JPH01316146A - Friction feed mechanism - Google Patents
Friction feed mechanismInfo
- Publication number
- JPH01316146A JPH01316146A JP14664788A JP14664788A JPH01316146A JP H01316146 A JPH01316146 A JP H01316146A JP 14664788 A JP14664788 A JP 14664788A JP 14664788 A JP14664788 A JP 14664788A JP H01316146 A JPH01316146 A JP H01316146A
- Authority
- JP
- Japan
- Prior art keywords
- angle
- drive shaft
- lead angle
- friction roller
- roller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007246 mechanism Effects 0.000 title claims description 31
- 238000006073 displacement reaction Methods 0.000 claims abstract description 6
- 238000012840 feeding operation Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q5/00—Driving or feeding mechanisms; Control arrangements therefor
- B23Q5/22—Feeding members carrying tools or work
- B23Q5/34—Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
- B23Q5/38—Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously
- B23Q5/40—Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously by feed shaft, e.g. lead screw
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Details Of Measuring And Other Instruments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は摩擦ローラを用いた摩擦送り機構に係り、測定
器や工作機械等のテーブルあるいはへンド送り機構など
に利用できる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a friction feed mechanism using friction rollers, and can be used for tables or hand feed mechanisms of measuring instruments, machine tools, etc.
〔従来の技術)
従来より、三次元測定器や工作機械等においては、可動
方向ごとに送り機構を設け、ワークを載置するテーブル
や測定子あるいは工具を支持するヘンドの相対位置を調
整している。[Prior art] Conventionally, coordinate measuring instruments, machine tools, etc. have been provided with a feed mechanism for each movable direction, and the relative positions of the table on which the work is placed, the probe, or the hend that supports the tool are adjusted. There is.
このような送り機構には高精度が要求されるため、ボー
ルねじ等の螺旋係合構造を用いて駆動軸の回転運動を軸
方向の往復運動に変換する方式が多用されている。しか
し、駆動軸に形成するねし形状を高精度に仕上げる必要
があり、製造コストが高くなるほか、送りピンチが固定
されるという問題がある。このため、粗調整時等の高速
送りとワーク近接時等の精密送りといった相反する要求
を満たすために、駆動軸とモータ等との間に変速機構や
クラッチ機構を設けたり、あるいは高速送り機構に微動
ユニットを付加したりといった構造上の複雑化が避けら
れなかった。Since such a feeding mechanism requires high precision, a method is often used in which a helical engagement structure such as a ball screw is used to convert the rotational motion of the drive shaft into reciprocating motion in the axial direction. However, the threaded shape formed on the drive shaft must be finished with high precision, which increases manufacturing costs, and there is a problem that the feed pinch is fixed. Therefore, in order to meet the conflicting demands of high-speed feed during rough adjustment and precision feed when approaching a workpiece, a speed change mechanism or clutch mechanism is installed between the drive shaft and the motor, or a high-speed feed mechanism is installed. Structural complications such as the addition of a fine movement unit were unavoidable.
これに対し、駆動軸に対して所定のリード角で当接され
た摩擦ローラを駆動軸の円面に転勤させ、駆動軸の回転
に伴って摩擦ローラに生じる駆動軸方向分力により送り
動作を行う摩擦送り機構が開発されている。このような
摩擦送り機構においては、駆動軸に螺旋状のねしを形成
する必要がなく、製造コストを低酸できるとともに、摩
擦ローラのリート角(摩擦ローラの回転軸線と駆動軸の
回転軸線とがなす角度)に応して送りピッチを任意に設
定あるいは変更可能であるや
〔発明が解決しようとする課題〕
ところで、前述のようなI’9擦送擦込構においては、
稼働中であっても摩擦ローラのリード角および送りピッ
チを無段階に調整可能であり、簡単な操作で高速送りと
精密送りとを切換えることが可能である。In contrast, a friction roller that is in contact with the drive shaft at a predetermined lead angle is transferred to the circular surface of the drive shaft, and the feed operation is performed by the force generated in the drive shaft direction on the friction roller as the drive shaft rotates. A friction feed mechanism has been developed to do this. In such a friction feed mechanism, there is no need to form a spiral thread on the drive shaft, which reduces manufacturing costs. [Problem to be solved by the invention] By the way, in the above-mentioned I'9 rubbing mechanism,
Even during operation, the lead angle and feed pitch of the friction roller can be adjusted steplessly, and it is possible to switch between high-speed feed and precision feed with a simple operation.
