as Cr, Y, Ti, and Zr. The amount of these polyvalent metal components is as follows: (When the amount of calcium salt, magnesium salt, etc. added in the al process is converted into the amount of CaOlMgO, etc., it is 10 to 80% by weight as polyvalent metal oxide relative to these CaOlMgO, etc.) degree is preferred.

上記水ガラスの希釈水溶液を陽イオン交換処理すること
によって得られた活性珪酸のコロイド水溶液に上記多価
金属分が残留している場合には、この多価金属分は酸化
物に換算して上記10〜80重量%の一部として算入さ
れる。残部の多価金属分は上記多価金属の水溶性塩とし
て、加えられるカルシウム塩、マグネシウム塩等と一緒
に活性珪酸のコロイド水溶液に加えるのが好ましい。こ
の多価金属塩の好ましい例としては、塩化物、硝酸塩、
硫酸塩、スルファミン酸塩、蟻酸塩、酢酸塩等無機酸塩
及び有機酸塩が挙げられる。また、亜鉛酸塩、錫酸塩、
アルミン酸塩、鉛酸塩等、例えば、アルミン酸ナトリウ
ム、錫酸ナトリウム等の塩も用いることができる。
If the polyvalent metal content remains in the colloidal aqueous solution of activated silicic acid obtained by subjecting the diluted water glass solution to the cation exchange treatment, the polyvalent metal content can be converted into oxides as described above. It is counted as part of 10 to 80% by weight. The remaining polyvalent metal component is preferably added as a water-soluble salt of the polyvalent metal to the colloidal aqueous solution of activated silicic acid together with the calcium salt, magnesium salt, etc. to be added. Preferred examples of this polyvalent metal salt include chloride, nitrate,
Examples include inorganic acid salts and organic acid salts such as sulfate, sulfamate, formate, and acetate. Also, zincate, stannate,
Salts such as aluminates, leadates, and the like, such as sodium aluminate and sodium stannate, can also be used.

加えらえる上記カルシウム塩、マグネシウム塩、多価金
属塩等は、活性珪酸のコロイド水溶液と均一に混合する
のが好ましく、通常、水溶液として添加される。
The above-mentioned calcium salt, magnesium salt, polyvalent metal salt, etc. to be added are preferably mixed uniformly with the colloidal aqueous solution of activated silicic acid, and are usually added as an aqueous solution.

(bl工程では、上記 (a)工程によって得られた水
溶液に、アルカリ金属水酸化物、水溶性有機塩基又はそ
れらの水溶性珪酸塩が加えられる。この添加は、 (a
+工程の終了後なるべく早く、そして撹拌下に行うのが
好ましい。また、この混合の温度及び時間には特に制限
はなく、2〜50℃で5〜30分程度でよい。加えられ
るアルカリ金属水酸化物、水溶性有機塩基又はそれらの
水溶性珪酸塩は、 fa)工程によって得られた水溶液
と均一に混合されるのが好ましく、直接又は水溶液とし
て添加される。アルカリ金属水酸化物としては、例えば
、ナトリウム、カリウム、リヂウム等の水酸化物が挙げ
られる。有機塩基としては、例えば、テトラエタノール
アンモニウム水酸化物、モノメチルトリエタノールアン
モニウム水酸化物、テトラメチルアンモニウム水酸化物
等第4級アンモニウム水酸化物類、モノエタノールアミ
ン、ジェタノールアミン、トリエタノールアミン、N、
N−ジメチルエタノールアミン、N−(β−アミノメチ
ル)エタノールアミン、N−メチルエタノールアミン、
モツプロバノールアミン、モルホリン等アミン類、その
他塩基性窒素原子含有の有機化合物等が挙げられる。ま
た、それらの水溶性珪酸塩としては、珪酸ナトリウム、
珪酸カリウム、上記第4級アンモニウムの珪酸塩、上記
アミンの珪酸塩等が例示される。また、アルカリ金属又
は有機塩基のアルミン酸塩、錫酸塩、亜鉛酸塩、鉛酸塩
等も用いることができる。これらアルカリ金属水酸化物
、有機塩基、珪酸塩、金属酸塩等は混合して用いてもよ
い。
(In the bl step, an alkali metal hydroxide, a water-soluble organic base, or a water-soluble silicate thereof is added to the aqueous solution obtained in the above step (a).
It is preferable to carry out the step as soon as possible after the completion of the + step and under stirring. Further, there are no particular restrictions on the temperature and time of this mixing, and it may be about 5 to 30 minutes at 2 to 50°C. The alkali metal hydroxide, water-soluble organic base or water-soluble silicate thereof added is preferably homogeneously mixed with the aqueous solution obtained by step fa) and is added directly or as an aqueous solution. Examples of the alkali metal hydroxide include hydroxides of sodium, potassium, lithium, and the like. Examples of the organic base include quaternary ammonium hydroxides such as tetraethanolammonium hydroxide, monomethyltriethanolammonium hydroxide, and tetramethylammonium hydroxide, monoethanolamine, jetanolamine, triethanolamine, N,
N-dimethylethanolamine, N-(β-aminomethyl)ethanolamine, N-methylethanolamine,
Examples include amines such as motuprobanolamine and morpholine, and other basic nitrogen atom-containing organic compounds. In addition, those water-soluble silicates include sodium silicate,
Examples include potassium silicate, the above-mentioned quaternary ammonium silicate, and the above-mentioned amine silicate. Furthermore, aluminates, stannates, zincates, leadates, etc. of alkali metals or organic bases can also be used. These alkali metal hydroxides, organic bases, silicates, metal salts, etc. may be used in combination.

上記アルカリ金属水酸化物のアルカリ金属原子又は有機
塩基の分子なMて表わせば、加えられるアルカリ金属水
酸化物、有機塩基又はそれらの水溶性珪酸塩の量は、 
(a)工程に用いられた活性珪酸に由来するシリカ分及
び上記珪酸塩のシリカ分の合計としてSiO21モルに
対しM2Oに換算して20〜200モルとなる量、好ま
しくは60〜100モルとなる量である。この添加によ
って液はp+(7〜10程度を示すに至る。
The amount of the alkali metal hydroxide, organic base, or water-soluble silicate thereof to be added is:
(a) The total amount of silica derived from the activated silicic acid used in the step and the silica of the silicate is 20 to 200 mol, preferably 60 to 100 mol, in terms of M2O per 1 mol of SiO. It's the amount. This addition causes the liquid to show p+ (about 7 to 10).

(C1工程では、上記 (b)工程によって得られた混
合物が加熱される。この加熱は60〜250℃て行なわ
れるが、 (a)工程に用いられる活性珪酸のコロイド
水溶液のpHが2〜4のときは、この加熱温度は60〜
150℃の範囲が適当であり、そして (al工程に用
いられる活性珪酸のコロイド水溶液のpHが4を越え5
以下であるときは、この加熱温度は更に高温まで、即ち
、 250℃まで許容される。加熱時間は05〜40時
間程度必要であり、また、この加熱は、上記混合物の撹
拌下に行なうのが好ましく、そしてなるべく水の蒸発の
起らない条件下に行うのが好ましい。
(In step C1, the mixture obtained in step (b) above is heated. This heating is performed at 60 to 250°C, but the pH of the colloidal aqueous solution of activated silicic acid used in step (a) is 2 to 4. When , this heating temperature is 60~
A range of 150°C is appropriate, and (if the pH of the colloidal aqueous solution of activated silicic acid used in the al step exceeds 4 and 5
If the heating temperature is below, the heating temperature is allowed to be even higher, ie up to 250°C. The heating time is about 0.5 to 40 hours, and the heating is preferably carried out while stirring the mixture, and preferably carried out under conditions that prevent water evaporation.

この加熱によって、その液中には、5〜20ミリミクロ
ンの範囲内のほぼ一様な太さで一平面内のみの伸長を有
し、かつ、動的光散乱法による粒子径が40〜300ミ
リミクロンである細長い形状のシリカのコロイダル粒子
が生成する。
By this heating, particles in the liquid have an almost uniform thickness within the range of 5 to 20 millimeters and elongate only in one plane, and have a particle size of 40 to 300 mm by dynamic light scattering. Colloidal particles of silica with an elongated shape of millimicrons are produced.

従って、得られた液はゾルであるが、SiO2濃度は、
通常、1〜6重量%程度であり、多量の陰イオンを含む
。このゾルは、通常、更に濃縮されるが、SiO2濃度
10〜30重量%の濃縮ゾル中に存在していてはゾルの
安定化の妨げとなる量又はそれ以上の陰イオンを、 (
cl工程で得られたゾルから除くのが好ましい。この除
去の際には、ゾル中の水の一部も一緒に除去させるのが
好ましい。水の一部がゾルから除かれると、ゾル中のS
iO2濃度が上昇するので、水の除去量としては、Si
O□濃度30重量%以下のゾルが得られる量とするのが
よい。 (cl工程によって得られたゾルから水と陰イ
オンとを一緒に除去する方法としては、通常の微細多孔
性膜、例えば、限外濾過膜を用いてこれらを除く方法が
好ましい。上記陰イオンを除く別の方法としては、イオ
ン交換樹脂によるイオン交換法等が挙げられる。上記安
定化の妨げとなる量の陰イオンを除いた後ならば、蒸発
法等によりゾルを濃縮させることもてきる。 (C)工
程によって得られたゾル又はこの濃縮後のゾルは、適宜
アルカリ添加によるpn調節を行ってもよい。
Therefore, the obtained liquid is a sol, but the SiO2 concentration is
Usually, it is about 1 to 6% by weight and contains a large amount of anions. This sol is usually further concentrated, but if present in a concentrated sol with a SiO2 concentration of 10 to 30% by weight, anions of an amount or more that would interfere with the stabilization of the sol (
It is preferable to remove it from the sol obtained in the cl step. At the time of this removal, it is preferable to also remove part of the water in the sol. When some of the water is removed from the sol, the S in the sol
Since the iO2 concentration increases, the amount of water removed is
It is preferable to set the amount to such an amount that a sol having an O□ concentration of 30% by weight or less can be obtained. (As a method for removing water and anions together from the sol obtained by the cl step, it is preferable to remove them using a normal microporous membrane, such as an ultrafiltration membrane. Another method for removing the sol includes an ion exchange method using an ion exchange resin, etc. After removing the amount of anions that interfere with the above-mentioned stabilization, the sol can be concentrated by an evaporation method or the like. The sol obtained in step (C) or the sol after concentration may be subjected to pn adjustment by appropriately adding an alkali.

上記陰イオンと水が除かれたゾルは、SiO2濃度10
〜30重量%であり、室温で数cp〜500cp程度の
粘度を有し、そしてpH8,5〜11を示す。このゾル
中には陰イオンがなおlo00ppm以下、通常200
〜800ppm含まれるが極めて安定である。
The sol from which the above anions and water have been removed has a SiO2 concentration of 10
~30% by weight, has a viscosity of several cp to about 500 cp at room temperature, and exhibits a pH of 8.5 to 11. This sol contains anions of less than 000 ppm, usually 200 ppm.
Although it contains ~800 ppm, it is extremely stable.

また、このゾルはSiO2/M20  (但し、Mは前
記に同じ。)モル比20〜200となる量のアルカリ金
属イオン、有機塩基等が含まれ、更にカルシラム若しく
はマグネシウム又はこれらと前記多価金属がそれらの酸
化物に換算してSiO2に対し1500〜15000p
pm程度含まれる。そしてこのゾルのコロイダルシリカ
粒子は、上記 (C)工程によって既に形成された形状
と大きさを保ち、上記ゾル中に存在するCaOlMaO
又はこれらと多価金属酸化物を含有している。これら化
学分析は通常の方法により容易に行うことができる。
In addition, this sol contains alkali metal ions, organic bases, etc. in an amount such that the molar ratio of SiO2/M20 (where M is the same as above) is 20 to 200, and further contains calcium ions, magnesium, or these and the polyvalent metals. 1500-15000p for SiO2 in terms of those oxides
Contains approximately pm. The colloidal silica particles in this sol maintain the shape and size already formed in step (C), and the colloidal silica particles in the sol retain the shape and size already formed in the step (C), and
Or it contains these and a polyvalent metal oxide. These chemical analyzes can be easily performed by conventional methods.

このコロイダルシリカ粒子の動的光散乱法粒子径は、市
販の装置によって容易に測定され、40〜300ミリミ
クロンである。
The dynamic light scattering particle diameter of this colloidal silica particle is easily measured by a commercially available device, and is 40 to 300 millimicrons.

上記本発明の方法によって得られたゾルは、水の除去に
よって終局的に不可逆的にゲルに変る。このゾルはアル
カリ性の水性ゾルであるが、これを陽イオン交換処理す
れば、酸性の水性シリカゾルが得られ、これに別のアル
カリを加えることにより上記とは別のアルカリ性の水性
シリカゾルを得ることができる。この酸性の水性シリカ
ゾルとしてはpH2〜4のものが好ましい。また、これ
ら酸性の水性ゾルから、陽に帯電したコロイダルシリカ
粒子からなる水性ゾルを、通常の方法により得ることが
できる。更に、これら水性ゾルから、その媒体の水を通
常の方法、例えば、蒸留置換法等により有機溶媒によっ
て置換することにより、オルガノゾルが得られる。これ
ら酸性の水性ゾル、陽に帯電した粒子からなる水性ゾル
、オルガノゾルのいずれも、そのコロイダルシリカ粒子
は既に (c)工程において形成された形状を保持し、
媒体の除去によって終局的に不可逆的にゲルに変る。
The sol obtained by the above method of the present invention ultimately irreversibly turns into a gel by removing water. This sol is an alkaline aqueous sol, but if it is subjected to cation exchange treatment, an acidic aqueous silica sol can be obtained, and by adding another alkali to this, another alkaline aqueous silica sol can be obtained. can. This acidic aqueous silica sol preferably has a pH of 2 to 4. Further, from these acidic aqueous sols, an aqueous sol consisting of positively charged colloidal silica particles can be obtained by a conventional method. Furthermore, organosols can be obtained from these aqueous sols by replacing water in the medium with an organic solvent by a conventional method such as a distillation displacement method. In all of these acidic aqueous sols, aqueous sols consisting of positively charged particles, and organosols, the colloidal silica particles retain the shape already formed in step (c),
Removal of the medium eventually irreversibly transforms into a gel.

アルカリ性の水性シリカゾル、酸性の水性シリカゾル、
陽に帯電したシリカゾルの各種別毎に、同種の本発明に
よるゾルと従来のゾルとの混合によって安定なゾルを得
ることができる。
Alkaline aqueous silica sol, acidic aqueous silica sol,
For each type of positively charged silica sol, a stable sol can be obtained by mixing the same type of sol according to the invention with a conventional sol.

オルガノゾルについても、溶媒間に相溶性があって、溶
媒によるコロイダルシリカの凝集が起らなければ、本発
明によるゾルと従来のゾルとの混合しこよって安定なゾ
ルを得ることができる。
Regarding the organosol, if the solvents are compatible and the colloidal silica does not aggregate due to the solvent, a stable sol can be obtained by mixing the sol according to the present invention with a conventional sol.

本発明のゾルは、更に別の方法によっても得3す ることかできる。この第2の方法によれば、コロイダル
シリカ粒子の太さが5〜40ミリミクロンであって、動
的光散乱法による粒子径が40〜500ミリミクロンで
あるものが得られる。この第2の方法は前記の如< (
a′l 、 (b′l及び(C′)の工程からなり、太
さの大きい粒子の製造に有利である。
The sol of the present invention can also be obtained by other methods. According to this second method, colloidal silica particles having a thickness of 5 to 40 millimicrons and a particle diameter of 40 to 500 millimicrons determined by dynamic light scattering are obtained. This second method is as described above.
It consists of steps a'l, (b'l and (C')) and is advantageous for producing particles with large diameters.

(a′)工程に用いられる平均粒子径3〜30ミリミク
ロン、SiO2含有率05〜25重量%、かつ、pH1
〜5である酸性水性シリカゾルは、従来から知られてい
る任意の方法、例えば、前記米国特許第268071号
、同第2900348号等の明細書に記載の方法で造ら
れたものでよく、動的光散乱法による測定粒子径り、と
BET法による測定比表面積から算出される粒子径D2
との比n+/D2の値が5未満のものであれば、そのコ
ロイダルシリカ粒子の形状は球状でも非球状でもよい。
The average particle diameter used in the step (a') is 3 to 30 millimicrons, the SiO2 content is 05 to 25% by weight, and the pH is 1.
The acidic aqueous silica sol of 5 to 5 may be produced by any conventionally known method, for example, the method described in the specifications of U.S. Pat. No. 268,071, U.S. Pat. Particle diameter D2 calculated from the particle diameter measured by the light scattering method and the specific surface area measured by the BET method
As long as the value of the ratio n+/D2 is less than 5, the shape of the colloidal silica particles may be spherical or non-spherical.

けれども、生成粒子の太さをその伸長に沿って一様なら
しめるには球状のコロイダルシリカ粒子のゾルを用いる
のが好ましい。
However, it is preferable to use a sol of spherical colloidal silica particles in order to make the thickness of the produced particles uniform along their length.

この第2の方法の(a′l 、 (b′l及び(C′)
工程には、前記(al 、 (bl及び(c)の工程と
同様の操作が用いられる。けれども、(a′)工程では
、 CaOlMgO又はこの両者の添加量は、コロイダ
ルシリカのSiO□に対し1.00重量%にまで高める
ことができ、(b′)工程では、アルカリ金属水酸化物
、水溶性有機塩基又はそれらの水溶性珪酸塩の添加量を
SiO□/M20モル比として300まて減少させるこ
とができ、そして(C′)工程では、加熱温度を300
℃にまで高めることができる。
(a′l, (b′l and (C′)) of this second method
In the step, the same operations as in the steps (al, (bl) and (c) above are used. However, in the step (a'), the amount of CaOlMgO or both added is 1% to the SiO□ of colloidal silica. In step (b'), the amount of alkali metal hydroxide, water-soluble organic base, or water-soluble silicate thereof added is reduced by 300% as SiO□/M20 molar ratio. In step (C'), the heating temperature was set to 300
It can be raised up to ℃.

この(a′l 、 (b′l及び(C′)工程を経るこ
とにより得られたゾルを、前記と同様にして濃縮するこ
とにより、陰イオン濃度0.1重量%以下であってSi
O2濃度1〜40重量%の安定なアルカリ性水性シリカ
ゾルを得ることができる。また、前記と同様にして酸性
ゾル、陽に帯電したシリカゾル、オルガノゾル、混合ゾ
ル等も得ることができる。
By concentrating the sol obtained through steps (a'l, (b'l and (C')) in the same manner as above, an anion concentration of 0.1% by weight or less and Si
A stable alkaline aqueous silica sol with an O2 concentration of 1 to 40% by weight can be obtained. Furthermore, acidic sol, positively charged silica sol, organosol, mixed sol, etc. can also be obtained in the same manner as above.

(作 用) 本発明のゾルのコロイダルシリカ粒子が細長くて、しか
もその太さが5〜40ミリミクロンの範囲内にあり、そ
して一様な太さで一平面内のみに上記DI102の値で
5以上の伸長を有し、そして動的光散乱法による測定粒
子径が40〜500ミリミクロンであるという細長い形
状は、本発明のゾルの製造法によるものである。このコ
ロイダルシリカ粒子の生成機構の完全解明は困難である
が、下記のように考えられる。
(Function) The colloidal silica particles of the sol of the present invention are elongated and have a thickness within the range of 5 to 40 millimicrons, and have a uniform thickness and are distributed only in one plane at the above-mentioned DI102 value of 5. The elongated shape with the above elongation and a particle size measured by dynamic light scattering of 40 to 500 millimicrons is due to the sol manufacturing method of the present invention. Although it is difficult to fully elucidate the mechanism of production of colloidal silica particles, it is thought to be as follows.

先ず、 (aj工程において活性珪酸のコロイド水溶液
にカルシウム若しくはマグネシウムの水溶性塩又はこれ
らの混合物を加えると、カルシウムイオン、マグネシウ
ムイオン等が活性珪酸の粒子に捕捉される。次いで (
bl工程においてアルカリ金属水酸化物、有機塩基、こ
れらの珪酸塩等を加えると、カルシウムイオン、マグネ
シウムイオン等を捕捉した活性珪酸の粒子の一部は数珠
つなぎに凝集し、その結果任意方向に屈曲した細長い糸
状凝集体粒子が生成する。この糸状の凝集体粒子は、−
平面内のみに伸長していなくてもよいし、また、部分的
に三次元網目構造を形成していてもよい。そして (c
)工程において加熱されると、活性珪酸粒子の重合が起
り、上記長い糸状の粒子には切断が、そして上記三次元
構造には破壊が起って、成る長さ、おそらく10〜10
0ミリミクロン程度の長さの断片が生成すると共に、こ
の断片及び長さが短い粒子上では既に捕捉されていたカ
ルシウムイオン、マグネシウムイオン等が作用して、こ
の断片及び短かい糸状粒子の伸長が一平面内のみに存す
るように固定させる。 (C)工程による加熱の継続は
、液中の溶解珪酸及び断片糸の溶離し易い部分から溶離
した溶解珪酸が逐次断片糸の表面に析出して断片糸の太
さを増大せしめる。
First, when a water-soluble salt of calcium or magnesium or a mixture thereof is added to a colloidal aqueous solution of activated silicic acid in the (aj step), calcium ions, magnesium ions, etc. are captured by particles of activated silicic acid.
When alkali metal hydroxides, organic bases, silicates of these, etc. are added in the BL process, some of the activated silicic acid particles that have captured calcium ions, magnesium ions, etc. aggregate in a string, resulting in bending in arbitrary directions. Elongated filamentous aggregate particles are produced. These filamentous aggregate particles are -
It does not have to extend only within a plane, or it may partially form a three-dimensional network structure. and (c
) When heated in the step, polymerization of the activated silicic acid particles occurs, cutting of the long thread-like particles and destruction of the three-dimensional structure, resulting in a length of approximately 10 to 10 mm.
Fragments with a length of approximately 0 millimicrons are generated, and calcium ions, magnesium ions, etc. that have already been captured on these fragments and short particles act to cause the elongation of these fragments and short filamentous particles. Fixed so that it exists only in one plane. Continuation of the heating in step (C) causes the dissolved silicic acid in the liquid and the dissolved silicic acid eluted from the easily eluted portions of the fragmented threads to precipitate successively on the surface of the fragmented threads, thereby increasing the thickness of the fragmented threads.