しかし、FIX擦ローラを可動式とする場合、摩擦ロー
ラを所望のリード角に正確に設定するために高精度に制
御された角度調整手段が必要となるほか、調整後の摩擦
ローラを設定されたリード角に正確に固定する手段が必
要となり、再び構造が複雑化するという問題があった。However, if the FIX friction roller is movable, a highly precisely controlled angle adjustment means is required to accurately set the friction roller to the desired lead angle, and in addition, it is necessary to adjust the angle of the friction roller after adjustment. A means for accurately fixing the lead angle is required, which again complicates the structure.
本発明の目的は、送りピッチを正確かつ節rliに変更
でき、変更後の送りピッチを正確に維持できるとともに
、構造を簡略化できる摩擦送り機構を提供することにあ
る。An object of the present invention is to provide a friction feed mechanism that can accurately change the feed pitch to a node rli, maintain the changed feed pitch accurately, and have a simplified structure.
(課題を解決するための手段〕
本発明は、送りピッチの可変式の摩擦送り機構に要求さ
れる摩擦ローラのリード角調整幅が比較的小さく、圧電
素子の変位でも充分であるとともに、圧電素子がそれ自
体剛性を有することに着目してなされたものである。す
なわち、相対移動可能な二部材の一方に回転する駆動軸
を設け、他方の部材には各々前記駆動軸の周面に転勤す
る摩擦ローラを設け、この摩擦ローラを駆動軸に対する
リード角が変化する方向に回動可能な支持体に支持する
とともに、この支持体には圧電素子の変位により当該支
持体を回動させる角度調整手段を設け、これにより摩擦
送り機構を構成したものである。(Means for Solving the Problems) According to the present invention, the lead angle adjustment range of the friction roller required for a variable feed pitch friction feed mechanism is relatively small, and the displacement of the piezoelectric element is sufficient. This was done by focusing on the fact that the shaft itself has rigidity.In other words, one of the two relatively movable members is provided with a rotating drive shaft, and the other member is provided with a rotating drive shaft that rotates on the circumferential surface of the drive shaft. A friction roller is provided, and this friction roller is supported on a support that can rotate in a direction in which the lead angle with respect to the drive shaft changes, and the support has an angle adjustment means that rotates the support by displacement of a piezoelectric element. is provided, thereby configuring a friction feed mechanism.
本発明の圧電素子としては、Pb(Zr−Ti)O,l
系のセラミツクス、あるいは水晶や1.1NbOi等の
結晶といった圧電性材料を一対の電橿で挟持したものが
利用できる。また、これらの圧電素子を積層して機械的
な動作量を拡張してもよく、あるいは回動アーム等を用
いたてこ式の動作量拡大機構を利用してもよい。さらに
、いくつかの圧電素子を組み合わせて各位相をづらして
動作量を拡大したものを使用してもよい。As the piezoelectric element of the present invention, Pb(Zr-Ti)O, l
A piezoelectric material such as ceramics or crystals such as quartz or 1.1NbOi sandwiched between a pair of electric rods can be used. Further, the mechanical motion amount may be expanded by stacking these piezoelectric elements, or a lever-type motion amount enlarging mechanism using a rotating arm or the like may be used. Furthermore, it is also possible to use a combination of several piezoelectric elements and shift each phase to increase the amount of motion.
また、支持体としては、F′2!!10−ラを支持する
部材を駆動軸方向に延長し、その両端を一対の圧電素子
を介して支持し、角度調整手段である各圧電素子に逆向
きの電圧等を印加することにより回動されるもの等が利
用できる。あるいは、支持体には駆動軸の中心軸線と交
叉する回動軸まわりに回動自在に軸支された部材等が利
用でき、支持体に回動軸から所定長さの回動腕を設けて
圧電素子を連結して角度調整手段を形成してもよい。Moreover, as a support, F'2! ! 10 - Extend a member that supports the roller in the direction of the drive shaft, support both ends of the member through a pair of piezoelectric elements, and rotate the member by applying voltages in opposite directions to each piezoelectric element, which is the angle adjustment means. You can use the following items. Alternatively, the support can be a member supported rotatably around a rotation axis that intersects the central axis of the drive shaft, and the support can be provided with a rotation arm of a predetermined length from the rotation axis. The angle adjusting means may be formed by connecting piezoelectric elements.
さらに、駆動軸の撓み等を避けたい場合等には、常時同
じリード角となるようにリンクされた一対の摩擦ローラ
を駆動軸を挟んで対向配置し、両側から略同じ強さで圧
接させてもよい、あるいは、駆動軸の反対側に撓み防止
用の案内軸受を対向配置してもよい。Furthermore, if it is desired to avoid deflection of the drive shaft, etc., a pair of friction rollers that are linked so that they always have the same lead angle are arranged opposite to each other across the drive shaft, and are pressed against each other with approximately the same strength from both sides. Alternatively, a guide bearing for preventing deflection may be disposed on the opposite side of the drive shaft.
〔作用]
このように構成された本発明におい・では、角度調整手
段の圧電素子に所定の電圧を印加するごとにより変位さ
せ、支持体を回動させて摩擦ローラの駆動軸に対するリ
ード角を調整して所望の送りピッチに変更する。ここで
、摩擦ローラのリード角は圧電素子の剛性により印加電
圧の変化がない限り正確に維持し、送り動作に伴う負荷
によっても変化しないようにしてピッチを正確に維持す
る。[Operation] In the present invention configured as described above, each time a predetermined voltage is applied to the piezoelectric element of the angle adjustment means, the piezoelectric element is displaced, and the support body is rotated to adjust the lead angle of the friction roller with respect to the drive shaft. to change to the desired feed pitch. Here, the lead angle of the friction roller is maintained accurately as long as there is no change in the applied voltage due to the rigidity of the piezoelectric element, and the pitch is maintained accurately so as not to change due to the load associated with the feeding operation.
さらに、摩擦ローラのリード角の変更および維持に電気
的な操作により動作する圧電素子を用いることにより、
操作の容易性および構造の簡略化を実現し、これにより
前記目的を達成する。Furthermore, by using electrically operated piezoelectric elements to change and maintain the lead angle of the friction roller,
Ease of operation and simplification of structure are achieved, thereby achieving the above objectives.
以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.
第1図および第2図において、本実施例のテープル送り
装置は、相対移動する二部材であるヘッド10およびテ
ーブル20を備え、このテーブル20はヘッド10の上
面に形成された案内機構2により案内されるとともに、
本発明に基づく摩擦送り機構lにより駆動されて往復移
動可能である。1 and 2, the table feeding device of this embodiment includes a head 10 and a table 20, which are two members that move relative to each other, and this table 20 is guided by a guide mechanism 2 formed on the upper surface of the head 10. Along with being
It is capable of reciprocating movement driven by a friction feed mechanism 1 based on the present invention.
ヘッド10には案内機構2に沿って駆動軸11が設けら
れている。この駆動軸11は、円面を平滑に形成されて
いるとともに、両端近傍をそれぞれベアリング12.1
3により回転自在かつ軸方向に移動不可能に支持され、
カップリング14を介して接続されたモータ15により
回転駆動されるように構成されている。A drive shaft 11 is provided in the head 10 along the guide mechanism 2. This drive shaft 11 has a smooth circular surface, and bearings 12.1 are provided near both ends of the drive shaft 11.
3, which is supported rotatably and immovably in the axial direction,
It is configured to be rotationally driven by a motor 15 connected via a coupling 14.
テーラ゛ル20は断面略門型に形成され、その上面の裏
側には駆動軸11の長手方向に沿って延びる板状の支持
体21が設けられており、この支持体21は両端を一対
の圧電素子22.23を介してテーブル20に支持され
ている。また、支持体21の略中央の下面には摩擦ロー
ラ24が回転自在に支持されており、この摩擦ローラ2
4は駆動軸11の周面に所定の圧力で圧接され、駆動軸
11の回転に伴って転勤可能である。なお、摩擦ローラ
24は通常、駆動軸11と平行に保持され、リード角は
0とされている。The tail 20 has a substantially gate-shaped cross section, and is provided with a plate-shaped support 21 extending along the longitudinal direction of the drive shaft 11 on the back side of its upper surface. It is supported on the table 20 via piezoelectric elements 22,23. Further, a friction roller 24 is rotatably supported on the lower surface of the support body 21 at approximately the center thereof.