この一連のプロセスの結果、 [C)工程終了後の液中
に、5〜20ミリミクロンの範囲内のほぼ一様な太さで
一平面内のみに伸長を有し、長さ15〜200ミリミク
ロン程度の細長い形状のコロイダルシリカ粒子が生成す
る。
As a result of this series of processes, [C) After the process is completed, the liquid has an almost uniform thickness within the range of 5 to 20 millimeters, has elongation only in one plane, and has a length of 15 to 200 millimeters. Colloidal silica particles with elongated shapes on the order of microns are generated.

本発明の(a’ ) 、 (b’ l及び(C′)の工
程からなる上記第2の製造方法によるときも、上記活性
珪酸の微粒子に代って、粒径3〜30ミリミクロンのコ
ロイダルシリカ粒子が同様に作用するものと考えられる
Also when using the second manufacturing method of the present invention comprising steps (a'), (b'l and (C')), colloidal particles with a particle size of 3 to 30 millimicrons are used instead of the activated silicic acid fine particles. It is believed that silica particles act similarly.

(al工程に用いられる活性珪酸のコロイド水溶液に、
 fb)工程に用いられるアルカリ金属水酸化物、有機
塩基又はそれらの水溶性珪酸塩の水溶液を加えてから、
 (al工程に用いられるカルシウム塩、マグネシウム
塩又はこれらの混合物の水溶液を加えると、急激にゲル
生成が起り、通常の撹拌手段によっては均一に分散させ
ることすら困難となり、また、その生成ゲルを加熱して
も本発明の上記形状のコロイダルシリカ粒子を生成させ
ることができない。
(In the colloidal aqueous solution of activated silicic acid used in the al process,
After adding the aqueous solution of the alkali metal hydroxide, organic base or water-soluble silicate thereof used in step fb),
(When an aqueous solution of calcium salt, magnesium salt, or a mixture thereof used in the al process is added, gel formation occurs rapidly, and it is difficult to evenly disperse it using ordinary stirring means. However, the colloidal silica particles of the present invention having the above shape cannot be produced.

(al工程において、用いられる活性珪酸のコロイド水
溶液のSiO□濃度が1重量%以下では、濃縮の際多量
の水の除去を要し効率的でない。
(In the al step, if the SiO□ concentration of the colloidal aqueous solution of activated silicic acid used is 1% by weight or less, a large amount of water must be removed during concentration, which is not efficient.

また、この活性珪酸のコロイド水溶液のSiO2濃度が
6重量%を超えると、この液は安定性が著しく低下し、
一定品質のゾルの生産を困難ならしめる。従って、この
SiO□濃度は1〜6重量%が好ましいが、かかる濃度
の活性珪酸のコロイド水溶液のうちでも、更にそのpH
が2〜5であるものが好ましい。このpHが5以上では
活性珪酸の水溶液の安定性が著しく低下し、また、(c
)工程を経て得られたゾルのコロイダルシリカ粒子は、
上記細長い形状を有しない。このpHは2以下でもよい
が、酸の添加を要すのみならず、不要な陰イオン量が増
大し好ましくない。
Furthermore, when the SiO2 concentration of this colloidal aqueous solution of activated silicic acid exceeds 6% by weight, the stability of this solution decreases significantly;
This makes it difficult to produce a sol of constant quality. Therefore, this SiO□ concentration is preferably 1 to 6% by weight;
is preferably from 2 to 5. When this pH is 5 or more, the stability of the aqueous solution of activated silicic acid is significantly reduced, and (c
) The colloidal silica particles of the sol obtained through the process are
It does not have the elongated shape described above. Although this pH may be 2 or less, it is not preferable because it not only requires the addition of an acid but also increases the amount of unnecessary anions.

fal工程において、この活性珪酸のコロイド水溶液に
カルシウム塩、マグネシウム塩又はそれらの混合物をそ
の水溶液として加えると、均一な混合を容易に達成でき
る。この均一な混合は、加えられたカルシウムイオン、
マグネシウムイオン等の珪酸による均一な捕捉を容易な
らしめるのに重要である。
In the fal step, uniform mixing can be easily achieved by adding a calcium salt, a magnesium salt, or a mixture thereof as an aqueous solution to this colloidal aqueous solution of activated silicic acid. This uniform mixing results in added calcium ions,
This is important for facilitating uniform capture of magnesium ions and the like by silicic acid.

(al工程に用いられる活性珪酸のコロイド水溶液とし
て、水溶性珪酸塩の水溶液を陽イオン交換処理すること
により得られるものは、溶解又は遊離の陽イオンを液中
に殆ど含有しない。
(A colloidal aqueous solution of activated silicic acid used in the al step, which is obtained by subjecting an aqueous solution of a water-soluble silicate to a cation exchange treatment, contains almost no dissolved or free cations in the solution.

これに用いられる水滴性珪酸塩としては、安価にかつ容
易に人手できろ水ガラスが好ましい。
As the aqueous silicate used for this purpose, it is preferable to use water glass, which can be produced easily and inexpensively by hand.

ハロゲン化珪素、アルコキシシラン等を加水分解するこ
とにより得られたシリカをアルカリに溶解することによ
って得られる水溶性珪酸塩は、不純物、特に多価金属の
含有率が低いが高価である。これに対し、−Sに工業製
品の水ガラスには、通常、シリカ分に対し酸化物換算で
数千ppm以下の多価金属が含まれている。この水ガラ
ス水溶液を陽イオン交換処理しても、上記多価金属分の
全量を除去することができない。従って、得られた活性
珪酸のコロイド水溶液には、通常、約5000ppm以
下の量の多価金属酸化物が残留するが、液中活性珪酸又
はその重合体微粒子中にシリカとの化学結合又は吸着に
よって捕捉されているために、液中には溶解又は遊離の
陽イオンとしては存在しない。この残留多価金属成分は
、 (a)工程においてカルシウム塩、マグネシウム塩
等に併用される多価金属成分の一部として算入され、カ
ルシウム塩、マグネシウム塩等と一緒に添加される場合
の多価金属塩と同様に作用する。
Water-soluble silicates obtained by dissolving silica obtained by hydrolyzing silicon halide, alkoxysilane, etc. in an alkali have a low content of impurities, especially polyvalent metals, but are expensive. On the other hand, industrial water glass containing -S usually contains several thousand ppm or less of polyvalent metals in terms of oxides based on the silica content. Even if this water glass aqueous solution is subjected to cation exchange treatment, the entire amount of the polyvalent metal components cannot be removed. Therefore, in the colloidal aqueous solution of activated silicic acid obtained, polyvalent metal oxides usually remain in an amount of about 5,000 ppm or less. Because it is trapped, it does not exist in the liquid as a dissolved or free cation. This residual polyvalent metal component is included as part of the polyvalent metal component used together with calcium salts, magnesium salts, etc. in the step (a), and when added together with calcium salts, magnesium salts, etc. Acts similarly to metal salts.

(a)工程に加えられるカルシウム塩、マグネシウム塩
又はこれらの混合物の量が、活性珪酸のSiO□に対し
CaOlMgO又はその両者として重量比1500pp
m以下では、最終の生成コロイダルシリカ粒子の形状は
球状又はまゆ状となり、反対に8500ppm以上にも
多いと、 (C)工程を経ても本発明による特殊形状の
コロイダルシリカ粒子を生成させることができない。従
ってこの1500−8500pp重量のCaOlMgO
又はこの両者によって前記の如き方向性を有する細長く
伸びた粒子が生成すると考えられる。そして、このカル
シウム塩、マグネシウム塩等に併用される前記多価金属
成分は、その種類によってコロイダルシリカ粒子の生成
を促進したり、或いは抑制する作用をするが、その量が
CaOlMgO又はその両者に対し酸化物換算約80重
量%以上にも多いと、活性珪酸のコロイド水溶液にゲル
化を起させる。
(a) The amount of calcium salt, magnesium salt, or a mixture thereof added to the process is 1500 pp by weight as CaOlMgO or both with respect to SiO□ of active silicic acid.
If the amount is less than 8,500 ppm, the shape of the final colloidal silica particles will be spherical or cocoon-like, and on the other hand, if the amount is more than 8,500 ppm, the specially shaped colloidal silica particles of the present invention cannot be produced even after the step (C). . Therefore, this 1500-8500 pp weight of CaOlMgO
Alternatively, elongated particles having the above-mentioned directionality are thought to be produced by both of them. The polyvalent metal component used in combination with this calcium salt, magnesium salt, etc. has the effect of promoting or suppressing the production of colloidal silica particles depending on its type, but the amount thereof may be different for CaO, MgO, or both. When the amount is about 80% by weight or more in terms of oxide, gelation occurs in the colloidal aqueous solution of activated silicic acid.

上2  (a)工程におけるカルシウム塩、マグネシウ
ム塩等の添加混合後は、その生成液に、該液中の活性珪
酸の粒子に変化を生じさせないようになるべく早く、 
Fb)工程によるアルカリ金属水酸化物、有機塩基又は
それらの珪酸塩が加えられる。これらアルカリ性物質の
添加も、均一な混合を容易ならしめるように、好ましく
は撹拌下に、直接又は5〜30重量%重量%水溶液とし
て添加される。
After addition and mixing of calcium salts, magnesium salts, etc. in step 2 (a), add to the resulting solution as soon as possible so as not to cause any change in the active silicic acid particles in the solution.
Alkali metal hydroxides, organic bases or silicates thereof according to step Fb) are added. These alkaline substances are also added directly or as a 5 to 30% by weight aqueous solution, preferably under stirring, so as to facilitate uniform mixing.

(bl工程におけるこれらアルカリ性物質の添加量が前
記SiO□/M20モル比として20以下では、 (C
)工程による加熱によっては粒子の成長が起らず、反対
にこのモル比が200以上では、(cl工程によって加
熱しても粒子成長が起らずにゲル状物が生成する。従っ
て、SiO□/M20モル比20〜200、好ましくは
60〜100となるように上記アルカリ性物質を加える
と共に、 fcl工程における加熱によって本発明の目
的とする大きさと形状を有するコロイダルシリカ粒子を
生成させることができる。そして、 (bl工程による
上記アルカリ性物質の添加は、撹拌が容易に行えるよう
になるべく低温、好ましくは室温で行うのがよい。
(If the amount of these alkaline substances added in the bl step is 20 or less as the SiO□/M20 molar ratio, (C
) Particle growth does not occur due to heating in the Cl step, and on the other hand, if this molar ratio is 200 or more, gel-like material is generated without particle growth even when heated in the Cl step. /M20 molar ratio of 20 to 200, preferably 60 to 100, and by heating in the fcl step, colloidal silica particles having the size and shape targeted by the present invention can be produced. (The addition of the alkaline substance in the bl step is preferably carried out at as low a temperature as possible, preferably at room temperature, so that stirring can be performed easily.

(C1工程における加熱温度が、60℃以下では本発明
の目的とするコロイダルシリカ粒子に成長させることが
できず、60℃以上での加熱が必要であるが、 (al
工程に用いられる活性珪酸のコロイド水溶液のp)lが
2〜4のときは、加熱温度が150℃を越えるとゲルが
生じ易い。また、fa)工程に用いられる活性珪酸のコ
ロイド水溶液のp■が4を越え5以下のときは、この 
fc)工程での加熱温度が150℃を越えてもよいが、
250℃以上にも高いとやはりゲルが生じ易い。
(If the heating temperature in the C1 step is 60°C or lower, the colloidal silica particles that are the object of the present invention cannot be grown, and heating at 60°C or higher is necessary.
When the p)l of the colloidal aqueous solution of activated silicic acid used in the process is 2 to 4, gels tend to form if the heating temperature exceeds 150°C. In addition, when the p■ of the colloidal aqueous solution of activated silicic acid used in the step fa) is more than 4 and less than 5, this
The heating temperature in the fc) step may exceed 150°C, but
If the temperature is higher than 250°C, gel tends to form.

加熱時間は、一定粒子径を意図すれば、60℃以上の高
い温度における程短時間でよく、反対に加熱温度が低け
れば長時間を要す。従って、(cl工程における加熱は
、60〜250℃で0.5〜40時間程度行うのが好ま
しい。 (cl工程終了後は、得られたゾルは冷却され
る。そしてこのゾルは所望に応じ水で希釈することもで
きる。
As long as a constant particle size is intended, the heating time may be shorter at a high temperature of 60° C. or higher; on the other hand, if the heating temperature is lower, a longer time is required. Therefore, it is preferable that the heating in the Cl step be carried out at 60 to 250°C for about 0.5 to 40 hours. (After the Cl step, the obtained sol is cooled. It can also be diluted with

工業製品としてのゾルには安定性は欠かせ得ない性質で
あり、そして通常、SiO□として10〜30重量%の
濃度が望まれる。この濃度において、アルカリ性の安定
なゾルを得るにはゾル中に存在していてもよい陰イオン
の濃度は、通常11000pp以下である。カルシウム
、マグネシウム、その信条価金属のイオンはコロイダル
シリカ粒子中に捕捉されているから、ゾルの水媒体中に
はゾルの安定化を妨げる程の量て溶存していることはな
い。上記SiO□濃度1濃度1註〜30/M20  (
Mは、前記に同じ。)モル比として20〜200程度の
アルカリ陽イオンをゾル中に含有させる必要がある。こ
のアルカリ陽イオンによって、ゾルは通常pH8.5〜
11を示す。 (c)工程によるゾルから陰イオンを除
去するのに微細多孔性膜を用いると、陽イオンの除去も
一緒に起るので、ゾル中に残存するアルカリ陽イオンの
不足が起る場合がある。このようなときは、ゾルの安定
化に必要となる量の前記アルカリ金属水酸化物、有機塩
基等を更にゾル中に補給しながら濃縮することによって
或は濃縮後に補給することによって、安定なゾルが得ら
れる。限外濾過膜等微細多孔性膜を用いる方法では、ゾ
ル中のコロイダルシリカ粒子は膜を通過しないから、陰
イオンと共に水が流出することによってゾルは同時に濃
縮される。この濃縮されたゾルは、任意に水で希釈する
こともできる。
Stability is an essential property for a sol as an industrial product, and a concentration of 10 to 30% by weight of SiO□ is usually desired. At this concentration, the concentration of anions that may be present in the sol to obtain a stable alkaline sol is usually 11,000 pp or less. Since ions of calcium, magnesium, and their valence metals are captured in the colloidal silica particles, they are not dissolved in the aqueous medium of the sol in an amount that would interfere with the stabilization of the sol. The above SiO□ concentration 1 concentration 1 note ~ 30/M20 (
M is the same as above. ) It is necessary to contain alkali cations in a molar ratio of about 20 to 200 in the sol. Due to these alkaline cations, the sol usually has a pH of 8.5~
11 is shown. When a microporous membrane is used to remove anions from the sol in step (c), the removal of cations also occurs, which may result in a shortage of alkaline cations remaining in the sol. In such a case, a stable sol can be obtained by further replenishing the sol with the necessary amount of the alkali metal hydroxide, organic base, etc. to stabilize the sol while concentrating it, or by replenishing it after concentration. is obtained. In a method using a microporous membrane such as an ultrafiltration membrane, since colloidal silica particles in the sol do not pass through the membrane, the sol is simultaneously concentrated as water flows out together with anions. This concentrated sol can optionally be diluted with water.

本発明による第2の製造方法においては、(a′)工程
に用いられる酸性ゾルのSiO2濃度が05重量%以下
では、(C′)工程後に濃縮する際、多量の水の除去を
要し効率的でない。また、このSiO2濃度が25重量
%以上にも高いと、加えらえるCa塩、Mg塩等の量が
多くなり、これら塩が加えられたゾルはゲル化を起し易
く好ましくない。この(a′)工程に用いられる酸性ゾ
ルのpHIJS1以下及び5以上のときは、いずれもゾ
ルの安定性が乏しくなり、(C′)工程により得られた
ゾルのコロイダルシリカ粒子は前記細長い形状を有しな
い。この(a′)工程に用いられる酸性ゾルの粒子径が
30ミリミクロン以上でも、(C′)工程で得られたゾ
ルのコロイダルシリカ粒子はやはり前記細長い形状を有
しない。
In the second production method according to the present invention, if the SiO2 concentration of the acidic sol used in step (a') is 0.5% by weight or less, it is necessary to remove a large amount of water when concentrating after step (C'). Not on point. Furthermore, if the SiO2 concentration is as high as 25% by weight or more, the amount of Ca salt, Mg salt, etc. added increases, and the sol to which these salts are added tends to gel, which is not preferable. When the pH of the acidic sol used in step (a') is below 1 or above 5, the stability of the sol becomes poor, and the colloidal silica particles in the sol obtained in step (C') have the elongated shape. I don't have it. Even if the particle size of the acidic sol used in step (a') is 30 millimicrons or more, the colloidal silica particles in the sol obtained in step (C') still do not have the elongated shape.

3ミリミクロン未満の粒径のシリカゾルも用い得るが、
前記 (al、 [b)及び (c)工程からなる製造
法による方がはるかに効率的であるから、通常(a′)
工程には3ミリミクロン未満の粒径の酸性シリカゾルは
用いられない。(a′)工程におけるカルシウム塩、マ
グネシウム塩等の添加量は、 (a)工程におけるそれ
らの添加量よりも増大させ得るが、SiO2分に対し1
.00重量%以上になるとやはり(C′)工程によって
は前記細長い形状のコロイダルシリカが得られない。
Silica sols with particle sizes less than 3 millimicrons may also be used;
Since the production method consisting of the above steps (al, [b) and (c) is much more efficient, usually (a')
No acidic silica sol with particle size less than 3 millimicrons is used in the process. The amount of calcium salt, magnesium salt, etc. added in step (a') can be increased compared to the amount added in step (a), but
.. If the amount exceeds 0.00% by weight, the elongated colloidal silica cannot be obtained in step (C').

(b′)工程におけるアルカリ性物質の添加量は、 (
b)工程におけるそれらの添加量よりも減少させること
がてきるがSiO□/M20iO□で300以上になる
とやはり(C′)工程においてゲル状物が生成し易い。
The amount of alkaline substance added in step (b') is (
Although it is possible to reduce the amount added in step b), if SiO□/M20iO□ exceeds 300, a gel-like substance is likely to be formed in step (C').

(C′)工程における加熱温度は (c)工程における
加熱温度よりもかなり高温まで許容されるが、 300
℃以上ではゲル化が起り易く、また、製造工程の効率を
さ水高めることもない。加熱時間は、やはり、一定粒径
を意図すれば加熱温度が高い程短時間でよく、60〜3
00℃では0.5〜40時間の加熱によって前記細長い
形状のコロイダルシリカ粒子を効率よく生成させること
ができる。
The heating temperature in step (C') is allowed to be much higher than the heating temperature in step (c), but 300
At temperatures above 0.degree. C., gelation tends to occur, and the efficiency of the manufacturing process is not significantly improved. As expected, the higher the heating temperature, the shorter the heating time, if a constant particle size is intended;
At 00°C, the elongated colloidal silica particles can be efficiently produced by heating for 0.5 to 40 hours.

この(a′)、 (b′)及び(C′)工程からなる第
2の製造方法によるシリカゾルも、高いSiO2濃度に
おいてはこのゾル中に存在する陰イオン量が11000
pp以上にも高いとゾルの安定性を低下させる。また、
アルカリ性の水性ゾルとしてはSiO□/M20iO□
として20〜300となる量のアルカリ性陽イオンの存
在が安定化のために必要であり、特にシリカゾルを濃縮
する際には、これらゾル中の陰イオン量と陽イオン量と
を上記安定化に必要な範囲に維持することが重要である
。この安定性が保持される限り、ゾルの濃縮は、 (a
l、 (b)及び FC)工程の後に行われる濃縮方法
と同じ方法で行うことができる。
The silica sol produced by the second production method consisting of steps (a'), (b') and (C') also has an anion content of 11,000 at high SiO2 concentrations.
If it is higher than pp, the stability of the sol will be reduced. Also,
As an alkaline aqueous sol, SiO□/M20iO□
The presence of alkaline cations in an amount of 20 to 300 is necessary for stabilization, and especially when concentrating silica sol, the amount of anions and cations in these sol is necessary for stabilization. It is important to maintain this within a reasonable range. As long as this stability is maintained, the concentration of the sol will be (a
It can be carried out in the same way as the concentration method carried out after steps 1, (b) and FC).