4 is pressed against the circumferential surface of the drive shaft 11 with a predetermined pressure, and can be moved as the drive shaft 11 rotates. Note that the friction roller 24 is normally held parallel to the drive shaft 11 and has a lead angle of 0.
ここで、各圧電素子22.23は板状の圧電性材料の表
裏に電極を設けて構成されたものであり、各電極に接続
された操作装置25から印加される逆極性の電圧に応じ
て互いに逆向きに変位し、例えば圧電素子22の収縮時
にi圧電素子23を伸長させることにより支持体21を
回動させ、摩擦ローラ24のリード角を図中A1、へ2
等のように変更可能であり、ここに角度調整手段26が
構成されている。Here, each piezoelectric element 22, 23 is constructed by providing electrodes on the front and back sides of a plate-shaped piezoelectric material, and responds to a voltage of opposite polarity applied from the operating device 25 connected to each electrode. For example, when the piezoelectric element 22 is contracted, the piezoelectric element 23 is expanded, thereby rotating the support body 21 and changing the lead angle of the friction roller 24 from A1 to A2 in the figure.
The angle adjusting means 26 is configured here.
このように構成された本実施例においては、次に示すよ
うな手順で送り動作を行う。In this embodiment configured as described above, the feeding operation is performed in the following procedure.
まず、駆動軸11をモータ15により一定回転数で回転
させ、駆動軸11の周面に圧接された摩擦ローラ24を
転動させる。通常、摩擦ローラ24のリード角は0に維
持されており、+1X擦送り機構1による送り動作は行
われず、テーブル20は現在位置に停止したままである
。First, the drive shaft 11 is rotated by the motor 15 at a constant rotation speed, and the friction roller 24 pressed against the circumferential surface of the drive shaft 11 is caused to roll. Normally, the lead angle of the friction roller 24 is maintained at 0, the +1X friction feed mechanism 1 does not perform a feeding operation, and the table 20 remains stopped at its current position.
ここで、角度調整手段26によりIl!J擦ロークロー
ラ24ド角を変化させて送り動作を開始する。すなわち
、操作装置25から圧電素子22.23に逆極性の電圧
を印加し、圧電素子22を収縮させる一方で圧電素子2
3を伸長させ、支持体21を回動させて摩擦ローラ24
のリード角を図中AIに示す状態に傾斜させる。この状
態において、操作装置25からの印加電圧を一定に維持
すれば、各圧電素子22.23は各々の剛性により外力
に拘らず摩擦ローラ24のリード角Atを維持する。従
って、摩擦ローラ24は駆動軸11の回転に追従して周
面を転勤するとともに、リード角A1に応した送りピン
チP1=πdtan(^1)(dは駆動軸11の直径)
で駆動軸11の軸方向に移動し、ヘッド10に対してテ
ーブル20を送りピッチPIで高速に送る。Here, the angle adjusting means 26 allows Il! The feed operation is started by changing the angle of the J-rubbing roller 24. That is, by applying a voltage of opposite polarity to the piezoelectric elements 22 and 23 from the operating device 25, the piezoelectric elements 22 and 23 are contracted, while the piezoelectric elements 22 and 23 are contracted.
3 and rotate the support body 21 to release the friction roller 24.
The lead angle is tilted to the state shown by AI in the figure. In this state, if the voltage applied from the operating device 25 is maintained constant, each piezoelectric element 22, 23 maintains the lead angle At of the friction roller 24 due to its rigidity regardless of external force. Therefore, the friction roller 24 follows the rotation of the drive shaft 11 and moves around the circumference, and the feed pinch P1 corresponding to the lead angle A1 = πdtan (^1) (d is the diameter of the drive shaft 11)
The table 20 is moved in the axial direction of the drive shaft 11, and the table 20 is sent to the head 10 at a high speed at a feed pitch PI.
一方、テーブル20が目標位置近傍まで達したな 。Meanwhile, the table 20 has reached near the target position.
らば、角度調整手段26により摩擦ローラ24のリード
角を小さくし、精密送り動作を行う。すなわち、操作装
置25から印加する電圧値を落とし、各圧電素子22.