(実施例) 実施例1 市販のJIS 3号ナトリウム水ガラス(5in2/N
a2Oモル比3.22、S 〕、O02含有率285重
量%)に水を加えて、SiO2濃度36重量%の珪酸ナ
トリウム水溶液を得た。別途用意された商品名アンバー
ライト120Bの陽イオン交換樹脂充填のカラムに、上
記珪酸ナトリウム水溶液を通すことにより、SiO□濃
度356重量%、pH2,81、電導度731μS/a
mの活性珪酸のコロイド水溶液を得た。この液には、i
 203とFezO3が合計75ppm残留していた。
(Example) Example 1 Commercially available JIS No. 3 sodium water glass (5in2/N
Water was added to the a2O molar ratio 3.22, S], O02 content 285% by weight) to obtain an aqueous sodium silicate solution with a SiO2 concentration of 36% by weight. By passing the above sodium silicate aqueous solution through a column packed with a cation exchange resin with the trade name Amberlite 120B prepared separately, SiO□ concentration was 356% by weight, pH was 2.81, and electrical conductivity was 731 μS/a.
A colloidal aqueous solution of active silicic acid of m was obtained. This liquid contains i
A total of 75 ppm of 203 and FezO3 remained.

上記活性珪酸のコロイド水溶液2000 gをガラス製
容器に投入し、次いで10重量%の塩化カルシウム水溶
液8.0gを撹拌下に室温で添加し、30分の後更に1
0重量%の水酸化ナトリウム水溶液12.0 gを撹拌
下に室温で添加した。得られた混合液は、pH7,6を
示し、5io2/[a2oモル比80である。
2000 g of the above colloidal aqueous solution of activated silicic acid was put into a glass container, then 8.0 g of a 10% by weight aqueous calcium chloride solution was added at room temperature with stirring, and after 30 minutes, an additional 1
12.0 g of 0% by weight aqueous sodium hydroxide solution were added at room temperature with stirring. The resulting mixed solution had a pH of 7.6 and a 5io2/[a2o molar ratio of 80.

次いて、上記混合液をステンレス製オートクレーブに仕
込み、 130℃で撹拌下6時間加熱した後冷却して内
容物を取り出した。得られた液はシリカゾルであり、5
iO23,52重量%を含有し、SiO□/ Na2O
滴定法モル比101及びpH9,64であり、CaOは
SiO2に対し重量比5400ppm含まれ、遊離のカ
ルシウムイオンは検出されなかった。
Next, the above mixture was charged into a stainless steel autoclave, heated at 130° C. with stirring for 6 hours, cooled, and the contents were taken out. The obtained liquid is a silica sol, and 5
Contains 3.52% by weight of iO2, SiO□/Na2O
The titration method molar ratio was 101 and the pH was 9.64, CaO was contained at a weight ratio of 5400 ppm to SiO2, and no free calcium ions were detected.

次いて、上記シリカゲルを限外濾過装置により濃縮した
ところ、SiO2濃度21重量%の濃縮シリカゾルが得
られた。この濃縮ゾルは、分析の結果渚解又は遊離のカ
ルシウムイオンを含まず、比重 1.136、pH9,
24、粘度 125cp(20℃) 、 5iO9/ 
Na2O滴定法モル比126 、 CaO含有率0.1
13重量%、塩素イオン含有率0.019重量%、硫酸
イオン含有率0.0020重量%、電導度2080μS
/cmてあった。このゾルのコロイダルシリカ粒子は、
電子顕微鏡写真がら観察すると、細長い粒子であり、太
さは12ミリミクロンであった。そしてこのゾルは、動
的光散乱法によるコロイダルシリカ粒子径が846ミリ
ミクロンであった。また、BET法から算出するとこの
コロイダルシリカ粒子径は12ミリミクロンであった。
Next, the silica gel was concentrated using an ultrafiltration device to obtain a concentrated silica sol with a SiO2 concentration of 21% by weight. As a result of analysis, this concentrated sol does not contain any calcium ions or free calcium ions, has a specific gravity of 1.136, a pH of 9,
24, viscosity 125cp (20℃), 5iO9/
Na2O titration method molar ratio 126, CaO content 0.1
13% by weight, chloride ion content 0.019% by weight, sulfate ion content 0.0020% by weight, electrical conductivity 2080μS
/cm. The colloidal silica particles in this sol are
When observed using an electron microscope photograph, it was found that the particles were elongated and had a thickness of 12 mm. This sol had a colloidal silica particle diameter of 846 millimicrons as determined by dynamic light scattering. Further, the colloidal silica particle diameter was calculated from the BET method to be 12 millimicrons.

添付の図面第1図にこのゾルのコロイダルシリカ粒子の
20万倍の電子顕微鏡による撮影写真を示す。
FIG. 1 of the accompanying drawings shows a photograph of colloidal silica particles in this sol taken with an electron microscope at a magnification of 200,000 times.

この濃縮シリカゾルを密閉下60℃で保存したところ、
1ケ月後にも変質が認められなかった。
When this concentrated silica sol was stored at 60°C under closed conditions,
No deterioration was observed even after one month.

このゾルをガラス板上に塗布し、乾燥したところ、従来
のゾルを用いた場合よりも良好な被膜が形成された。こ
の被膜は水に接触しても、水に溶解しなかった。
When this sol was applied onto a glass plate and dried, a better coating was formed than when using conventional sol. This coating did not dissolve in water even when it came into contact with water.

実施例2 実施例1の活性珪酸のコロイド水溶液(Si02356
%、pH2,81) 2000gをガラス製容器に採り
、これに10重量%塩化カルシウム水溶液80gを撹拌
しながら添加し、次いで10重量%水酸化ナトリウム水
溶液12.0gを撹拌しながら添加することにより、S
iOz/Na2Oモル比80及びpH7,62の混合液
を得た。
Example 2 Colloidal aqueous solution of activated silicic acid (Si02356
%, pH 2,81) in a glass container, add thereto 80 g of a 10 wt% aqueous calcium chloride solution with stirring, and then add 12.0 g of a 10 wt% aqueous sodium hydroxide solution with stirring. S
A mixed solution with an iOz/Na2O molar ratio of 80 and a pH of 7.62 was obtained.

この混合液を2.5℃のステンレス製オートクレープ容
器に仕込み、これを130℃で24時間加熱した。得ら
れたシリカゾルは、SiO23.52重量%を含み、S
iO□/Na2O滴定法モル比101であり、CaOは
SiO2に対して重量比5400ppm含まれていた。
This mixed solution was placed in a stainless steel autoclave container at 2.5°C, and heated at 130°C for 24 hours. The obtained silica sol contains 3.52% by weight of SiO2 and S
The iO□/Na2O titration molar ratio was 101, and CaO was contained at a weight ratio of 5400 ppm relative to SiO2.

このゾルのpHは9.81であった。The pH of this sol was 9.81.

このゾルを限外濾過装置によりシリカ濃度15.2重量
%まで濃縮した。得られたゾルは比重1.092 、 
pH9,36、粘度225cp、 SiO2/ NaJ
滴定法モル比185 、 CaO820ppm 、  
([223ppm、SO424ppm 、電導度162
0u 37cm、 B E T法粒子径145mμ、動
的光散乱法粒子径167 mμであった。このゾルは6
0℃1ケ月安定であった。
This sol was concentrated to a silica concentration of 15.2% by weight using an ultrafiltration device. The obtained sol has a specific gravity of 1.092,
pH9.36, viscosity 225cp, SiO2/NaJ
Titration method molar ratio 185, CaO 820ppm,
([223ppm, SO424ppm, conductivity 162
The particle diameter was 145 mμ by BET method, and 167 mμ by dynamic light scattering method. This sol is 6
It was stable for 1 month at 0°C.

実施例3 実施例1の活性珪酸のコロイド水溶液(SiO73,5
6%、pH2,81) 2000gをガラス製容器に採
り、これに10重量%塩化カルシウム水溶液8.0gを
撹拌しながら添加し、次いで10重量%水酸化ナトリウ
ム水溶液13.5 gを撹拌しながら添加することによ
り、SiO□/Na2O法モル比70及びIIH7,8
4の混合液を得た。
Example 3 Colloidal aqueous solution of activated silicic acid (SiO73,5
6%, pH 2,81) was placed in a glass container, 8.0 g of a 10% by weight aqueous calcium chloride solution was added thereto with stirring, and then 13.5 g of a 10% by weight aqueous sodium hydroxide solution was added with stirring. By doing so, SiO□/Na2O method molar ratio 70 and IIH7,8
A mixed solution of 4 was obtained.

この混合液を2.5氾のステンレス製オートクレーブ容
器に仕込み、これを100℃で6時間加熱した。得られ
たシリカゾルは、5iO23,52重量%、SiO2/
 Na2O滴定法モル比880であり、CaOは5iO
7に対して5400ppm含まれていた。ゾルのpHは
955であった。
This mixed solution was charged into a 2.5 liter stainless steel autoclave container, and heated at 100° C. for 6 hours. The obtained silica sol contained 5iO23,52% by weight, SiO2/
Na2O titration method molar ratio is 880, CaO is 5iO
It contained 5400 ppm compared to 7. The pH of the sol was 955.

このゾルを限外濾過装置によりシリカ濃度206重量%
まで濃縮した。得られたゾルは比重1.133 、 p
H9,21,粘度45cp、 SiO□/ Na2O滴
定法モル比10[1、CaO111Dppm 、  C
j2 265ppm、SSO435pp 、電導度29
70μS/cm、 B E T法粒子径88川μ、動的
光散乱法粒子径51.8m+tであった。このゾルは6
0℃1ケ月安定であった。
This sol was filtered with a silica concentration of 206% by weight using an ultrafiltration device.
It was concentrated to The obtained sol has a specific gravity of 1.133, p
H9,21, viscosity 45cp, SiO□/Na2O titration molar ratio 10[1, CaO111Dppm, C
j2 265ppm, SSO435pp, conductivity 29
The particle size was 70 μS/cm, the BET method particle size was 88 μ, and the dynamic light scattering method particle size was 51.8 m+t. This sol is 6
It was stable for 1 month at 0°C.

実施例4 実施例1の市販のナトリウム水ガラスの水溶液を陽イオ
ン交換処理することにより1.SiO23.66重量%
及びpH2,82の活性珪酸のコロイド水溶液を得た。
Example 4 The commercially available sodium water glass aqueous solution of Example 1 was subjected to cation exchange treatment to obtain 1. SiO23.66% by weight
A colloidal aqueous solution of activated silicic acid having a pH of 2.82 was obtained.

この活性珪酸のコロイド水溶液2000 gをガラス製
容器に採り、これに塩酸酸性の952重量%塩化亜鉛水
溶液1.08gを撹拌しながら添加し、次いて10重量
%硝酸カルシウム水溶液12.0gを撹拌しながら添加
し、次に10重量%水酸化ナトリウム水溶液137gを
撹拌しながら添加することにより、SiO2/Na2O
法モル比70及びp)f7.82の混合液を得た。
2000 g of this colloidal aqueous solution of activated silicic acid was placed in a glass container, 1.08 g of a 952% by weight zinc chloride aqueous solution acidified with hydrochloric acid was added thereto with stirring, and then 12.0 g of a 10% by weight calcium nitrate aqueous solution was added with stirring. SiO2/Na2O
A mixed solution with a legal molar ratio of 70 and p) f7.82 was obtained.

この混合液を2.5eのステンレス製オートクレーブ容
器に仕込み130℃て6時間加熱した。
This mixed solution was placed in a 2.5e stainless steel autoclave container and heated at 130° C. for 6 hours.

得られたシリカゾルは、SiO23.61重量%を含み
、SiO2/ Na2O滴定法モル比88.0であり、
SiO□に対して重量比CaO5600ppmとZn0
890ppmを含有していた。ゾルのpHは972であ
った。
The obtained silica sol contained 3.61% by weight of SiO2 and had an SiO2/Na2O titration molar ratio of 88.0.
Weight ratio of CaO 5600 ppm and Zn0 to SiO□
It contained 890 ppm. The pH of the sol was 972.

このゾルを限外濾過装置によりシリカ濃度218重量%
まで濃縮した。得られたゾルは比重1142、pH9,
37、粘度79cp、 SiO2/ Na2O滴定法モ
ル比123 、 CaO1220ppm 、 ZnO1
95ppm、  CCl230pp 、 NO3345
ppm、 SO424ppmを含有し、電導度2.40
0u 37cm、 B E T法粒子径μ、Omμ、動
的光散乱法粒子径626mμであった。このゾルは、6
0℃て1ケ月安定であった。
This sol was filtered with a silica concentration of 218% by weight using an ultrafiltration device.
It was concentrated to The obtained sol had a specific gravity of 1142, a pH of 9,
37, viscosity 79cp, SiO2/Na2O titration molar ratio 123, CaO1220ppm, ZnO1
95ppm, CCl230pp, NO3345
ppm, contains SO424ppm, conductivity 2.40
The particle diameter was 0u 37 cm, the particle diameter was μ by BET method, Omμ, and the particle diameter was 626 mμ by dynamic light scattering method. This sol is 6
It was stable for 1 month at 0°C.

実施例5 実施例1の市販のナトリウム水ガラスの水溶液を陽イオ
ン交換処理することにより、Si0□374重量%及び
pH2,85の活性珪酸のコロイド水溶液を得た。この
活性珪酸のコロイド水溶液2000 gをガラス製容器
に採り、これに10重量%塩化マグネシウム水溶液76
gを撹拌しながら添加し、次いで10重量%水酸化カリ
ウム水溶液17、5 gを撹拌しながら添加することに
より、SiO□/に20モル比80及びpH7,39の
混合液を得た。
Example 5 A colloidal aqueous solution of activated silicic acid having 374% by weight of Si0□ and pH 2.85 was obtained by subjecting the aqueous solution of commercially available sodium water glass of Example 1 to a cation exchange treatment. 2000 g of this colloidal aqueous solution of activated silicic acid was placed in a glass container, and 76 g of a 10% by weight aqueous magnesium chloride solution was added thereto.
was added with stirring, and then 17.5 g of a 10% by weight aqueous potassium hydroxide solution was added with stirring to obtain a mixed solution with a SiO□/20 molar ratio of 80 and a pH of 7.39.

この混合液を2512のステンレス製オートクレーブ容
器に仕込み120℃で6時間加熱した。
This mixed solution was placed in a 2512 stainless steel autoclave container and heated at 120° C. for 6 hours.

得られたシリカゾルは、5LO23,69重量%、Si
O□/に20滴定法モル比101であり、MgOはSi
O□に対して重量比4390ppm含まれていた。ゾル
のpnは847てあった。
The obtained silica sol contained 5LO23.69% by weight, Si
20 titration method molar ratio to O□/ is 101, MgO is Si
It was contained in a weight ratio of 4390 ppm to O□. Sol's pn was 847.

このゾル1564gに10重重量水酸化カリウム水溶液
4,5gを撹拌しながら添加し、pHを9.53とした
To 1,564 g of this sol, 4.5 g of a 10-weight aqueous potassium hydroxide solution was added with stirring to adjust the pH to 9.53.

このゾルを限外濾過装置により、シリカ濃度16、2重
量%まて濃縮した。得られたゾルは比重1.100、p
H9,20、粘度69cp、 SiO2/ K2020
滴定法比143であり、MgO710ppm、  fl
  301ppm 、 SO459ppmを含有し、電
導度3070μS/em、BET法粒子径11.1 m
μ、動的光散乱法粒子径は855mμであった。このゾ
ルは、60℃1ケ月安定であった。
This sol was concentrated to a silica concentration of 16.2% by weight using an ultrafiltration device. The obtained sol has a specific gravity of 1.100, p
H9,20, viscosity 69cp, SiO2/K2020
Titration method ratio is 143, MgO 710ppm, fl
301ppm, SO459ppm, conductivity 3070μS/em, BET method particle size 11.1m
μ, dynamic light scattering particle diameter was 855 mμ. This sol was stable for one month at 60°C.

実施例6 実施例5の活性珪酸のコロイド水溶液(SiO23,7
4重量%、pH2,85) 2000 gをガラス製容
器に採り、これに10重量%塩化マグネシウム水溶液4
.8gを撹拌しながら添加し、次いでモノエタノールア
ミン244gを撹拌しながら添加し、SiO□/モノエ
クノールアミン モル比31及びpH762の混合液を
得た。
Example 6 Colloidal aqueous solution of activated silicic acid (SiO23,7
4% by weight, pH 2,85) was placed in a glass container, and 4% by weight of a 10% by weight aqueous magnesium chloride solution was added to it.
.. 8 g of monoethanolamine was added with stirring, and then 244 g of monoethanolamine was added with stirring to obtain a mixed solution with a SiO□/monoechnolamine molar ratio of 31 and a pH of 762.

この混合液を2,5℃のステンレス製オートクレーブ容
器に仕込み130℃で6時間加熱した。
This mixed solution was placed in a stainless steel autoclave container at 2.5°C and heated at 130°C for 6 hours.

得られたシリカゾルは、SiO□3.73重量%、モノ
エタノールアミン0122重量%、SiO□/モノエタ
ノールアミン滴定法モル比365であり、MgOはSi
O2に対して重量比2820ppmであり、pHは90
0てあった。
The obtained silica sol contained 3.73% by weight of SiO□, 122% by weight of monoethanolamine, and a molar ratio of SiO□/monoethanolamine titration method of 365.
The weight ratio to O2 is 2820 ppm, and the pH is 90.
It was 0.

このゾル1917gにモノエタノールアミン1.0gを
撹拌しながら添加しpHを9,50とした。
1.0 g of monoethanolamine was added to 1917 g of this sol with stirring to adjust the pH to 9.50.

このゾルを限外濾過装置によりシリカ濃度14.8重量
%まで濃縮した。得られたゾルは比重1.091 、 
pH9,19、粘度33cp、モノエタノールアミン含
有率0.362重量%、SiO□/モノエタノールアミ
ン滴定モル比47であり、MgO含有率417ppm 
、電導度1670μS/cm、 B E T法粒子径1
0.6mμ、動的光散乱法粒子径は72.5 muであ
った。室温で6ケ月以上安定であった。
This sol was concentrated to a silica concentration of 14.8% by weight using an ultrafiltration device. The obtained sol has a specific gravity of 1.091,
pH 9.19, viscosity 33 cp, monoethanolamine content 0.362 wt%, SiO□/monoethanolamine titration molar ratio 47, MgO content 417 ppm.
, conductivity 1670μS/cm, BET method particle size 1
The particle size measured by dynamic light scattering was 72.5 mu. It was stable for more than 6 months at room temperature.

実施例7 市販のJIS 3号ナトリウム水ガラス(5iO229
2重量%、Na209.47重量%、SiO2/ Na
2Oモル比318)をシリカ濃度290重量%に水で希
釈し、陽イオン交換樹脂を充填したカラムに通してSi
O2濃度290重量%及びpH2,85の活性珪酸のコ
ロイド水溶液を得た。残留のAf2203とFe20a
の合計は26ppmであった。上記活性珪酸のコロイド
水溶液2000 gをガラス製容器に採り、これに10
重量%硝酸カルシウム水溶液90gを撹拌しながら添加
し、次いで10重量%水酸化ナトリウム水溶液966g
を撹拌しながら添加し、SiO□/Na2Oモル比8o
とした。pHは7.56であった。この混合液を2.5
℃のステンレス製オートクレーブ容器に仕込み130’
Cで6時間加熱した。得られたシリカゾルは、SiO2
2.87重量%、SiO□/ Na2O滴定法モル比1
13であり、CaOはSiO□に対して重量比5300
ppm含まれ、ゾルのplは967であった。
Example 7 Commercially available JIS No. 3 sodium water glass (5iO229
2% by weight, Na209.47% by weight, SiO2/Na
2O molar ratio 318) was diluted with water to a silica concentration of 290% by weight, and passed through a column packed with a cation exchange resin to obtain Si.
A colloidal aqueous solution of activated silicic acid with an O2 concentration of 290% by weight and a pH of 2.85 was obtained. Residual Af2203 and Fe20a
The total amount was 26 ppm. 2000 g of the above colloidal aqueous solution of activated silicic acid was placed in a glass container, and 10
90 g of a wt % calcium nitrate aqueous solution was added with stirring, followed by 966 g of a 10 wt % aqueous sodium hydroxide solution.
was added with stirring, and the SiO□/Na2O molar ratio was 8o.
And so. pH was 7.56. Add this mixture to 2.5
Pour into a stainless steel autoclave container at 130°C.
The mixture was heated at C for 6 hours. The obtained silica sol is SiO2
2.87% by weight, SiO□/Na2O titration method molar ratio 1
13, and the weight ratio of CaO to SiO□ is 5300
ppm was included, and the pl of the sol was 967.

このゾルを限外濾過装置によりSiO2濃度16.0重
量%まで濃縮した6得られたゾルは比重1.098 、
 pH9,32、粘度70cp、 5iO316,0重
量%、SiO2/ Na2O滴定法モル比108 、 
Ca0850ppm 、  Cj230ppm、 NN
O3313pp、 SO422ppm、電導度1745
μS/cm、 B E T法粒子径10.9 mμ、動
的光散乱法粒子径は69.3 muであった。このゾル
は60℃1ケ月安定であった。
This sol was concentrated to a SiO2 concentration of 16.0% by weight using an ultrafiltration device.6 The resulting sol had a specific gravity of 1.098,
pH9.32, viscosity 70cp, 5iO316.0% by weight, SiO2/Na2O titration molar ratio 108,
Ca0850ppm, Cj230ppm, NN
O3313pp, SO422ppm, conductivity 1745
μS/cm, BET method particle size was 10.9 mμ, and dynamic light scattering method particle size was 69.3 mu. This sol was stable for one month at 60°C.

実施例8 実施例1で得られたシリカ濃度21.0重量%のシリカ
ゾルを純水でシリカ濃度16重量%に希釈し、陽イオン
交換樹脂を充填したカラムに通してシリカ濃度15.7
重量%の珪酸シリカゾルを得た。
Example 8 The silica sol obtained in Example 1 with a silica concentration of 21.0% by weight was diluted with pure water to a silica concentration of 16% by weight, and passed through a column packed with a cation exchange resin to give a silica concentration of 15.7%.
A silica silicate sol of % by weight was obtained.

得られたゾルは比重1092、pH2,20、粘度13
cp、 Sin□15.7重量%、Na2O190pp
m 、 CaO185ppm 、  C,i2144p
pm 、 SO416ppm 、電導度3.030u 
37cm、 B E T法粒子径12.0 mg、動的
光散乱法粒子径は846mμであった。このゾルは室温
3ケ月以上安定であった。
The obtained sol has a specific gravity of 1092, a pH of 2.20, and a viscosity of 13.
cp, Sin□15.7% by weight, Na2O190pp
m, CaO185ppm, C,i2144p
pm, SO416ppm, conductivity 3.030u
The particle size was 37 cm, the BET particle size was 12.0 mg, and the dynamic light scattering particle size was 846 mμ. This sol was stable for more than 3 months at room temperature.

実施例9 実施例8で得られた酸性シリカゾル800gを回転式減
圧濃縮器に採り、この器内を真空度650−720 T
orr、液温20〜40℃に保ちながら、これに無水メ
タノール12.020 gを14時間かけて加えると共
に水を共沸留去することによりゾル中の水分をメタノー
ルで置換した。
Example 9 800 g of the acidic silica sol obtained in Example 8 was placed in a rotary vacuum concentrator, and the vacuum inside the container was set to 650-720 T.
While maintaining the liquid temperature at 20 to 40° C., 12.020 g of anhydrous methanol was added thereto over 14 hours, and water was azeotropically distilled off to replace water in the sol with methanol.

得られたメタノールシリカゾルは、比重0876、粘度
14.5cpであり、SiO2含有率14.3重量%、
H20含有率1.0重量%であった。このゾルは室温3
ケ月以上安定であった。
The obtained methanol silica sol had a specific gravity of 0876, a viscosity of 14.5 cp, and a SiO2 content of 14.3% by weight.
The H20 content was 1.0% by weight. This sol is at room temperature 3
It remained stable for over several months.

比較例1 実施例1の活性珪酸のコロイド水溶液(SiO□3.5
6重量%、pH2,81) 2000gをガラス製容器
に採り、これに10重量%水酸化ナトリウム水溶液12
.0gを撹拌しながら添加し、SiO2/ Na2Oモ
ル比80とした。pHは7,8であった。
Comparative Example 1 Colloidal aqueous solution of activated silicic acid (SiO□3.5
6% by weight, pH 2,81) was placed in a glass container, and 12% by weight of a 10% by weight aqueous sodium hydroxide solution was added to the container.
.. 0 g was added with stirring to give a SiO2/Na2O molar ratio of 80. The pH was 7.8.

この混合液を2.5℃のステンレス製オートクレーブ容
器に仕込み130℃で6時間加熱した。
This mixed solution was placed in a stainless steel autoclave container at 2.5°C and heated at 130°C for 6 hours.

得られたゾルは、SiO□3.54重量%、S1y□/
 Na2O滴定法モル比107及びpH10,07であ
った。このゾルを限外濾過装置にてSiO2濃度21.
9重量%まて濃縮した。得られたゾルは、比重1.14
4、pH9,69、粘度4.3cp、 SiO□21.
9重量%、SiO□/Na2O滴定法モル比126、電
導度2140μS/cm、 BET法粒子径11.0 
mμ、動的光散乱法粒子径は26.8 mμであった。
The obtained sol contained 3.54% by weight of SiO□, S1y□/
The Na2O titration molar ratio was 107 and the pH was 10.07. This sol was passed through an ultrafiltration device to a SiO2 concentration of 21.
It was concentrated to 9% by weight. The obtained sol has a specific gravity of 1.14
4, pH 9.69, viscosity 4.3 cp, SiO□21.
9% by weight, SiO□/Na2O titration method molar ratio 126, electrical conductivity 2140 μS/cm, BET method particle size 11.0
mμ, and the dynamic light scattering particle diameter was 26.8 mμ.

このゾルの電子顕微鏡による撮影写真を第2図に示した
が、そのコロイダルシリカ粒子の形状は球形である。
An electron microscope photograph of this sol is shown in FIG. 2, and the colloidal silica particles are spherical in shape.

比較例2 実施例1に記載のナトリウム水ガラスに水を加えて濃度
50重量%に希釈し、得られたこの水溶液1500 g
をガラス製容器に採り、これに10%硫酸水溶液380
gを撹拌しながら添加し、pH454とした。
Comparative Example 2 Water was added to the sodium water glass described in Example 1 to dilute it to a concentration of 50% by weight, resulting in 1500 g of this aqueous solution.
into a glass container, and add 10% sulfuric acid aqueous solution 380
g was added with stirring to bring the pH to 454.

生成したシリカのウェットゲルを濾別し、これに純水4
000 gを注いで洗浄した。得られたウェットゲルを
純水に分散させることにより、SiO2濃度40重量%
の分散液1800 gを得た。これに10重量%水酸化
ナトリウム水溶液12.0gを加え、SiO2/ Na
zOモル比80とした。pHは9.0であった。
The generated silica wet gel is filtered and added with pure water
000 g was poured and washed. By dispersing the obtained wet gel in pure water, the SiO2 concentration was 40% by weight.
1800 g of a dispersion was obtained. Add 12.0 g of a 10% by weight aqueous sodium hydroxide solution to this to form a SiO2/Na
The zO molar ratio was set to 80. pH was 9.0.

この分散液を2.5℃のステンレス製オートクレーブ容
器に仕込み、次いで130℃で6時間加熱した。得られ
たゾルは、SiO□3.97重量%、SiO2/ Na
2O滴定法モル比87及びpH10,46であった。
This dispersion liquid was charged into a stainless steel autoclave container at 2.5°C, and then heated at 130°C for 6 hours. The obtained sol contained 3.97% by weight of SiO□, SiO2/Na
The 2O titration molar ratio was 87 and the pH was 10.46.

このゾルを限外濾過装置でシリカ濃度212重量%まで
濃縮した。得られたゾルは、比重1 、138 、 p
H9,98、粘度40cp、 SiO□21.2重量%
、SiO□/Na2O滴定法モル比98、電導度252
゜u 37cm、 B E T法粒子径9.9 mμ、
動的光散乱法粒子径912mμであった。このゾルは、
第3図の電子顕微鏡による撮影写真に示されたように、
そのコロイダルシリカ粒子は非球形であるが、細長い形
状を有していない。
This sol was concentrated to a silica concentration of 212% by weight using an ultrafiltration device. The obtained sol has a specific gravity of 1,138, p
H9.98, viscosity 40cp, SiO□21.2% by weight
, SiO□/Na2O titration molar ratio 98, conductivity 252
゜u 37cm, BET method particle size 9.9 mμ,
The dynamic light scattering method particle diameter was 912 mμ. This sol is
As shown in the photo taken with an electron microscope in Figure 3,
The colloidal silica particles are non-spherical but do not have an elongated shape.

比較例3 実施例1の活性珪酸のコロイド水溶液(SiO2356
重量%、pH2,81) 2000 gをガラス製容器
に採り、これに10重量%塩化カルシウム水溶液8.0
gを撹拌しながら添加し、次いで10重量%水酸化ナト
リウム水溶液12.0gを撹拌しながら添加しSiO2
/Na2Oモル比80とした。pnは7.62であった
。CaOはSiO2に対して重量比5400ppmであ
った。
Comparative Example 3 Colloidal aqueous solution of activated silicic acid (SiO2356
Weight %, pH 2,81) 2000 g was placed in a glass container, and a 10 weight % calcium chloride aqueous solution 8.0
SiO2
/Na2O molar ratio was set to 80. pn was 7.62. The weight ratio of CaO to SiO2 was 5400 ppm.

この混合液を2.5℃のステンレス製オートクレーブ容
器に仕込み、次いで160℃で6時間加熱した。結果は
、容器内にゲル状物質が生成し、流動性を示さなかった
This mixed solution was placed in a stainless steel autoclave container at 2.5°C, and then heated at 160°C for 6 hours. As a result, a gel-like substance was formed in the container and showed no fluidity.

比較例4 実施例1の活性珪酸のコロイド水溶液(Si02356
重量%、pH2,81) 2000gをガラス製容器に
採り、これに10重量%塩化カルシウム水溶液8.0g
を撹拌しながら添加し、次いで10重量%水酸化ナトリ
ウム水溶液3.8gを撹拌しながら添加しSin□/ 
Na2Oモル比250とした。pHは654であった。
Comparative Example 4 Colloidal aqueous solution of activated silicic acid of Example 1 (Si02356
Weight %, pH 2,81) 2000 g was placed in a glass container, and 8.0 g of a 10 weight % calcium chloride aqueous solution was added to it.
was added with stirring, and then 3.8 g of a 10% by weight aqueous sodium hydroxide solution was added with stirring to obtain Sin□/
The Na2O molar ratio was set to 250. pH was 654.

CaOはSiO2に対して重量比5400ppmであっ
た。
The weight ratio of CaO to SiO2 was 5400 ppm.

この混合液を2.5℃のステンレス製オートクレーブ容
器に仕込み、次いで130℃で6時間加熱した。結果は
、容器内にゲル状物質が生成し、流動性を示さなかった
This mixed solution was charged into a stainless steel autoclave container at 2.5°C, and then heated at 130°C for 6 hours. As a result, a gel-like substance was formed in the container and showed no fluidity.

比較例5 実施例1の活性珪酸のコロイド水溶液(SiO□3.5
6重量%、pH2,81) 2000gをガラス製容器
に採り、これに10重量%塩化カルシウム水溶液16.
0gを撹拌しながら添加し、次いで10重量%水酸化ナ
トリウム水溶液12.0gを撹拌しながら添加しSiO
2/ Na2Oモル比80とした。pHは7.48であ
った。CaOはSiO2に対して重量比110800p
pであった。
Comparative Example 5 Colloidal aqueous solution of activated silicic acid of Example 1 (SiO□3.5
6% by weight, pH 2,81) was placed in a glass container, and a 10% by weight calcium chloride aqueous solution 16.
0g of SiO
2/Na2O molar ratio was set to 80. pH was 7.48. CaO has a weight ratio of 110,800p to SiO2
It was p.

この混合液は上記の操作において、水酸化ナトリウム水
溶液添加開始時より20分後、粘度が増加し流動性が低
下した。この流動性の低下したペースト状物質を25℃
のステンレス製オートクレーブ容器に仕込み、次いで1
30℃で6時間加熱した。結果は、容器内にゲル状物質
が生成し、流動性を示さなかった。
In the above operation, the viscosity of this liquid mixture increased and the fluidity decreased 20 minutes after the start of addition of the aqueous sodium hydroxide solution. This paste-like material with reduced fluidity was heated at 25°C.
into a stainless steel autoclave container, then 1
Heated at 30°C for 6 hours. As a result, a gel-like substance was formed in the container and showed no fluidity.

実施例10 実施例1て得られたSiO2濃度21重量%のアルカリ
性の水性シリカゾル100gと、比較例1で得られたS
iO□濃度219重量%のアルカリ性の水性シリカゾル
100gとを混合し、得られた混合物を密閉下室部に放
置したが、6ケ月以上安定であった。
Example 10 100 g of alkaline aqueous silica sol with SiO2 concentration of 21% by weight obtained in Example 1 and S obtained in Comparative Example 1
It was mixed with 100 g of alkaline aqueous silica sol having an iO□ concentration of 219% by weight, and the resulting mixture was left in a sealed lower chamber, but it remained stable for more than 6 months.

実施例11 市販のJISB号ナトツナトリウム水ガラス02/Na
2Oモル比322、SiO□含有率285重量%)に純
水を加えて、SiO□濃度33重量%の珪酸ナトリウム
水溶液を得た。別途用意された商品名アンバーライト1
20Bの陽イオン交換樹脂充填のカラムに、上記珪酸ナ
トリウム水溶液を通すことにより、SiO□濃度3.2
重量%、pH2,9]、電導風667μS/cmの活性
珪酸のコロイド水溶液を得た。この液には、Aj220
3とFe2O3が合計67ppm残留していた。上記活
性珪酸のコロイド水溶液2000 gをガラス製容器に
投入し、次いで、10重量%の水酸化すl−IJウム水
溶液1.1gを撹拌下に室温で添加し、10分間撹拌を
続けた。活性珪酸のコロイド水溶液は、[]H4,15
であった。
Example 11 Commercially available JISB No. Natotsu sodium water glass 02/Na
Pure water was added to the mixture (2O molar ratio: 322, SiO□ content: 285% by weight) to obtain a sodium silicate aqueous solution having an SiO□ concentration of 33% by weight. Separately prepared product name: Amberlight 1
By passing the above sodium silicate aqueous solution through a column packed with a 20B cation exchange resin, the SiO□ concentration was 3.2.
A colloidal aqueous solution of activated silicic acid with a conductivity of 667 μS/cm and a pH of 2.9] was obtained. This liquid contains Aj220
A total of 67 ppm of 3 and Fe2O3 remained. 2000 g of the above colloidal aqueous solution of activated silicic acid was put into a glass container, and then 1.1 g of a 10% by weight aqueous solution of sulfur-IJium hydroxide was added at room temperature with stirring, and stirring was continued for 10 minutes. The colloidal aqueous solution of activated silicic acid is []H4,15
Met.

次いて10重量%の硝酸カルシウム水溶液12.1gを
撹拌下に室温で添加し、10分後更に10重量%水酸化
ナトリウム水溶液13.1 gを撹拌下に室温で添加し
た。得られた混合液は、SiO23.18重量%、pH
8,08を示し、SiO□/Na2Oモル比60、Ca
O206ppmである。上記混合液を内容量25!のス
テンレス製オートクレーブ容器に仕込み、130℃て6
時間加熱処理を行なった。得られたシリカゾルは、電子
顕微鏡観察により、コロイダルシリカ粒子が細長い形状
を有することが判った。太さは、約10mμであり、長
さは60〜200  neLであった。又、動的光散乱
法によるコロイダルシリカの粒子径は74.9 mμで
あった。
Next, 12.1 g of a 10% by weight aqueous calcium nitrate solution was added at room temperature with stirring, and 10 minutes later, 13.1 g of a 10% by weight aqueous sodium hydroxide solution was added at room temperature while stirring. The obtained mixed liquid had SiO23.18% by weight and pH
8,08, SiO□/Na2O molar ratio 60, Ca
O206 ppm. The content of the above mixture is 25! Pour into a stainless steel autoclave container and heat at 130℃ for 6 hours.
Heat treatment was performed for a period of time. Electron microscopic observation revealed that the colloidal silica particles in the obtained silica sol had an elongated shape. The thickness was approximately 10 mμ, and the length was 60 to 200 neL. Further, the particle diameter of colloidal silica determined by dynamic light scattering method was 74.9 mμ.

又、BET法により算出したこのコロイダルシリカの粒
子径は、126mμであった。このゾルは5iO73,
18重量%を含有し、SiO2/Na2O滴定法モル比
93、pH9,90であり、ゲルの存在は認められなか
った。次いて上記細長い形状のシリカゾル薄液を限外濾
過装置により室温下で濃縮して、SiO2濃度205重
量%の濃縮シリカゾルを得た。得られたゾルは、比重1
132、pH9,59、粘度46.5cp、 SiO□
/Na2O滴定法モル比107 、 CaO013重量
%、 CCl258pp 、 SO439ppm 、 
NNO3489pp含有し、電導風は2610μS/c
mであった。濃縮によっても、シリカゾルの形状には変
化は認められなかった。この濃縮シリカゾルを密閉下6
0℃で保存したところ、1ケ月後でも安定であった。こ
のゾルをガラス板上に塗布し乾燥したところ、従来のゾ
ルを用いた場合よりも良好な被膜が形成された。
Further, the particle diameter of this colloidal silica calculated by the BET method was 126 mμ. This sol is 5iO73,
The content was 18% by weight, the SiO2/Na2O titration molar ratio was 93, the pH was 9.90, and no gel was observed. Next, the elongated silica sol thin liquid was concentrated at room temperature using an ultrafiltration device to obtain a concentrated silica sol having an SiO2 concentration of 205% by weight. The obtained sol has a specific gravity of 1
132, pH 9.59, viscosity 46.5 cp, SiO□
/Na2O titration molar ratio 107, CaO013% by weight, CCl258pp, SO439ppm,
Contains 3489pp of NNO, conductive wind is 2610μS/c
It was m. No change in the shape of the silica sol was observed even after concentration. This concentrated silica sol is sealed under 6
When stored at 0°C, it was stable even after one month. When this sol was applied onto a glass plate and dried, a better coating was formed than when a conventional sol was used.

実施例12 実施例11に用いられたものと同し活性珪酸のコロイド
水溶液(SiO□32重量%、pH2,91,電導風6
67μS/cm) 2000 gをガラス製容器に投入
し、次いで10重量%の水酸化す1〜リウム水溶液1.
2gを撹拌下に室温で添加し、1o分間撹拌を続けた。
Example 12 The same colloidal aqueous solution of activated silicic acid used in Example 11 (32% by weight of SiO□, pH 2.91, conductive air 6
67μS/cm) 2000 g was put into a glass container, and then a 10% by weight aqueous solution of 1-1 to 1-lium hydroxide was added.
2 g was added at room temperature under stirring and stirring was continued for 10 minutes.

活性珪酸のコロイド水溶液は、pH4,30であった。The colloidal aqueous solution of activated silicic acid had a pH of 4.30.

次いで10重量%の硝酸カルシウム水l容液11.7g
を撹拌下に室温で添加し、1o分後更に10重量%水酸
化ナトリウム水溶液13.0gを撹拌下に室温で添加し
た。得られた混合液は、SiO□3.18重量%、pl
(8゜14を示し、Sj、02/ Na2Oモル比60
、C:ao 200ppmである。上記混合液を内容量
25ρのステンレス製オートクレーブ容器に仕込み、 
170℃で1時間加熱処理を行なった。得られたシリカ
ゾルは、電子顕微鏡観察により、コロイダルシリカ粒子
が細長い形状を有することが判った。太さは、約]2m
μで、長さは60〜300mμであった。又、動的光散
乱法によるコロイダルシリカの粒子径は、117  +
+Bvであった。又、BET法により算出したこのコロ
イダルシリカの粒子径は14 mμであった。このゾル
はSiO23.18重量%を含有し、5lo2/Na2
o滴定法モル比103及びpH10,31であり、ゲル
の存在は認められなかった。次いで上記細長い形状のシ
リカゾル薄液を限外濾過装置により室温下で濃縮して、
SiO□10.0重量%の濃縮シリカゾルを得た。得ら
れたゾルは、比重1.061、pH10,06、粘度2
5cp、 SiO□/ Na2O滴定法モル比1.09
 、  CaOO,07重量%、 (J230ppm 
、 SSO419pp 、 NO3260ppm含有し
、電導風ば、1420μS/cmてあった。濃縮によっ
ても、シリカゾルの形状には変化は認められなかった。
Next, 11.7 g of 10% by weight calcium nitrate aqueous solution
was added at room temperature while stirring, and after 1 hour, 13.0 g of a 10% by weight aqueous sodium hydroxide solution was added at room temperature while stirring. The obtained mixed solution contained 3.18% by weight of SiO□, pl
(8°14, Sj, 02/Na2O molar ratio 60
, C: ao 200 ppm. Pour the above mixed solution into a stainless steel autoclave container with an internal capacity of 25ρ,
Heat treatment was performed at 170°C for 1 hour. Electron microscopic observation revealed that the colloidal silica particles in the obtained silica sol had an elongated shape. Thickness is approximately] 2m
μ, the length was 60-300 mμ. In addition, the particle size of colloidal silica determined by dynamic light scattering method is 117 +
It was +Bv. Further, the particle diameter of this colloidal silica calculated by the BET method was 14 mμ. This sol contains 3.18% by weight of SiO2 and 5lo2/Na2
o Titration method molar ratio was 103 and pH was 10.31, and no gel was observed. Next, the elongated silica sol thin liquid is concentrated at room temperature using an ultrafiltration device.
A concentrated silica sol containing 10.0% by weight of SiO□ was obtained. The obtained sol has a specific gravity of 1.061, a pH of 10.06, and a viscosity of 2.
5cp, SiO□/Na2O titration molar ratio 1.09
, CaOO, 07% by weight, (J230ppm
It contained 419 ppm of SSO, 260 ppm of NO, and the conductive wind was 1420 μS/cm. No change in the shape of the silica sol was observed even after concentration.

この濃縮シリカゾルを密閉下60℃で保存したところ、
1ケ月後でも安定であった。このゾルをガラス板上に塗
布し乾燥したところ、従来のゾルを用いた場合よりも良
好な被膜が形成された。
When this concentrated silica sol was stored at 60°C under closed conditions,
It remained stable even after one month. When this sol was applied onto a glass plate and dried, a better coating was formed than when a conventional sol was used.

実施例13 実施例11に用いられたものと同じ活性珪酸のコロイド
水溶液(SiO□3゜2重量%、pH2,91、電導度
667μS/cm)に純水を加えて、SiO□淵度1.
6重量%、pH2,90、電導度670μS/cmの活
性珪酸薄液を調製した。この活性珪酸薄液2000 g
をガラス製容器に投入し、次いて10重量%の水酸化ナ
トリウム水溶液1.0gを撹拌下に室温で添加し、10
分間撹拌を続けた。活性珪酸のコロイド水溶液は、I)
H4,IOであった。次いで10重量%の硝酸カルシウ
ム水溶液8.8gを撹拌下に室温で添加し、lO分後更
に10重量%水酸化ナトリウム水溶液7.89gを撹拌
下に室温で添加した。得られた混合液は、Si0□15
9重量%、pH7,84を示し、SiO□/ Na2O
モル比60、CaO150ppmである。上記混合液を
内容量25℃のステンレス製オートクレーブ容器に仕込
み、 130℃で6時間加熱処理を行なった。得られた
シリカゾルは、電子顕微鏡観察により、コロイダルシリ
カ粒子が細長い形状を有することが判った。太さは、約
10 mμで、長さは60〜250 mμであった。又
、動的光散乱法によるコロイダルシリカの粒子径は、8
98mμであった。又、BET法により算出したこのコ
ロイダルシリカの粒子径は128mμであった。このゾ
ルは5xO21,59重量%を有し、SiO2/ Na
2O滴定法モル比95及びpH9,47であり、ゲルの
存在は認められなかった。
Example 13 Pure water was added to the same colloidal aqueous solution of activated silicic acid (SiO□3°2% by weight, pH 2.91, electrical conductivity 667 μS/cm) used in Example 11, and the SiO□ depth was 1.
An activated silicic acid thin solution having a concentration of 6% by weight, a pH of 2.90, and an electrical conductivity of 670 μS/cm was prepared. 2000 g of this activated silicic acid thin liquid
was put into a glass container, and then 1.0 g of a 10% by weight aqueous sodium hydroxide solution was added at room temperature with stirring.
Stirring was continued for a minute. The colloidal aqueous solution of activated silicic acid is I)
It was H4, IO. Then, 8.8 g of a 10% by weight aqueous calcium nitrate solution was added at room temperature with stirring, and after 10 minutes, an additional 7.89 g of a 10% by weight aqueous sodium hydroxide solution was added at room temperature while stirring. The obtained mixed liquid is Si0□15
9% by weight, pH 7,84, SiO□/Na2O
The molar ratio is 60, and CaO is 150 ppm. The above mixed solution was charged into a stainless steel autoclave container with an internal capacity of 25°C, and heat-treated at 130°C for 6 hours. Electron microscopic observation revealed that the colloidal silica particles in the obtained silica sol had an elongated shape. The thickness was approximately 10 mμ, and the length was 60 to 250 mμ. In addition, the particle size of colloidal silica determined by dynamic light scattering method is 8
It was 98 mμ. Further, the particle diameter of this colloidal silica calculated by the BET method was 128 mμ. This sol has 5xO21,59% by weight, SiO2/Na
The 2O titration molar ratio was 95 and the pH was 9.47, and no gel was observed.

次いて上記細長い形状のシリカゾル薄液を限外濾過装置
により室温下で濃縮して、SiO210.1重量%の濃
縮シリカゾルを得た。得られたゾルは、比重1061、
pH9,16、粘度32cp、 5in2/Na2O滴
定法モル比110 、 CaOO,08重量%、 は2
7ppm 、 NO3290ppm、 SO412pp
m含有し、電導度は、1200μS/cmてあった。濃
縮によっても、シリカゾルの形状には変化は認められな
かった。この濃縮シリカゾルを密閉下60 ’Cて保存
したところ、1ケ月後でも安定であった。このゾルをガ
ラス板上に塗布し乾燥したところ、従来のゾルを用いた
場合よりも良好な被膜が形成された。
Next, the elongated silica sol thin liquid was concentrated at room temperature using an ultrafiltration device to obtain a concentrated silica sol containing 10.1% by weight of SiO2. The obtained sol has a specific gravity of 1061,
pH 9.16, viscosity 32cp, 5in2/Na2O titration molar ratio 110, CaOO, 08% by weight, is 2
7ppm, NO3290ppm, SO412ppm
The conductivity was 1200 μS/cm. No change in the shape of the silica sol was observed even after concentration. When this concentrated silica sol was stored at 60'C under closed conditions, it was stable even after one month. When this sol was applied onto a glass plate and dried, a better coating was formed than when a conventional sol was used.

比較例6 実施例11に記載のものと同し活性珪酸のコロイド水溶
液(SiO23,2重量%、pH2,91、電導度66
7μS/cm)に純水を加えて、SiO2濃度20重量
%、pH2,90、電導度820 g S/arIlの
活性珪酸薄液を調製した。この活性珪酸薄液2000 
gをガラス製容器に投入し、次いで10重量%の水酸化
ナトリウム水溶液1.0gを撹拌下に室温で添加し、1
0分間撹拌を続けた。活性珪酸のコロイド水溶液のpH
は432てあった。次いで10重量%の硝酸カルシウム
水溶液30gを撹拌下に室温で添加し、10分後更に1
0重量%水酸化ナトリウム水溶液789gを撹拌下に室
温で添加した。得られた混合液は、SiO21.98重
量%、p+(7,42を示し、SiO2/ Na2Oモ
ル比60、(:ao 500ppmである。
Comparative Example 6 The same colloidal aqueous solution of activated silicic acid as described in Example 11 (SiO2 3.2% by weight, pH 2.91, conductivity 66)
A thin active silicic acid solution having a SiO2 concentration of 20% by weight, a pH of 2.90, and an electrical conductivity of 820 g S/arIl was prepared by adding pure water to the solution (7 μS/cm). This activated silicic acid thin liquid 2000
g was put into a glass container, then 1.0 g of a 10% by weight aqueous sodium hydroxide solution was added at room temperature with stirring.
Stirring was continued for 0 minutes. pH of colloidal aqueous solution of activated silicic acid
There were 432. Next, 30 g of a 10% by weight aqueous calcium nitrate solution was added at room temperature with stirring, and after 10 minutes, an additional 1 g of calcium nitrate aqueous solution was added with stirring.
789 g of 0% by weight aqueous sodium hydroxide solution was added at room temperature with stirring. The resulting mixture showed SiO2 1.98% by weight, p+(7,42), SiO2/Na2O molar ratio 60, (:ao 500 ppm).

上記混合液を内容量25f2のステンレス製オートクレ
ーブ容器に仕込み、 130℃で6時間加熱処理を行な
った。結果は容器内にゲル状物質が生成し、流動性を示
さなかった6 実施例14 市販のアルカリ性水性ゾル(5eares法による粒子
径5ミリミクロン、SiO2濃度20重量%、比重11
29、pH9,4、粘度4 cp)を水素型陽イオン交
換樹脂で処理することにより得られた酸性シリカゾルに
純水を加えて、SiO□濃度3.2重量%、pH3,2
7の酸性シリカゾルを調製した。この酸性シリカゾル2
000 gを内容量3℃のガラス製容器に投入し、次い
て10重量%の硝酸カルシウム水溶液129gを撹拌下
に添加し、室温下で10分間撹拌した。更に10重量%
の水酸化ナトリウム水溶液142gを撹拌下に室温で添
加し、10分間撹拌を続けた。得られた混合液は、Si
0□316重量%、pH9,3を示し、SiO2/Na
2Oモル比60、Ca0215ppmである。次に上記
混合液を内容量2.5℃のステンレス製オートクレーブ
容器に仕込み、 130℃で6時間加熱処理を行った。
The above mixed solution was charged into a stainless steel autoclave container with an internal capacity of 25 f2, and heat-treated at 130° C. for 6 hours. As a result, a gel-like substance was formed in the container and showed no fluidity.6 Example 14 Commercially available alkaline aqueous sol (particle size 5 millimicrons by 5ears method, SiO2 concentration 20% by weight, specific gravity 11)
29, pH 9.4, viscosity 4 cp) with a hydrogen-type cation exchange resin, pure water was added to the acidic silica sol, and SiO□ concentration was 3.2% by weight, pH 3.2.
Acidic silica sol No. 7 was prepared. This acidic silica sol 2
000 g was put into a glass container having an inner capacity of 3° C., and then 129 g of a 10% by weight aqueous calcium nitrate solution was added with stirring, and the mixture was stirred at room temperature for 10 minutes. Further 10% by weight
142 g of an aqueous sodium hydroxide solution was added at room temperature with stirring, and stirring was continued for 10 minutes. The obtained mixed liquid is Si
0□316% by weight, pH 9.3, SiO2/Na
The 2O molar ratio is 60, and the Ca02 is 15 ppm. Next, the above-mentioned mixed solution was charged into a stainless steel autoclave container having an internal capacity of 2.5°C, and heat-treated at 130°C for 6 hours.

得られたシリカゾルは、電子顕微鏡観察により、コロイ
ダルシリカ粒子が細長い形状を有することが判った。太
さは約10mμで、長さは50〜300mμであった。
Electron microscopic observation revealed that the colloidal silica particles in the obtained silica sol had an elongated shape. The thickness was about 10 mμ, and the length was 50 to 300 mμ.

又、動的光散乱法によるコロイダルシリカの粒子径は、
55 mμであった。又、BET法により算出したこの
コロイダルシリカの粒子径は123mμであった。添付
の図面第4図に、このゾルのコロイダルシリカ粒子の2
0万倍の電子顕微鏡による撮影写真を示す。このゾルは
SiO23.16重量%を含有し、Sif□/Na2O
滴定法モル比78及びpH9,6であり、ゲルの存在は
認められなかった。次いで上記細長い形状のシリカゾル
薄液を限外濾過装置により室温下で濃縮して、SiO□
濃度16重量%の濃縮シリカゾルを得た。得られたゾル
は、比重1100、p)+9.54、粘度72cp、 
SiO□/ Na2O滴定法モル比90.7、CaO0
11重量%、 112 2.8ppm 、 SO434
ppm 、 NNO3273pp含有し、電導度は20
10u 87cmであった。濃縮によっても、シリカゾ
ルの形状には変化は認められなかった。この濃縮シリカ
ゾルを密閉下60℃で保存したところ、1ケ月後でも安
定であった。このゾルをガラス板上に塗布し乾燥したと
ころ、従来のゾルを用いた場合よりも良好な被膜が形成
された。
In addition, the particle size of colloidal silica determined by dynamic light scattering method is
It was 55 mμ. Further, the particle diameter of this colloidal silica calculated by the BET method was 123 mμ. Figure 4 of the accompanying drawings shows two types of colloidal silica particles in this sol.
A photograph taken with an electron microscope at a magnification of 00,000 times is shown. This sol contains 3.16% by weight of SiO2, Sif□/Na2O
The titration molar ratio was 78 and the pH was 9.6, and no gel was observed. Next, the elongated silica sol thin liquid was concentrated at room temperature using an ultrafiltration device to form SiO□
A concentrated silica sol with a concentration of 16% by weight was obtained. The obtained sol had a specific gravity of 1100, p)+9.54, and a viscosity of 72 cp.
SiO□/Na2O titration molar ratio 90.7, CaO0
11% by weight, 112 2.8ppm, SO434
ppm, contains 273pp of NNO, and has an electrical conductivity of 20
It was 10u 87cm. No change in the shape of the silica sol was observed even after concentration. When this concentrated silica sol was stored at 60° C. under closed conditions, it was stable even after one month. When this sol was applied onto a glass plate and dried, a better coating was formed than when a conventional sol was used.

実施例15 球状コロイダルシリカからなる市販の酸性水性ゾル(B
ET法による粒子径12ミリミクロン、5iO320重
量%、比重1129、pH2,9、粘度2 cp)に純
水を加えて、SiO□濃度3.2重量%、pH3,65
の酸性シリカゾル薄液を調製した。この酸性シリカゾル
薄液2000 gを内容量3ρのガラス製容器に投入し
、次いで10重量%の硝酸カルシウム水溶液11.7g
を撹拌下に添加し、室温下で10分間撹拌した。更に1
0重量%の水酸化ナトリウム水溶液142gを撹拌下に
室温で添加゛し、10分間撹拌を続けた。得られた混合
液は、Si0□316重量%、pH10,47を示し、
SiO3/Na2Oモル比60、Ca0200ppmで
ある。次に上記混合液を内容量25f2のステンレス製
オートクレーブ容器に仕込み、 130℃て6時間加熱
処理を行った。
Example 15 Commercially available acidic aqueous sol (B
By adding pure water to the particle size of 12 millimicrons, 5iO320% by weight, specific gravity 1129, pH 2.9, viscosity 2 cp) obtained by ET method, SiO□ concentration 3.2% by weight, pH 3.65
A thin acidic silica sol solution was prepared. 2000 g of this acidic silica sol thin liquid was put into a glass container with an internal capacity of 3ρ, and then 11.7 g of a 10% by weight calcium nitrate aqueous solution was added.
was added under stirring, and the mixture was stirred at room temperature for 10 minutes. 1 more
142 g of 0% by weight aqueous sodium hydroxide solution was added at room temperature with stirring, and stirring was continued for 10 minutes. The obtained mixed liquid showed Si0□316% by weight and pH 10.47,
The SiO3/Na2O molar ratio is 60 and Ca0200 ppm. Next, the above mixed solution was charged into a stainless steel autoclave container with an internal capacity of 25 f2, and heat-treated at 130° C. for 6 hours.

得られたシリカゾルは、電子顕微鏡観察により、コロイ
ダルシリカ粒子が細長い形状を有す7す ることか判った。太さは15mμで、長さは50〜30
0mμであった。又、動的光散乱法によるコロイダルシ
リカの粒子径は146mμであった。
The obtained silica sol was found to have colloidal silica particles having an elongated shape by electron microscopic observation. Thickness is 15mmμ, length is 50~30mm
It was 0 mμ. Further, the particle diameter of the colloidal silica determined by dynamic light scattering method was 146 mμ.

又、BET法により算出したこのコロイダルシリカの粒
子径は147mμであった。このゾルはSiO□3.1
6重量%を含有し、SiO2/ Na2O滴定法モル比
70、pH10,18であり、ゲルの存在は認められな
かった。次いで上記細長い形状のシリカゾル薄液を限外
濾過装置により室温下で濃縮して、SiO2濃度10.
2重量%の濃縮シリカゾルを得た。得られたゾルは、比
重1063、pH9,98、粘度42cp、 SiO□
/ Na2O滴定法モル比89、Ca00.07重量%
、Cj23 ppm 、 SO434ppm 、 NN
O3273pp 、電導度は1900μS/cmてあっ
た。濃縮によってもシリカゾルの形状には変化は認めら
れなかった。この濃縮シリカゾルを密閉下60℃で保存
したところ、1ケ月後でも安定であった。
Further, the particle diameter of this colloidal silica calculated by the BET method was 147 mμ. This sol is SiO□3.1
The content was 6% by weight, the SiO2/Na2O titration molar ratio was 70, the pH was 10.18, and no gel was observed. Next, the elongated silica sol thin liquid was concentrated at room temperature using an ultrafiltration device to obtain an SiO2 concentration of 10.
A 2% by weight concentrated silica sol was obtained. The obtained sol had a specific gravity of 1063, a pH of 9.98, a viscosity of 42 cp, and a SiO□
/ Na2O titration method molar ratio 89, Ca00.07% by weight
, Cj23ppm, SO434ppm, NN
O3273pp and conductivity was 1900μS/cm. No change in the shape of the silica sol was observed even after concentration. When this concentrated silica sol was stored at 60° C. under closed conditions, it was stable even after one month.

このゾルをガラス板上に塗布し乾燥したところ、従来の
ゾルを用いた場合よりも良好な被膜が形成された。
When this sol was applied onto a glass plate and dried, a better coating was formed than when a conventional sol was used.

実施例16 球状コロイダルシリカからなる市販のアルカリ性水性ゾ
ル(BET法による粒子径8ミリミクロン、SiO23
0重量%、pH9,9、比重1.21、粘度5 cp)
を水素型陽イオン交換樹脂で処理することにより得られ
た酸性水性シリカゾルに純水を加えて、SiO2濃度3
.6重量%、pH3,52の酸性水性シリカゾル薄液を
調製した。この酸性シリカゾル薄液2000 gを内容
量3℃のガラス製容器に投入し、次いて10重量%の塩
化マグネシウム水溶′a、9.0gを撹拌下に添加し、
室温下で10分間撹拌した。更に10重量%の水酸化ナ
トリウム水溶液137gを撹拌下に室温で添加し、10
分間撹拌を続けた。得られた混合液は、5i(h3.5
7重量%、pH9,83を示し、SiO2/ Na2O
モル比70゜Mg0190ppmである。次に上記混合
液を内容量3℃のステンレス製オートクレーブ容器に仕
込み、 140℃て10時間加熱処理を行った。得られ
たシリカゾルは、電子顕微鏡観察により、コロイダルシ
リカ粒子が細長い形状を有することが判った。太さは約
11mμで、長さは40〜250mμであった。又、動
的光散乱法によるコロイダルシリカの粒子径は、88 
mμであった。又、BET法により算出したこのコロイ
ダルシリカの粒子径は129mμであった。このゾルは
SiO□3.57重量%を含有し、SiO2/ Naz
O滴定法モル比81、 pH9,83であり、ゲルの存
在は認められなかった。次いで上記細長い形状のシリカ
ゾル薄液を限外濾過装置により室温下で濃縮して、Si
O□濃度15.6重量%の濃縮シリカゾルを得た。
Example 16 Commercially available alkaline aqueous sol made of spherical colloidal silica (particle size 8 mm by BET method, SiO23
0% by weight, pH 9.9, specific gravity 1.21, viscosity 5 cp)
Pure water was added to the acidic aqueous silica sol obtained by treating it with a hydrogen-type cation exchange resin, and the SiO2 concentration was 3.
.. A thin acidic aqueous silica sol solution containing 6% by weight and pH 3.52 was prepared. 2000 g of this acidic silica sol thin liquid was put into a glass container with a content of 3°C, and then 9.0 g of a 10% by weight aqueous solution of magnesium chloride 'a was added under stirring.
The mixture was stirred at room temperature for 10 minutes. Furthermore, 137 g of a 10% by weight aqueous sodium hydroxide solution was added at room temperature with stirring, and 10% by weight was added at room temperature.
Stirring was continued for a minute. The obtained mixed liquid was 5i (h3.5
7% by weight, pH 9,83, SiO2/Na2O
The molar ratio is 70°Mg0190ppm. Next, the above-mentioned mixed solution was charged into a stainless steel autoclave container having an internal capacity of 3°C, and heat-treated at 140°C for 10 hours. Electron microscopic observation revealed that the colloidal silica particles in the obtained silica sol had an elongated shape. The thickness was about 11 mμ, and the length was 40 to 250 mμ. In addition, the particle size of colloidal silica determined by dynamic light scattering method is 88
It was mμ. Further, the particle diameter of this colloidal silica calculated by the BET method was 129 mμ. This sol contains 3.57% by weight of SiO□, and SiO2/Naz
The molar ratio by O titration method was 81, the pH was 9.83, and no gel was observed. Next, the elongated silica sol thin liquid was concentrated at room temperature using an ultrafiltration device to obtain Si.
A concentrated silica sol with an O□ concentration of 15.6% by weight was obtained.

得られたゾルは、比重1098、pH9,70、粘度8
3cp、 SiO2/ Na2O滴定法モル比103、
MgO823ppm、(4171ppm 、 SO42
2ppm 、 NO34ppm含有し、電導度は209
5μS/cmであった。濃縮によってもシリカゾルの形
状には変化は認められなかった。この濃縮シリカゾルを
密閉下60℃で保存したところ、1ケ月後でも安定であ
った。
The obtained sol has a specific gravity of 1098, a pH of 9.70, and a viscosity of 8.
3cp, SiO2/Na2O titration molar ratio 103,
MgO823ppm, (4171ppm, SO42
Contains 2ppm, NO34ppm, and has an electrical conductivity of 209
It was 5μS/cm. No change in the shape of the silica sol was observed even after concentration. When this concentrated silica sol was stored at 60° C. under closed conditions, it was stable even after one month.

このゾルをガラス板上に塗布し乾燥したところ、従来の
ゾルを用いた場合よりも良好な被膜が形成された。
When this sol was applied onto a glass plate and dried, a better coating was formed than when a conventional sol was used.

実施例17 実施例14で用いられたものと同し市販のアルカリ性水
性ゾルを水素型陽イオン交換樹脂で処理することにより
得られた酸性水性シリカゾルに純水を加えて、SiO2
濃度32重量%、pH3,27の酸性シリカゾル薄液を
調製した。この酸性シリカゾル薄>=2000gを内容
量3℃のガラス製容器に投入し、次いて10重量%塩化
カルシウム水溶液4.0gを撹拌下に添加し、室温下で
10分間撹拌し続けた。更にモノエタノールアミン24
4gを撹拌下に室温で添加し、10分間撹拌を続けた。
Example 17 Pure water was added to the acidic aqueous silica sol obtained by treating the same commercially available alkaline aqueous sol used in Example 14 with a hydrogen-type cation exchange resin to form SiO2.
A thin acidic silica sol solution having a concentration of 32% by weight and a pH of 3.27 was prepared. This acidic silica sol thin >=2000 g was put into a glass container with an inner capacity of 3° C., and then 4.0 g of a 10% by weight calcium chloride aqueous solution was added with stirring, and stirring was continued for 10 minutes at room temperature. Furthermore, monoethanolamine 24
4 g was added at room temperature under stirring and stirring was continued for 10 minutes.

得られた混合液は、SiO23.19重量%、pH9,
35を示し、SiO□/モノエタノールアミンモル比2
7、Ca01100ppである。次に上記混合液を内容
量3f2のステンレス製オートクレーブ容器に仕込み、
これを135℃で10時間加熱処理を行った。得られた
シリカゾルは、電子顕微鏡観察により、コロイダルシリ
カ粒子が細長い形状を有することが判った。太さは10
〜15 mu、で、長さは50〜200mμであった。
The obtained mixed solution contained 3.19% by weight of SiO2, pH 9,
35, SiO□/monoethanolamine molar ratio 2
7. Ca01100pp. Next, the above mixed solution was charged into a stainless steel autoclave container with an internal capacity of 3 f2,
This was heat-treated at 135° C. for 10 hours. Electron microscopic observation revealed that the colloidal silica particles in the obtained silica sol had an elongated shape. Thickness is 10
~15 mu, and the length was 50-200 mμ.

又、動的光散乱法によるコロイダルシリカの粒子径は、
54.0 +nμであった。又、BET法により算出し
たこのコロイダルシリカの粒子径は10.3 mμであ
った。このゾルはSiO□3.19重量%を含有し、S
iO2/モノ工タノールアミン滴定法モル比36及びp
H9,45であり、ゲルの存在は認められなかった。次
いで上記細長い形状のシリカゾル薄液を限外濾過装置に
より室温下で濃縮して、SiO2濃度15.2重量%の
濃縮シリカゾルを得た。得られたゾル は、比重1.098、pH9,21、粘度E3 cp、
 SiO2/モノエタノールアミン滴定法モル比47、
C,a0470ppm、  Cj23ppm 、 SO
435ppm 、 NO3290ppm含有し、電導度
は1300μS/cmであった。濃縮によっても、シリ
カゾルの形状には変化は認められなかった。この濃縮シ
リカゾルを密閉下60℃で保存したところ、1ケ月後で
も安定であった。このゾルをガラス板上に塗布し乾燥し
たところ、従来のゾルを用いた場合よりも良好な被膜が
形成された。
In addition, the particle size of colloidal silica determined by dynamic light scattering method is
It was 54.0 +nμ. Further, the particle diameter of this colloidal silica calculated by the BET method was 10.3 mμ. This sol contains 3.19% by weight of SiO□, and S
iO2/monoethanolamine titration molar ratio 36 and p
H9.45, and no gel was observed. Next, the elongated silica sol thin liquid was concentrated at room temperature using an ultrafiltration device to obtain a concentrated silica sol having an SiO2 concentration of 15.2% by weight. The obtained sol had a specific gravity of 1.098, a pH of 9.21, a viscosity of E3 cp,
SiO2/monoethanolamine titration molar ratio 47,
C, a0470ppm, Cj23ppm, SO
It contained 435 ppm of NO3 and 290 ppm of NO3, and the electrical conductivity was 1300 μS/cm. No change in the shape of the silica sol was observed even after concentration. When this concentrated silica sol was stored at 60° C. under closed conditions, it was stable even after one month. When this sol was applied onto a glass plate and dried, a better coating was formed than when a conventional sol was used.

実施例18 実施例15て用いられたものと同じ市販の酸性水性シリ
カゾルに純水を加えて、SiO□濃度10重量%、pH
3,1の酸性シリカゾル希釈液を調製した。この酸性シ
リカゾル希釈液2000 gを内容量3J2のガラス製
容器に投入し、次いで10重量%の硝酸カルシウム23
4gを撹拌下に添加し、室温下で10分間撹拌し続けた
。更に10重量%の水酸化ナトリウム水溶液262gを
撹拌下に室温で添加し、10分間撹拌を続けた。得られ
た混合液は、SiO29.76重量%、pH9,79を
示し、SiO□/Na2Oモル比100、CaO400
ppmである。次に上記混合液を内容量25f2のステ
ンレス製オートクレーブ容器に仕込み、200℃で6時
間加熱処理を行った。得られたシリカゾルは、電子顕微
鏡観察により、コロイダルシリカ粒子が細長い形状を有
することが判った。太さは約20 mμで、長さは10
0〜400mμであった。又、動的光散乱法によるコロ
イダルシリカの粒子径は、203mILであった。又、
BET法により算出したこのコロイダルシリカの粒子径
は26.4 mμであった。このゾルは5iO79,7
6重量%を含有し、比重1,061、pH10,22、
粘度12cp、 Sin□/ Na2O滴定法モル比1
17、CaO400ppm、  Cl23 ppm、S
O47ppm 、 NO3880ppm含有し、電導度
は2170μS/cmてあり、ゲルの存在は認められな
かった。この濃縮シリカゾルを密閉下60℃て保存した
ところ、1ケ月後でも安定であった。このゾルをガラス
板上に塗布し乾燥したところ、従来のゾルを用いた場合
よりも良好な被膜が形成された。
Example 18 Pure water was added to the same commercially available acidic aqueous silica sol used in Example 15 to give an SiO□ concentration of 10% by weight and a pH of
A 3.1 acidic silica sol dilution was prepared. 2000 g of this acidic silica sol diluted solution was put into a glass container with an internal capacity of 3J2, and then 10% by weight of calcium nitrate 23
4 g was added under stirring and stirring was continued for 10 minutes at room temperature. Further, 262 g of a 10% by weight aqueous sodium hydroxide solution was added at room temperature with stirring, and stirring was continued for 10 minutes. The obtained mixed liquid showed SiO29.76% by weight, pH 9.79, SiO□/Na2O molar ratio 100, CaO400
It is ppm. Next, the above-mentioned liquid mixture was charged into a stainless steel autoclave container with an internal capacity of 25 f2, and heat-treated at 200° C. for 6 hours. Electron microscopic observation revealed that the colloidal silica particles in the obtained silica sol had an elongated shape. The thickness is about 20 mμ and the length is 10
It was 0 to 400 mμ. Further, the particle size of colloidal silica determined by dynamic light scattering method was 203 mIL. or,
The particle diameter of this colloidal silica calculated by the BET method was 26.4 mμ. This sol is 5iO79,7
Contains 6% by weight, specific gravity 1,061, pH 10.22,
Viscosity 12cp, Sin□/Na2O titration molar ratio 1
17, CaO400ppm, Cl23ppm, S
It contained 47 ppm of O and 3,880 ppm of NO, the conductivity was 2170 μS/cm, and no gel was observed. When this concentrated silica sol was stored at 60° C. under closed conditions, it was stable even after one month. When this sol was applied onto a glass plate and dried, a better coating was formed than when a conventional sol was used.

比較例7 球状のコロイダルシリカからなる市販の酸性水性シリカ
ゾル(平均粒子径40ミリミクロン、5iO620重量
%、比重1.120、pH3,0、粘度2 cp)に水
を加えて、SiO2濃度3.2重量%、pH31の酸性
シリカゾル薄液を調製した。この酸性シリカゾル薄液2
000 gを内容量3j2のガラス製容器に投入し、次
いで10重量%の硝酸カルシウム水溶液10.5 gを
撹拌下に添加し、室温下で10分撹拌した。更に10重
量%水酸化ナトリウム水溶液122gを撹拌下に室温で
添加し、10分間撹拌を続けた。得られた混合液は、S
iO23.16重量%、pH9,3を示し、SiO2/
Na2oモル比7o、Ca0180ppmである。次に
上記混合液を内容量25℃のステンレス製オートクレー
ブ容器に仕込み、 130℃で6時間加熱処理を行なっ
た。得られたシリカゾルは電子顕微鏡観察の結果、コロ
イダルシリカ粒子の形状は、球状粒子が連接した形状で
あり、一様な太さの伸長を有していなかった。
Comparative Example 7 Water was added to a commercially available acidic aqueous silica sol made of spherical colloidal silica (average particle size 40 millimicrons, 5iO6 20% by weight, specific gravity 1.120, pH 3.0, viscosity 2 cp) to obtain an SiO2 concentration of 3.2. A thin acidic silica sol solution having a pH of 31% by weight was prepared. This acidic silica sol thin liquid 2
000 g was put into a glass container with an internal capacity of 3j2, and then 10.5 g of a 10% by weight aqueous calcium nitrate solution was added with stirring, and the mixture was stirred at room temperature for 10 minutes. Furthermore, 122 g of a 10% by weight aqueous sodium hydroxide solution was added at room temperature with stirring, and stirring was continued for 10 minutes. The obtained mixed liquid is S
It shows 3.16% by weight of iO2, pH 9.3, and SiO2/
The Na2O molar ratio is 70, and the Ca0 is 180 ppm. Next, the above-mentioned mixed solution was charged into a stainless steel autoclave container having an internal capacity of 25°C, and heat-treated at 130°C for 6 hours. As a result of electron microscopic observation of the obtained silica sol, it was found that the shape of the colloidal silica particles was a shape in which spherical particles were connected, and did not have elongation of uniform thickness.

比較例8 実施例14て用いられたものと同じ市販の酸性水性シリ
カゾルを限外濾過法により濃縮したシリカゾル(BET
法による粒子径12ミリミクロン、5iO230重量%
、比重1.1208、pH2,9、粘度2、5cp) 
2000 gを内容量3f2のガラス製容器に投入し、
次いで10重量%の硝酸カルシウム水溶液879gを撹
拌下に添加し、室温で1o分撹拌した。更に10重量%
水酸化ナトリウム水溶液80gを撹拌下に室温で添加し
、10分間撹拌を続けた。得られた混合液は、5x02
27.7重量%、p++9.85を示し、SiO2/ 
Na2Oモル比100、CaO1500ppmである。
Comparative Example 8 The same commercially available acidic aqueous silica sol used in Example 14 was concentrated using an ultrafiltration method (BET
Particle size 12 millimicrons by method, 30% by weight of 5iO2
, specific gravity 1.1208, pH 2.9, viscosity 2.5 cp)
Pour 2000 g into a glass container with an internal capacity of 3 f2,
Next, 879 g of a 10% by weight aqueous calcium nitrate solution was added with stirring, and the mixture was stirred for 10 minutes at room temperature. Further 10% by weight
80 g of aqueous sodium hydroxide solution was added at room temperature with stirring, and stirring was continued for 10 minutes. The resulting mixture is 5x02
27.7% by weight, p++9.85, SiO2/
The Na2O molar ratio is 100, and the CaO is 1500 ppm.

次に上記混合液を内容量25eのステンレス製オートク
レーブ容器に仕込み、130℃で6時間加熱処理を行な
った。結果は、容器内にゲル状物が生成し、流動性を示
さなかった。
Next, the above-mentioned mixed solution was charged into a stainless steel autoclave container having an internal capacity of 25e, and heat-treated at 130° C. for 6 hours. As a result, a gel-like substance was formed in the container and did not exhibit fluidity.

(発明の効果) 本発明のゾルは、従来のシリカゾルに比べ、種々の用途
において改良をもたらす。組成物をつくるために従来の
シリカゾルに加えられた成分は、本発明のシリカゾルに
対しても加えることができ、得られた新規な組成物は、
従来の組成物よりも増粘乃至ゲル化性が高い。混用され
る成分の例としては、前記の如(従来から知られている
球状シリカゾル、解膠法による非球状シリカゾル、アル
カリ金属シリケート、アルキルシリケートの加水分解液
、アルミナゾル、その他の金属酸化物ゾル、水溶性樹脂
、樹脂エマルジョン、増粘剤、消泡剤、界面活性剤、耐
火物粉末、金属粉末、ベントナイト、顔料、カップリン
グ剤等が挙げられる。
(Effects of the Invention) The sol of the present invention provides improvements in various uses compared to conventional silica sols. The ingredients added to the conventional silica sol to make the composition can also be added to the silica sol of the present invention, and the resulting new composition is
It has higher thickening and gelling properties than conventional compositions. Examples of the components to be mixed include the above-mentioned (conventionally known spherical silica sol, non-spherical silica sol produced by peptization method, alkali metal silicate, hydrolyzed solution of alkyl silicate, alumina sol, other metal oxide sol, Examples include water-soluble resins, resin emulsions, thickeners, antifoaming agents, surfactants, refractory powders, metal powders, bentonites, pigments, and coupling agents.

従来から用いられている種々の塗料成分と共に本発明の
シリカゾルを配合することにより、無機塗料、耐熱塗料
、防食塗料、無機−有機複合塗料等を調製することがで
きる。本発明のシリカゾルを含有する塗料から形成され
た乾燥塗膜にはピンホールが少なく、クラックも殆ど見
られない。この塗膜は、又、平滑性を有し、衝撃力を吸
収し易い柔らかさがあり、基材との密着性、保水性、帯
電防止性のいずれも良好である。本発明のシリカゾルを
含有する無機塗料から形成された焼成塗膜は良好な耐熱
性を示す。
By blending the silica sol of the present invention with various conventionally used paint components, inorganic paints, heat-resistant paints, anticorrosion paints, inorganic-organic composite paints, etc. can be prepared. A dried coating film formed from a paint containing the silica sol of the present invention has few pinholes and almost no cracks. This coating film also has smoothness, is soft enough to easily absorb impact force, and has good adhesion to the substrate, water retention, and antistatic properties. A fired coating film formed from an inorganic paint containing the silica sol of the present invention exhibits good heat resistance.

本発明のシリカゾルに種々の接着剤成分を配合すること
により、無機接着剤、耐熱接着剤、無機−有機複合接着
剤等を調製することができる。
By blending various adhesive components with the silica sol of the present invention, inorganic adhesives, heat-resistant adhesives, inorganic-organic composite adhesives, etc. can be prepared.

本発明のシリカゾルを含有するこれら塗料、接着剤等は
、種々の基材、例えば、ガラス、セラミックス、金属、
プラスチックス、木材、繊維、紙等の表面に適用するこ
とができる。
These paints, adhesives, etc. containing the silica sol of the present invention can be applied to various base materials such as glass, ceramics, metals,
It can be applied to surfaces such as plastics, wood, textiles, and paper.

本発明のシリカゾルは、通常のガラス繊維、セラミック
繊維、その他の無機繊維等のフェルト状物に含浸させる
ことができる。また、これらの短繊維と本発明のシリカ
ゾルとを混合することもできる。そして、この本発明の
シリカゾルが含浸されたフェルト状物を乾燥すると、強
度の高いフェルト状物が得られる。また、上記短繊維と
本発明のシリカゾルの混合物をシート状、マット状、そ
の他の形状に成形した後乾燥すると、やはり強度の高い
シート、マット、成形品等が得られる。これら得られた
フェルト状物、シート、マット、成形品等の表面には、
従来のシリカゾルを同様に用いたときに見られる表面の
粉立ちが現出しない。従って、これら無機繊維等に共通
に結合剤として用いられた本発明のシリカゾルのコロイ
ダルシリカ粒子は、乾燥の際に内部からこれら無機繊維
成形体の表面への移行が殆ど起らないことを示している
。これら乾燥された成形品は、改良品として耐熱性断熱
材、その他の用途に提供される。
The silica sol of the present invention can be impregnated into felt materials such as ordinary glass fibers, ceramic fibers, and other inorganic fibers. Moreover, these short fibers and the silica sol of the present invention can also be mixed. When the felt material impregnated with the silica sol of the present invention is dried, a felt material with high strength can be obtained. Further, when a mixture of the short fibers and the silica sol of the present invention is formed into a sheet, mat, or other shape and then dried, a sheet, mat, molded article, etc. with high strength can also be obtained. On the surface of these felt-like materials, sheets, mats, molded products, etc.,
Powdering on the surface, which is seen when conventional silica sol is used in the same way, does not appear. Therefore, it has been shown that the colloidal silica particles of the silica sol of the present invention, which are commonly used as a binder for these inorganic fibers, hardly migrate from the inside to the surface of these inorganic fiber molded bodies during drying. There is. These dried molded products are provided as improved products for heat-resistant insulation materials and other uses.

本発明のシリカゾルは、多孔質組織を有する基材の表面
処理剤として用いることもできる。
The silica sol of the present invention can also be used as a surface treatment agent for substrates having a porous structure.

例えば、コンクリート、モルタル、セメント、石膏、粘
土等の硬化物表面に適用すると、このシリカゾルはその
表面から内部へ含浸し、乾燥の後には改良された表面層
が得られる。天然及び合成の繊維、それらの繊維製品、
紙、木材等へも表面処理剤として用いることができる。
For example, when applied to the surface of a hardened material such as concrete, mortar, cement, plaster, clay, etc., this silica sol impregnates from the surface into the interior, and after drying an improved surface layer is obtained. natural and synthetic fibers, their textile products,
It can also be used as a surface treatment agent for paper, wood, etc.

その他鋳物の封孔処理剤としても用いられる。It is also used as a sealing agent for other castings.

本発明のシリカゾルと耐火物粉末を含有するスラリーか
ら金属鋳造用の鋳型をつくることができる。このスラリ
ーは、乾燥によるゲル化速度が速いので鋳型の生産能率
を高め、又、焼成の際に鋳型に生じるクラックの発生率
を低下させる。
A mold for metal casting can be made from a slurry containing the silica sol and refractory powder of the present invention. Since this slurry has a high gelation rate upon drying, it increases mold production efficiency and reduces the incidence of cracks that occur in the mold during firing.

本発明のシリカゾルを有機樹脂エマルジョン、樹脂溶液
等に混合した後、分散媒を除去すると、樹脂中にシリカ
を含有する樹脂組成物が得られる。この樹脂組成物は、
高強度、耐汚染性、高い表面硬度、親水性等の好ましい
性質を有するから、上記混合物又は樹脂組成物から改良
された繊維、フィルム、成形品等が得られる。重合性の
モノマー中に本発明のシリカゾルのコロイダルシリカ粒
子を分散させてからこのモノマーを重合させることによ
っても、好ましい樹脂組成物、繊維、フィルム、成形品
等が得られる。
After the silica sol of the present invention is mixed into an organic resin emulsion, resin solution, etc., the dispersion medium is removed to obtain a resin composition containing silica in the resin. This resin composition is
Since they have desirable properties such as high strength, stain resistance, high surface hardness, and hydrophilicity, improved fibers, films, molded articles, etc. can be obtained from the above mixtures or resin compositions. Preferred resin compositions, fibers, films, molded articles, etc. can also be obtained by dispersing colloidal silica particles of the silica sol of the present invention in a polymerizable monomer and then polymerizing this monomer.

触媒担体成分、吸着剤成分、成形用耐火物成分等に本発
明のシリカゾルを加えてからそれぞれ成形すると、やは
り好ましい触媒担体、吸着剤、耐火物等が得られる。
If the silica sol of the present invention is added to a catalyst carrier component, an adsorbent component, a molding refractory component, etc. and then molded, a preferable catalyst carrier, adsorbent, refractory, etc. can be obtained.

本発明のシリカゾルは、更に、増粘剤、ゲル化剤等とし
ても用いられる。例えば、ペースト状或いは可塑状で酸
類が用いられる用途には、りん酸、蓚酸、酪酸、クロム
酸等に本発明のシリカゾルを加えることによってペース
ト状又は可塑状の酸が調製される。電池の電解液の希硫
酸に本発明のシリカゾルを加えると、非流動性のゲルに
変じ、電池が横転しても電解液の流出は防止される。軟
弱地盤を強化させるために、この地盤中に注入されるゲ
ル化性の液状注入剤、即ちグラウト剤組成物も、本発明
のシリカゾルに塩類等ゲル化剤を加えることにより改良
されたグラウト剤が得られ、地盤の強化、耐流水性等の
向上をもたらす。
The silica sol of the present invention can also be used as a thickener, gelling agent, etc. For example, in applications where acids are used in paste or plastic form, the paste or plastic acid is prepared by adding the silica sol of the present invention to phosphoric acid, oxalic acid, butyric acid, chromic acid, or the like. When the silica sol of the present invention is added to dilute sulfuric acid in a battery electrolyte, it turns into a non-flowing gel, and the electrolyte is prevented from flowing out even if the battery is overturned. A gelling liquid injection agent, that is, a grouting agent composition, which is injected into the soft ground in order to strengthen the soft ground, is also an improved grouting agent by adding a gelling agent such as a salt to the silica sol of the present invention. It strengthens the ground and improves water resistance, etc.

本発明のシリカゾルは、高い安定性を示し、その媒体の
除去によって終局的に不可逆的にゲルに変る性質を有す
るが、このゾルを構成するコロイダルシリカ粒子は前記
の如き細長い形状を有するので、このゾルがゲル化する
際に、或いは硬化後には、このゾルに由来する独特の性
質を示す。上記用途の他にも種々の用途に有用であるこ
とは容易に理解されよう。
The silica sol of the present invention exhibits high stability and has the property of irreversibly changing into a gel upon removal of the medium. When the sol gels or after curing, it exhibits unique properties derived from the sol. It will be easily understood that it is useful for various uses in addition to the above-mentioned uses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1て得られた濃縮ゾルのコロイダルシ
リカの粒子構造を示す20万倍の透過型電子顕微鏡写真
である。第2図は、比較例1て得られた濃縮ゾルのコロ
イダルシリカの粒子構造を示す20万倍の透過型電子顕
微鏡写真であり、第3図は、比較例2て得られた濃縮ゾ
ルのコロイダルシリカの粒子構造を示す20万倍の透過
型電子顕微鏡写真である。第4図は、実施例14て得ら
れた濃縮前の本発明のゾルのコロイダルシリカの粒子構
造を示す20万倍の電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph showing the particle structure of colloidal silica in the concentrated sol obtained in Example 1 with a magnification of 200,000 times. FIG. 2 is a transmission electron micrograph showing the particle structure of colloidal silica in the concentrated sol obtained in Comparative Example 1, and FIG. This is a 200,000x transmission electron micrograph showing the particle structure of silica. FIG. 4 is an electron micrograph at a magnification of 200,000 times showing the particle structure of colloidal silica in the sol of the present invention obtained in Example 14 before concentration.

Claims (1)

【特許請求の範囲】 (1)動的光散乱法による測定粒子径(D_1mμ)と
窒素ガス吸着法による測定粒子径(D_2mμ)の比D
_1/D_2が5以上であって、このD_1は40〜5
00ミリミクロンであり、そして電子顕微鏡観察による
5〜40ミリミクロンの範囲内の一様な太さで一平面内
のみの伸長を有する細長い形状の非晶質コロイダルシリ
カ粒 子が液状媒体中に分散されてなるSiO_2濃度0.5
〜30重量%の安定なシリカゾル。 (2)下記(a)、(b)及び(c)の工程からなる、
動的光散乱法による測定粒子径(D_1mμ)と窒素ガ
ス吸着法による測定粒子径(D_2mμ)の比D_1/
D_2が5以上であって、このD_1は40〜300ミ
リミクロンであり、そして電子顕微鏡観察による5〜2
0ミリミクロンの範囲内の一様な太さで一平面内のみの
伸長を有する細長い形状の非晶質コロイダルシリカ粒子
からなるSiO_2濃度1〜6重量%の安定なアルカリ
性水性シリカゾルの製造法; (a)SiO_2として1〜6重量%を含有し、かつ、
pHが2〜4である活性珪酸のコロイド水溶液に、水溶
性のカルシウム塩、マグネシウム塩又はこれらの混合物
を含有する水溶液 を、上記活性珪酸のSiO_2に対してCaO、MgO
又はこの両者として重量比1500〜8500ppmと
なる量加えて混合する工程 (b)(a)工程により得られた水溶液に、アルカリ金
属水酸化物、水溶性有機塩基又はそれらの水溶性珪酸塩
をSiO_2/M_2O(但し、SiO_2は上記活性
珪酸に由来するシリカ分と上記珪酸塩のシリカ分の含量
を、そしてMは上記アルカリ金属原子又は有機塩基の分
子を表わす。)モル比として20〜200となるように
加えて混合する工程 (c)(b)工程によって得られた混合物を60〜15
0℃で0.5〜40時間加熱する工程。 (3)(a)工程に用いられる活性珪酸のコロイド水溶
液が、SiO_2/Na_2Oモル比1〜4.5とSi
O_2濃度1〜6重量%を有するナトリウム水ガラスの
水溶液を水素型陽イオン交換樹脂と接触させることによ
り得られたものであること、SiO_2濃度1〜6重量
%とpH2〜4を有すること、そして3ミリミクロン以
上の粒径のコロイダルシリカを含まないものであること
を特徴とする請求項2に記載の安定なアルカリ性水性シ
リカゾルの製造法。 (4)下記(a)、(b)及び(c)の工程からなる、
動的光散乱法による測定粒子径(D_1mμ)と窒素ガ
ス吸着法による測定粒子径(D_2mμ)の比D_1/
D_2が5以上であって、このD_1は40〜300ミ
リミクロンであり、そして電子顕微鏡観察による5〜2
0ミリミクロンの範囲内の一様な太さで一平面内のみの
伸長を有する細長い形状の非晶質コロイダルシリカ粒子
からなるSiO_2濃度1〜6重量%の安定なアルカリ
性水性シリカゾルの製造法; (a)SiO_2として1〜6重量%を含有し、かつ、
4を越え5以下のpHを有する活性珪酸のコロイド水溶
液に、水溶性のカルシウム塩、マグネシウム塩又はこれ
らの混合物を含有する水溶液を、上記活性珪酸のSiO
_2に対してCaO、MgO又はこの両者として重量比
1500〜8500ppmとなる量加えて混合する工程
(b)(a)工程により得られた水溶液に、アルカリ金
属水酸化物、水溶性有機塩基又はそれらの水溶性珪酸塩
をSiO_2/M_2O(但し、SiO_2は上記活性
珪酸に由来するシリカ分と上記珪酸塩のシリカ分の含量
を、そしてMは上記アルカリ金属原子又は有機塩基の分
子を表わす。)モル比として20〜200となるように
加えて混合する工程 (c)(b)工程によって得られた混合物を60〜25
0℃で0.5〜40時間加熱する工程。 (5)(a)工程に用いられる活性珪酸のコロイド水溶
液が、SiO_2/Na_20Oモル比1〜4.5とS
iO_2濃度1〜6重量%を有するナトリウム水ガラス
の水溶液を水素型陽イオン交換樹脂と接触させることに
より得られたものであること、SiO_2濃度1〜6重
量%と4を越え5以下のpHを有すること、そして3ミ
リミクロン以上の粒径のコロイダルシリカを含まないも
のであることを特徴とする請求項4に記載の安定なアル
カリ性水性シリカゾルの製造法。 (6)請求項2〜5のいづれか1項に記載の(c)工程
によって得られたシリカゾルから、このゾルに含まれて
いる陰イオンと水とを、陰 イオン濃度0.1重量%以下及びSiO_2濃度2〜3
0重量%となるまで除去することを特徴とする、動的光
散乱法による測定粒子径(D_1mμ)と窒素ガス吸着
法による測定粒子径 (D_2mμ)の比D_1/D_2が5以上であって、
このD_1は40〜300ミリミクロンであり、そして
電子顕微鏡観察による5〜20ミリミクロンの範囲内の
一様な太さで一平面内のみの伸長を有する細長い形状の
非晶質コロイダルシリカ粒子からなるSiO_2濃度2
〜30重量%の安定なアルカリ性水性シリカゾルの製造
法。 (7)下記(a′)、(b′)及び(c′)の工程から
なる、動的光散乱法による測定粒子径(D_1mμ)と
窒素ガス吸着法による測定粒子径 (D_2mμ)との比D_1/D_2が5以上であって
、このD_1は40〜500ミリミクロンであり、そし
て電子顕微鏡観察による5〜40ミリミクロンの範囲内
の一様な太さで一平面内のみの伸長を有する細長い形状
の非晶質コロイダルシリカ粒子からなるSiO_2濃度
0.5〜25重量%の安定なアルカリ性水性シリカゾル
の製造法; (a′)平均粒子径3〜30ミリミクロンのコロイダル
シリカをSiO_2として0.5〜25重量%を含有し
、かつ、pHが1〜5である酸性水性シリカゾルに、水
溶性のカルシウム塩、マグネシウム塩又はこれらの混合
物を含有する水溶液を、上記酸性ゾルのSiO_2に対
してCaO、MgO又はこの両者として0.15〜1.
00重量%となる量加えて混合する工程、 (b′)(a′)工程により得られた液に、アルカリ金
属水酸化物、水溶性有機塩基又はそれらの水溶性珪酸塩
をSiO_2/M_2O(但し、SiO_2は上記酸性
ゾルに由来するシリカ分と上記珪酸塩のシリカ分の含量
を、そしてMは上記アルカリ金属原子又は有機塩基の分
子を表わす。)モル比として20〜300となるように
加えて混合する工程、(c′)(b′)工程によって得
られた混合物を60〜300℃で0.5〜40時間加熱
することにより、この混合物中に、上記(a′)工程に
用いられたコロイダルシリカの粒径以上の太さを有する
上記細長い形状のコロイダルシリカ粒子を生成させる工
程。 (8)請求項7に記載の(c′)工程によって得られた
シリカゾルから、このシリカゾルに含まれている陰イオ
ンと水とを、陰イオン濃度 0.1重量%以下及びSiO_2濃度1〜40重量%と
なるまで除去することを特徴とする、動的光散乱法によ
る測定粒子径(D_1mμ)と窒素ガス吸着法による測
定粒子径(D_2mμ)の比D_1/D_2が5以上で
あって、このD_1は40〜500ミリミクロンであり
、そして電子顕微鏡観察による5〜40ミリミクロンの
範囲内の一様な太さで一平面内のみの伸長を有する細長
い形状の非晶質コロイダルシリカ粒子からなる SiO_2濃度1〜40重量%の安定なアルカリ性水性
シリカゾルの製造法。
[Claims] (1) Ratio D of the particle diameter measured by the dynamic light scattering method (D_1 mμ) and the particle diameter measured by the nitrogen gas adsorption method (D_2 mμ)
_1/D_2 is 5 or more, and this D_1 is 40 to 5
Amorphous colloidal silica particles of elongated shape having a uniform thickness in the range of 5 to 40 millimicrons and elongation in only one plane as determined by electron microscopy are dispersed in a liquid medium. SiO_2 concentration 0.5
~30% by weight stable silica sol. (2) Consisting of the following steps (a), (b) and (c),
Ratio D_1/ of particle diameter measured by dynamic light scattering method (D_1 mμ) and particle diameter measured by nitrogen gas adsorption method (D_2 mμ)
D_2 is 5 or more, this D_1 is 40 to 300 millimicrons, and 5 to 2 by electron microscopy observation.
A method for producing a stable alkaline aqueous silica sol with a SiO_2 concentration of 1 to 6% by weight, consisting of elongated amorphous colloidal silica particles with a uniform thickness within the range of 0 mm and elongation in one plane only; ( a) Contains 1 to 6% by weight as SiO_2, and
An aqueous solution containing a water-soluble calcium salt, a magnesium salt, or a mixture thereof is added to a colloidal aqueous solution of activated silicic acid having a pH of 2 to 4, and an aqueous solution containing CaO, MgO
or (b) adding and mixing both in an amount such that the weight ratio is 1,500 to 8,500 ppm; and (a) adding an alkali metal hydroxide, a water-soluble organic base, or a water-soluble silicate thereof to the aqueous solution obtained in step (a). /M_2O (However, SiO_2 represents the silica content derived from the above-mentioned activated silicic acid and the silica content of the above-mentioned silicate, and M represents the above-mentioned alkali metal atom or organic base molecule.) The molar ratio is 20 to 200. Step (c) of adding and mixing the mixture obtained in step (b) to 60 to 15
A step of heating at 0°C for 0.5 to 40 hours. (3) The colloidal aqueous solution of activated silicic acid used in step (a) has a SiO_2/Na_2O molar ratio of 1 to 4.5 and a Si
It is obtained by contacting an aqueous solution of sodium water glass having an O_2 concentration of 1 to 6% by weight with a hydrogen type cation exchange resin, and has a SiO_2 concentration of 1 to 6% by weight and a pH of 2 to 4. 3. The method for producing a stable alkaline aqueous silica sol according to claim 2, wherein the sol does not contain colloidal silica having a particle size of 3 millimicrons or more. (4) Consisting of the following steps (a), (b) and (c),
Ratio D_1/ of particle diameter measured by dynamic light scattering method (D_1 mμ) and particle diameter measured by nitrogen gas adsorption method (D_2 mμ)
D_2 is 5 or more, this D_1 is 40 to 300 millimicrons, and 5 to 2 by electron microscopy observation.
A method for producing a stable alkaline aqueous silica sol with a SiO_2 concentration of 1 to 6% by weight, consisting of elongated amorphous colloidal silica particles with a uniform thickness within the range of 0 mm and elongation in one plane only; ( a) Contains 1 to 6% by weight as SiO_2, and
An aqueous solution containing a water-soluble calcium salt, a magnesium salt, or a mixture thereof is added to a colloidal aqueous solution of activated silicic acid having a pH of more than 4 and less than or equal to 5.
Step (b) of adding and mixing an amount of CaO, MgO, or both in a weight ratio of 1,500 to 8,500 ppm to _2. Adding an alkali metal hydroxide, a water-soluble organic base, or the like to the aqueous solution obtained in step (a) water-soluble silicate of SiO_2/M_2O (where, SiO_2 represents the silica content derived from the above-mentioned active silicic acid and the silica content of the above-mentioned silicate, and M represents the above-mentioned alkali metal atom or organic base molecule) mole. Step (c) of adding and mixing the mixture so that the ratio is 20 to 200; and (b) the mixture obtained in step 60 to 25
A step of heating at 0°C for 0.5 to 40 hours. (5) The colloidal aqueous solution of activated silicic acid used in step (a) has a SiO_2/Na_20O molar ratio of 1 to 4.5 and S
It is obtained by contacting an aqueous solution of sodium water glass with an iO_2 concentration of 1 to 6% by weight with a hydrogen type cation exchange resin, and has a SiO_2 concentration of 1 to 6% by weight and a pH of more than 4 and less than or equal to 5. 5. The method for producing a stable alkaline aqueous silica sol according to claim 4, which contains no colloidal silica having a particle size of 3 millimicrons or more. (6) From the silica sol obtained by the step (c) according to any one of claims 2 to 5, anions and water contained in the sol are removed to an anion concentration of 0.1% by weight or less. SiO_2 concentration 2-3
The ratio D_1/D_2 of the particle diameter measured by dynamic light scattering method (D_1 mμ) and the particle diameter measured by nitrogen gas adsorption method (D_2 mμ) is 5 or more, characterized in that the particle size is removed until it becomes 0% by weight,
This D_1 is 40 to 300 millimicrons and consists of elongated amorphous colloidal silica particles with a uniform thickness in the range of 5 to 20 millimicrons and elongation only in one plane as observed by electron microscopy. SiO_2 concentration 2
A method for producing a stable alkaline aqueous silica sol of ~30% by weight. (7) Ratio of the particle diameter measured by the dynamic light scattering method (D_1 mμ) and the particle diameter measured by the nitrogen gas adsorption method (D_2 mμ), which consists of the following steps (a'), (b') and (c'). D_1/D_2 is 5 or more, D_1 is 40 to 500 millimicrons, and an elongated elongate having a uniform thickness in the range of 5 to 40 millimicrons and elongation only in one plane as observed by electron microscopy. Method for producing a stable alkaline aqueous silica sol with a SiO_2 concentration of 0.5 to 25% by weight, consisting of amorphous colloidal silica particles having a shape; An aqueous solution containing a water-soluble calcium salt, a magnesium salt, or a mixture thereof is added to an acidic aqueous silica sol containing ~25% by weight and having a pH of 1 to 5. 0.15 to 1 as MgO or both.
(b') To the liquid obtained in (a') step, add an alkali metal hydroxide, a water-soluble organic base, or a water-soluble silicate thereof to the solution of SiO_2/M_2O( However, SiO_2 represents the silica content derived from the acidic sol and the silica content of the silicate, and M represents the alkali metal atom or organic base molecule.) Added so that the molar ratio is 20 to 300. (c') By heating the mixture obtained in step (b') at 60 to 300°C for 0.5 to 40 hours, the mixture used in step (a') is added to the mixture. A step of producing the elongated colloidal silica particles having a thickness equal to or larger than the particle size of the colloidal silica. (8) From the silica sol obtained by the step (c') according to claim 7, anions and water contained in the silica sol are removed with an anion concentration of 0.1% by weight or less and a SiO_2 concentration of 1 to 40%. The ratio D_1/D_2 of the particle diameter measured by the dynamic light scattering method (D_1 mμ) and the particle diameter measured by the nitrogen gas adsorption method (D_2 mμ) is 5 or more, which is characterized by removing up to % by weight. D_1 is 40-500 millimicrons, and SiO_2 consists of elongated shaped amorphous colloidal silica particles with uniform thickness in the range of 5-40 millimicrons and elongation only in one plane according to electron microscopy. A method for producing a stable alkaline aqueous silica sol having a concentration of 1 to 40% by weight.
JP5227089A 1988-03-16 1989-03-04 Elongated silica sol and method for producing the same Expired - Lifetime JP2803134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5227089A JP2803134B2 (en) 1988-03-16 1989-03-04 Elongated silica sol and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-62849 1988-03-16
JP6284988 1988-03-16
JP5227089A JP2803134B2 (en) 1988-03-16 1989-03-04 Elongated silica sol and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01317115A true JPH01317115A (en) 1989-12-21
JP2803134B2 JP2803134B2 (en) 1998-09-24

Family

ID=26392876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5227089A Expired - Lifetime JP2803134B2 (en) 1988-03-16 1989-03-04 Elongated silica sol and method for producing the same

Country Status (1)

Country Link
JP (1) JP2803134B2 (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597512A (en) * 1993-10-15 1997-01-28 Nissan Chemical Industries, Ltd. Method for preparing elongated-shaped silica sol
WO1999029635A1 (en) * 1997-12-09 1999-06-17 Nippon Sheet Glass Co., Ltd. Antireflection glass plate, process for producing the same, and antireflection coating composition
WO2000006654A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Rayon Co., Ltd. Coating material and molded resin with coating layer
US6398827B1 (en) 1999-07-02 2002-06-04 Nissan Chemical Industries, Ltd. Polishing composition
GB2382813A (en) * 2000-06-26 2003-06-11 Asahi Chemical Ind Porous, fine inorganic particles
US6632489B1 (en) 1998-09-10 2003-10-14 Nissan Chemical Industries, Ltd. Moniliform silica sol, process for producing the same, and ink-jet recording medium
JP2005145812A (en) * 2003-10-06 2005-06-09 Tosoh Corp High concentration silica slurry and method of producing the same
JP2006501128A (en) * 2002-10-02 2006-01-12 ダウ・コーニング・コーポレイション Filled silicone composition and cured silicone product
WO2007018069A1 (en) * 2005-08-10 2007-02-15 Catalysts & Chemicals Industries Co., Ltd. Deformed silica sol and process for producing the same
JP2007145633A (en) * 2005-11-25 2007-06-14 Catalysts & Chem Ind Co Ltd Manufacturing method of anisotropic-shape silica sol
JP2007153671A (en) * 2005-12-05 2007-06-21 Catalysts & Chem Ind Co Ltd Method for manufacturing anisotropic-shape silica sol
JP2007532470A (en) * 2004-04-19 2007-11-15 ナルコ カンパニー Colloidal composition and method for preparing the same
JP2008024542A (en) * 2006-07-20 2008-02-07 Fuji Kagaku Kk Silica sol and its manufacturing method
WO2008041681A1 (en) 2006-10-02 2008-04-10 Asahi Glass Company, Limited Coating composition for formation of antireflective film, and article having antireflective film formed therein
JP2008137876A (en) * 2006-12-05 2008-06-19 Catalysts & Chem Ind Co Ltd Silica sol and coating material composition containing the same
WO2008093775A1 (en) * 2007-02-02 2008-08-07 Nissan Chemical Industries, Ltd. Silica sol having reactive monomer dispersed therein, method for producing the silica sol, curing composition, and cured article produced from the curing composition
WO2008093422A1 (en) * 2007-02-01 2008-08-07 Nissan Chemical Industries, Ltd. Process for producing silica sol of long and thin shape
WO2008143225A1 (en) * 2007-05-18 2008-11-27 Hitachi Metals, Ltd. Process for producing ceramic honeycomb structure and ceramic honeycomb structure
WO2009069429A1 (en) 2007-11-29 2009-06-04 Nissan Chemical Industries, Ltd. Silica-containing epoxy curing agent and epoxy resin cured body
US7553358B2 (en) 2007-05-01 2009-06-30 Canon Kabushiki Kaisha Ink jet ink, ink jet recording method, ink cartridge, recording unit and ink jet recording apparatus
JP2009529089A (en) * 2006-03-08 2009-08-13 スリーエム イノベイティブ プロパティズ カンパニー Pressure sensitive adhesive containing silica nanoparticles
JP2009184855A (en) * 2008-02-04 2009-08-20 Nippon Chem Ind Co Ltd COLLOIDAL SILICA COMPOSED OF SILICA PARTICLES WITH FIXED epsilon-CAPROLACTAM
JP2010519347A (en) * 2007-02-16 2010-06-03 スリーエム イノベイティブ プロパティズ カンパニー Pressure sensitive adhesive containing acicular silica particles crosslinked with polyfunctional aziridine
WO2010071010A1 (en) * 2008-12-18 2010-06-24 日揮触媒化成株式会社 Chain-shaped silica-based hollow fine particles and process for producing same, coating fluid for transparent coating film formation containing the fine particles, and substrate with transparent coating film
JP2010265139A (en) * 2009-05-14 2010-11-25 Nippon Chem Ind Co Ltd Colloidal silica and production method
JP2011042522A (en) * 2009-08-20 2011-03-03 Nippon Chem Ind Co Ltd Colloidal silica and method for manufacturing the same
JP2011201719A (en) * 2010-03-25 2011-10-13 Fuso Chemical Co Ltd Method for adjusting secondary particle size of colloidal silica
US8114178B2 (en) 2007-04-23 2012-02-14 Nippon Chemical Industrial Co., Ltd. Polishing composition for semiconductor wafer and polishing method
US8118898B2 (en) 2006-10-12 2012-02-21 Jgc Catalysts And Chemicals Ltd. Spinous silica-based sol and method of producing the same
US8153212B2 (en) 2008-06-23 2012-04-10 Canon Kabushiki Kaisha Ink jet recording medium
US8187351B2 (en) 2006-11-30 2012-05-29 Jgc Catalysts And Chemicals Ltd. Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol
KR20130009584A (en) 2011-07-06 2013-01-23 후지제롯쿠스 가부시끼가이샤 Silica particles, manufacturing method thereof and resin particles
JP2013091589A (en) * 2011-10-27 2013-05-16 Nissan Chem Ind Ltd Porous secondary aggregated silica sol, and method for producing the same
US8529787B2 (en) 2008-09-26 2013-09-10 Fuso Chemical Co., Ltd. Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
KR20140120340A (en) 2012-02-02 2014-10-13 닛산 가가쿠 고교 가부시키 가이샤 Low refractive index film-forming composition
US8871344B2 (en) 2010-06-25 2014-10-28 Fuji Xerox Co., Ltd. Hydrophobization treatment of silica particles
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US9187502B2 (en) 2010-06-24 2015-11-17 Fuji Xerox Co., Ltd. Silica particles and method for producing the same
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9272916B2 (en) 2007-11-30 2016-03-01 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US9416015B2 (en) 2010-06-23 2016-08-16 Fuji Xerox Co., Ltd. Method of producing silica particles
JP2016179930A (en) * 2015-03-25 2016-10-13 日本碍子株式会社 Outer peripheral coat material, joint material, honeycomb structure and method for manufacturing honeycomb structure
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
JP2018070781A (en) * 2016-10-31 2018-05-10 国立大学法人徳島大学 Coating composition for plant growth control
WO2019182100A1 (en) 2018-03-22 2019-09-26 日東電工株式会社 Optical member and method for producing same
WO2020067345A1 (en) 2018-09-28 2020-04-02 日東電工株式会社 Double-sided adhesive layer-equipped optical laminate
WO2020067344A1 (en) 2018-09-28 2020-04-02 日東電工株式会社 Double-sided adhesive layer-equipped optical laminate
WO2020116045A1 (en) 2018-12-06 2020-06-11 日東電工株式会社 Optical laminate
JP2020518680A (en) * 2017-03-08 2020-06-25 シラナ ゲーエムベーハー Insulation material
CN111788154A (en) * 2018-02-26 2020-10-16 日产化学株式会社 Method for producing silica sol having elongated particle shape
KR20200124249A (en) 2018-02-26 2020-11-02 닛산 가가쿠 가부시키가이샤 Method for producing silica sol with elongated particle shape
US10859871B2 (en) 2015-09-28 2020-12-08 Nitto Denko Corporation Optical member, and polarizing plate set and liquid crystal display device that use said optical member
JP2021065825A (en) * 2019-10-21 2021-04-30 日揮触媒化成株式会社 Carrier particle dispersion for organic reaction catalyst and organic reaction catalyst
JP2021185233A (en) * 2016-08-23 2021-12-09 日産化学株式会社 Hyperbranched polymer- or dendrimer-bound, heteromorphous silica nanoparticles and complex
CN115028435A (en) * 2021-07-12 2022-09-09 张家港市恒乐阳方高温材料有限公司 High-density tundish dry material and preparation method thereof
WO2023058745A1 (en) 2021-10-08 2023-04-13 三菱マテリアル電子化成株式会社 Linear colloidal silica particle dispersion sol and method for producing same
WO2023068152A1 (en) 2021-10-18 2023-04-27 三菱マテリアル電子化成株式会社 Surface-treated silica particle dispersion sol and production method therefor

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460988B1 (en) 2000-06-12 2002-10-08 Canon Kabushiki Kaisha Ink set, recording method, recording unit, ink cartridge and recording apparatus
US6702882B2 (en) 2000-06-23 2004-03-09 Canon Kabushiki Kaisha Ink set, ink jet recording method, recording unit, ink cartridge and ink jet recording apparatus
CA2356809C (en) 2000-09-04 2005-11-22 Canon Kabushiki Kaisha Ink set for ink jet recording
US6811839B2 (en) 2000-11-09 2004-11-02 Canon Kabushiki Kaisha Recording medium and image forming process using the same
US7008671B2 (en) 2000-12-28 2006-03-07 Canon Kabushiki Kaisha Recorded matter, method of producing recorded matter, method for improving image fastness, image fastness-improving agent, image fastness improving kit, dispenser, and applicator
US6833158B2 (en) 2001-08-09 2004-12-21 Canon Kabushiki Kaisha Coating apparatus and coating method of liquid for protection of recorded product, and protection process of recorded product
US6851880B2 (en) 2001-09-04 2005-02-08 Canon Kabushiki Kaisha Coating tool and coating set
JP3977385B2 (en) 2004-07-02 2007-09-19 キヤノン株式会社 Ink jet ink, ink jet recording method, ink cartridge, recording unit, and ink jet recording apparatus
JP3793223B2 (en) 2004-07-02 2006-07-05 キヤノン株式会社 Ink jet ink, ink jet recording method, ink cartridge, recording unit, and ink jet recording apparatus
JP3793222B2 (en) 2004-07-02 2006-07-05 キヤノン株式会社 Ink jet ink, ink set, ink jet recording method, ink cartridge, recording unit, and ink jet recording apparatus
JP3833235B2 (en) 2004-07-02 2006-10-11 キヤノン株式会社 Ink, inkjet recording method, recording unit, ink cartridge, and inkjet recording apparatus
JP3885086B2 (en) 2004-07-02 2007-02-21 キヤノン株式会社 Black ink for ink jet, ink set, ink jet recording method, ink cartridge, recording unit, and ink jet recording apparatus
JP2006063330A (en) 2004-07-29 2006-03-09 Canon Inc Inkjet ink, inkjet recording method, ink cartridge, recording unit and inkjet recorder
JP4794936B2 (en) 2004-07-29 2011-10-19 キヤノン株式会社 Ink set, ink jet recording method, ink cartridge set and recording unit
JP4794940B2 (en) 2004-08-04 2011-10-19 キヤノン株式会社 INK TANK, INK JET RECORDING METHOD, AND INK TANK REPRODUCING METHOD
JP2006070258A (en) 2004-08-04 2006-03-16 Canon Inc Yellow ink for ink jet recording, light ink for ink jet recording, inkset, ink jet recording method, ink cartridge, recording unit, and ink jet recording apparatus
JP4324138B2 (en) 2004-08-04 2009-09-02 キヤノン株式会社 Ink set, ink jet recording method, recording unit, and ink jet recording apparatus
WO2006129823A1 (en) 2005-05-31 2006-12-07 Canon Kabushiki Kaisha Image fading preventive agent, image forming element, recording medium, method for image formation, and image
JP4795221B2 (en) 2005-12-21 2011-10-19 キヤノン株式会社 Ink, inkjet recording method, recording unit, ink cartridge, and inkjet recording apparatus
JP2007247166A (en) * 2006-03-14 2007-09-27 Sumitomo Chemical Co Ltd Road mirror
JP2008038090A (en) 2006-08-09 2008-02-21 Kao Corp Water-based ink for inkjet recording
US7611571B2 (en) 2007-05-01 2009-11-03 Canon Kabushiki Kaisha Ink, ink jet recording method, ink cartridge, recording unit, and ink jet recording apparatus
US7618484B2 (en) 2007-05-01 2009-11-17 Canon Kabushiki Kaisha Ink jet ink, ink jet recording method, ink cartridge, recording unit and ink jet recording apparatus
US7550037B2 (en) 2007-07-05 2009-06-23 Canon Kabushiki Kaisha Ink, ink jet recording method, ink cartridge, recording unit and ink jet recording apparatus
US7566362B2 (en) 2007-08-10 2009-07-28 Canon Kabushiki Kaisha Ink, ink jet recording method, ink cartridge, recording unit and ink jet recording apparatus
WO2009113702A1 (en) 2008-03-14 2009-09-17 Canon Kabushiki Kaisha Ink jet recording medium and production process thereof, and fine particle dispersion
JP5835965B2 (en) 2011-02-28 2015-12-24 富士フイルム株式会社 Ink jet recording ink and ink jet recording method
JP2012233051A (en) * 2011-04-28 2012-11-29 Asahi Kasei Chemicals Corp Coating composition
JP2013043927A (en) 2011-08-23 2013-03-04 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire
JP5816608B2 (en) 2012-05-11 2015-11-18 富士フイルム株式会社 Ink composition, ink jet recording ink, and ink jet recording method

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597512A (en) * 1993-10-15 1997-01-28 Nissan Chemical Industries, Ltd. Method for preparing elongated-shaped silica sol
WO1999029635A1 (en) * 1997-12-09 1999-06-17 Nippon Sheet Glass Co., Ltd. Antireflection glass plate, process for producing the same, and antireflection coating composition
WO2000006654A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Rayon Co., Ltd. Coating material and molded resin with coating layer
US6348537B2 (en) 1998-07-31 2002-02-19 Mitsubishi Rayon Co., Ltd. Coating agent, and resin molded article having coated layer
US6632489B1 (en) 1998-09-10 2003-10-14 Nissan Chemical Industries, Ltd. Moniliform silica sol, process for producing the same, and ink-jet recording medium
US6398827B1 (en) 1999-07-02 2002-06-04 Nissan Chemical Industries, Ltd. Polishing composition
GB2382813A (en) * 2000-06-26 2003-06-11 Asahi Chemical Ind Porous, fine inorganic particles
GB2382813B (en) * 2000-06-26 2004-07-14 Asahi Chemical Ind Porous inorganic fine particles
JP2006501128A (en) * 2002-10-02 2006-01-12 ダウ・コーニング・コーポレイション Filled silicone composition and cured silicone product
JP2005145812A (en) * 2003-10-06 2005-06-09 Tosoh Corp High concentration silica slurry and method of producing the same
JP2007532470A (en) * 2004-04-19 2007-11-15 ナルコ カンパニー Colloidal composition and method for preparing the same
WO2007018069A1 (en) * 2005-08-10 2007-02-15 Catalysts & Chemicals Industries Co., Ltd. Deformed silica sol and process for producing the same
JP5127452B2 (en) * 2005-08-10 2013-01-23 日揮触媒化成株式会社 Method for producing deformed silica sol
JP2013032276A (en) * 2005-08-10 2013-02-14 Jgc Catalysts & Chemicals Ltd Deformed silica sol
JP2007145633A (en) * 2005-11-25 2007-06-14 Catalysts & Chem Ind Co Ltd Manufacturing method of anisotropic-shape silica sol
JP2007153671A (en) * 2005-12-05 2007-06-21 Catalysts & Chem Ind Co Ltd Method for manufacturing anisotropic-shape silica sol
JP2009529089A (en) * 2006-03-08 2009-08-13 スリーエム イノベイティブ プロパティズ カンパニー Pressure sensitive adhesive containing silica nanoparticles
JP2008024542A (en) * 2006-07-20 2008-02-07 Fuji Kagaku Kk Silica sol and its manufacturing method
WO2008041681A1 (en) 2006-10-02 2008-04-10 Asahi Glass Company, Limited Coating composition for formation of antireflective film, and article having antireflective film formed therein
US8118898B2 (en) 2006-10-12 2012-02-21 Jgc Catalysts And Chemicals Ltd. Spinous silica-based sol and method of producing the same
US8187351B2 (en) 2006-11-30 2012-05-29 Jgc Catalysts And Chemicals Ltd. Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol
JP2008137876A (en) * 2006-12-05 2008-06-19 Catalysts & Chem Ind Co Ltd Silica sol and coating material composition containing the same
JP5019076B2 (en) * 2007-02-01 2012-09-05 日産化学工業株式会社 Method for producing silica sol having an elongated shape
DE112007003301T5 (en) 2007-02-01 2009-12-17 Nissan Chemical Industries, Ltd. Process for the preparation of an extended silica sol
WO2008093422A1 (en) * 2007-02-01 2008-08-07 Nissan Chemical Industries, Ltd. Process for producing silica sol of long and thin shape
JP5376124B2 (en) * 2007-02-02 2013-12-25 日産化学工業株式会社 Reactive monomer-dispersed silica sol, method for producing the same, curable composition, and cured product thereof
US7999026B2 (en) 2007-02-02 2011-08-16 Nissan Chemical Industries, Ltd. Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof
WO2008093775A1 (en) * 2007-02-02 2008-08-07 Nissan Chemical Industries, Ltd. Silica sol having reactive monomer dispersed therein, method for producing the silica sol, curing composition, and cured article produced from the curing composition
JP2010519347A (en) * 2007-02-16 2010-06-03 スリーエム イノベイティブ プロパティズ カンパニー Pressure sensitive adhesive containing acicular silica particles crosslinked with polyfunctional aziridine
US8114178B2 (en) 2007-04-23 2012-02-14 Nippon Chemical Industrial Co., Ltd. Polishing composition for semiconductor wafer and polishing method
US7553358B2 (en) 2007-05-01 2009-06-30 Canon Kabushiki Kaisha Ink jet ink, ink jet recording method, ink cartridge, recording unit and ink jet recording apparatus
WO2008143225A1 (en) * 2007-05-18 2008-11-27 Hitachi Metals, Ltd. Process for producing ceramic honeycomb structure and ceramic honeycomb structure
JP5525258B2 (en) * 2007-05-18 2014-06-18 日立金属株式会社 Method for manufacturing ceramic honeycomb structure and ceramic honeycomb structure
US8642137B2 (en) 2007-05-18 2014-02-04 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
WO2009069429A1 (en) 2007-11-29 2009-06-04 Nissan Chemical Industries, Ltd. Silica-containing epoxy curing agent and epoxy resin cured body
US9272916B2 (en) 2007-11-30 2016-03-01 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
US10160894B2 (en) 2007-11-30 2018-12-25 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
JP2009184855A (en) * 2008-02-04 2009-08-20 Nippon Chem Ind Co Ltd COLLOIDAL SILICA COMPOSED OF SILICA PARTICLES WITH FIXED epsilon-CAPROLACTAM
US8153212B2 (en) 2008-06-23 2012-04-10 Canon Kabushiki Kaisha Ink jet recording medium
US8529787B2 (en) 2008-09-26 2013-09-10 Fuso Chemical Co., Ltd. Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP5686604B2 (en) * 2008-12-18 2015-03-18 日揮触媒化成株式会社 Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
JPWO2010071010A1 (en) * 2008-12-18 2012-05-24 日揮触媒化成株式会社 Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
KR20110103934A (en) * 2008-12-18 2011-09-21 닛키 쇼쿠바이카세이 가부시키가이샤 Chain-shaped silica-based hollow fine particles and process for producing same, coating fluid for transparent coating film formation containing the fine particles, and substrate with transparent coating film
WO2010071010A1 (en) * 2008-12-18 2010-06-24 日揮触媒化成株式会社 Chain-shaped silica-based hollow fine particles and process for producing same, coating fluid for transparent coating film formation containing the fine particles, and substrate with transparent coating film
JP2010265139A (en) * 2009-05-14 2010-11-25 Nippon Chem Ind Co Ltd Colloidal silica and production method
JP2011042522A (en) * 2009-08-20 2011-03-03 Nippon Chem Ind Co Ltd Colloidal silica and method for manufacturing the same
JP2011201719A (en) * 2010-03-25 2011-10-13 Fuso Chemical Co Ltd Method for adjusting secondary particle size of colloidal silica
US9416015B2 (en) 2010-06-23 2016-08-16 Fuji Xerox Co., Ltd. Method of producing silica particles
US9187502B2 (en) 2010-06-24 2015-11-17 Fuji Xerox Co., Ltd. Silica particles and method for producing the same
US8871344B2 (en) 2010-06-25 2014-10-28 Fuji Xerox Co., Ltd. Hydrophobization treatment of silica particles
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
KR20130009584A (en) 2011-07-06 2013-01-23 후지제롯쿠스 가부시끼가이샤 Silica particles, manufacturing method thereof and resin particles
US8431633B2 (en) 2011-07-06 2013-04-30 Fuji Xerox Co., Ltd. Silica particles, manufacturing method thereof and resin particles
JP2013091589A (en) * 2011-10-27 2013-05-16 Nissan Chem Ind Ltd Porous secondary aggregated silica sol, and method for producing the same
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
KR20140120340A (en) 2012-02-02 2014-10-13 닛산 가가쿠 고교 가부시키 가이샤 Low refractive index film-forming composition
KR20200051853A (en) 2012-02-02 2020-05-13 닛산 가가쿠 가부시키가이샤 Low refractive index film-forming composition
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
JP2016179930A (en) * 2015-03-25 2016-10-13 日本碍子株式会社 Outer peripheral coat material, joint material, honeycomb structure and method for manufacturing honeycomb structure
US10472527B2 (en) 2015-03-25 2019-11-12 Ngk Insulators, Ltd. Circumference coating material, bonding material, honeycomb structure, and method of producing honeycomb structure
US10859871B2 (en) 2015-09-28 2020-12-08 Nitto Denko Corporation Optical member, and polarizing plate set and liquid crystal display device that use said optical member
JP2021185233A (en) * 2016-08-23 2021-12-09 日産化学株式会社 Hyperbranched polymer- or dendrimer-bound, heteromorphous silica nanoparticles and complex
JP2018070781A (en) * 2016-10-31 2018-05-10 国立大学法人徳島大学 Coating composition for plant growth control
JP2020518680A (en) * 2017-03-08 2020-06-25 シラナ ゲーエムベーハー Insulation material
KR20200125603A (en) 2018-02-26 2020-11-04 닛산 가가쿠 가부시키가이샤 Method for producing silica sol with elongated particle shape
CN111788154A (en) * 2018-02-26 2020-10-16 日产化学株式会社 Method for producing silica sol having elongated particle shape
KR20200124249A (en) 2018-02-26 2020-11-02 닛산 가가쿠 가부시키가이샤 Method for producing silica sol with elongated particle shape
US11814295B2 (en) 2018-02-26 2023-11-14 Nissan Chemical Corporation Method for producing silica sol having elongated particle shape
CN111788154B (en) * 2018-02-26 2024-03-29 日产化学株式会社 Method for producing silica sol having elongated particle shape
US11897774B2 (en) 2018-02-26 2024-02-13 Nissan Chemical Corporation Method for producing silica sol having elongated particle shape
WO2019182100A1 (en) 2018-03-22 2019-09-26 日東電工株式会社 Optical member and method for producing same
WO2020067344A1 (en) 2018-09-28 2020-04-02 日東電工株式会社 Double-sided adhesive layer-equipped optical laminate
WO2020067345A1 (en) 2018-09-28 2020-04-02 日東電工株式会社 Double-sided adhesive layer-equipped optical laminate
WO2020116045A1 (en) 2018-12-06 2020-06-11 日東電工株式会社 Optical laminate
JP2021065825A (en) * 2019-10-21 2021-04-30 日揮触媒化成株式会社 Carrier particle dispersion for organic reaction catalyst and organic reaction catalyst
CN115028435A (en) * 2021-07-12 2022-09-09 张家港市恒乐阳方高温材料有限公司 High-density tundish dry material and preparation method thereof
WO2023058745A1 (en) 2021-10-08 2023-04-13 三菱マテリアル電子化成株式会社 Linear colloidal silica particle dispersion sol and method for producing same
KR20240049601A (en) 2021-10-08 2024-04-16 미쓰비시마테리알덴시카세이가부시키가이샤 Chain-shaped colloidal silica particle dispersion sol and method for producing the same
WO2023068152A1 (en) 2021-10-18 2023-04-27 三菱マテリアル電子化成株式会社 Surface-treated silica particle dispersion sol and production method therefor
KR20240033263A (en) 2021-10-18 2024-03-12 미쓰비시마테리알덴시카세이가부시키가이샤 Surface treated silica particle dispersion sol and method for producing the same

Also Published As

Publication number Publication date
JP2803134B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
JPH01317115A (en) Silica sol having long and thin particle form and production thereof
KR960014908B1 (en) Elongated-shaped silica sol and method for preparing the same
US5221497A (en) Elongated-shaped silica sol and method for preparing the same
JP3517913B2 (en) Manufacturing method of elongated silica sol
JP5334385B2 (en) Production and use of polysilicate particulate material
EP3081531B1 (en) Silica particles, manufacturing method for same, and silica sol
JP3753192B2 (en) Method for producing silica propanol sol
JP5019076B2 (en) Method for producing silica sol having an elongated shape
WO2000015552A1 (en) Moniliform silica sol, process for producing the same, and ink-jet recording medium
JPH085657B2 (en) Silica sol and its manufacturing method
JP2926915B2 (en) Elongated silica sol and method for producing the same
JPH01294515A (en) Binder
WO2003055800A1 (en) Inorganic oxide
US9695111B2 (en) Method of producing soluble silicates with organic cations
JPH06190268A (en) Spherical particle coated with sol-gel
JP3362793B2 (en) Method for producing silica sol
JP5505900B2 (en) High concentration silica sol
JP2002003212A (en) Silica-alumina coated chain silica sol and its production method
JP2729521B2 (en) Method for producing silica gel
JP4979930B2 (en) Method for producing anisotropic silica sol
JP5646143B2 (en) Flaky composite silica fine particle dispersion and method for producing the same
Selle et al. Preparation of spherical, mixed SiO 2/TiO 2 particles by the sol technique
Shilova Ways of controlling structure and properties of sol-gel-derived hybrid micro-and nanocomposite materials
JP2607118B2 (en) Method for producing spherical organosilicic acid and spherical silica powder
JPH09249412A (en) Hectorite-like silicate salt and its production and its use

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11