23の変位量を小さくすることにより支持体21の回動
を戻して摩擦ローラ24のリード角を図中A2に示す状
態に維持する。この角度調整に伴い、摩擦ローラ24は
リード角へ2に応した送りピッチP2= πd tan
(^2) (P2<Pl)で駆動軸11の軸方向に移
動し、ヘッド10に対してテーブル2oを送りピ。If so, the lead angle of the friction roller 24 is reduced by the angle adjustment means 26 to perform a precision feeding operation. That is, the voltage value applied from the operating device 25 is reduced, and each piezoelectric element 22.
By reducing the amount of displacement of the roller 23, the rotation of the support body 21 is returned and the lead angle of the friction roller 24 is maintained at the state indicated by A2 in the figure. Along with this angle adjustment, the friction roller 24 changes the feed pitch P2=πd tan according to the lead angle 2.
(^2) Move in the axial direction of the drive shaft 11 with (P2<Pl) and feed the table 2o with respect to the head 10.
チP2で精密に送る。Send accurately with Chi P2.
なお、テーブル20を逆向きに送る場合には、操作装置
25から印加する電圧の極性を逆転させ、各圧電素子2
2.23の収縮、伸長を逆転させることにより、支持体
21を逆向きに回動させて摩擦ローラ24のリード角を
図中日の状態などに維持すればよい。Note that when the table 20 is sent in the opposite direction, the polarity of the voltage applied from the operating device 25 is reversed, and each piezoelectric element 2
By reversing the contraction and expansion of 2.23, the support body 21 can be rotated in the opposite direction to maintain the lead angle of the friction roller 24 in the state shown in the figure.
このように構成された本実施例によれば以下に示すよう
な効果を得ることができる。According to this embodiment configured in this way, the following effects can be obtained.
すなわち、角度調整手段26により支持体21を回動さ
せて摩擦ローラ24のリード角を変化させることにより
、駆動軸11の回転が一定のままテーブル20をヘッド
IOに対して任意の送りピッチで送ることができる。That is, by rotating the support body 21 by the angle adjustment means 26 and changing the lead angle of the friction roller 24, the table 20 is sent with respect to the head IO at an arbitrary feed pitch while the rotation of the drive shaft 11 is kept constant. be able to.
このため、送り速度および送り方向を切り換えるにあた
り駆動軸11の回転速度および回転方向を変化させる必
要がなく、一定回転を正確に維持すればよいため、回転
数詞1ffllが容易であり、変速に伴う回転安定待ち
時間が不要となるほか、変速機構等を用いていた従来の
送り機構に比べ、構造の大幅な簡略化が可能である。Therefore, when switching the feed speed and direction, there is no need to change the rotation speed and direction of the drive shaft 11, and it is only necessary to accurately maintain a constant rotation. In addition to eliminating the need for stabilization waiting time, the structure can be significantly simplified compared to conventional feed mechanisms that use a speed change mechanism or the like.
一方、角度調整手段26は圧電素子22.23の収縮、
伸長を利用して支持体21を回転させるものであるため
、摩擦送り機構lの送り動作の切換えは操作装置25か
らの電気的な操作により簡単に行うことができる。On the other hand, the angle adjustment means 26 causes the piezoelectric elements 22, 23 to contract,
Since the support body 21 is rotated using extension, switching of the feeding operation of the friction feeding mechanism 1 can be easily performed by electrical operation from the operating device 25.
また、各圧電素子22.23は、操作装置25から印加
する電圧値の加減により支持体21の回動角度を連続的
に変化させることができ、摩擦ローラ24のリード角を
任意の角度に調整できるとともに、微妙な調整も可能で
ある。Moreover, each piezoelectric element 22, 23 can continuously change the rotation angle of the support body 21 by adjusting the voltage value applied from the operating device 25, and adjust the lead angle of the friction roller 24 to an arbitrary angle. It is also possible to make subtle adjustments.
さらに、各圧電素子22.23は各々の剛性により、1
暴作装置25からの印加電圧が一定に維持されている限
り支持体21を一定状態に支持するため、設定された摩
擦ローラ24のリード角を正確に保つことができるとと
もに、別個にリード角の調整後に支持体21を固定する
機構等を設ける必要がなく、構造を簡略できるとともに
、角度調整時の操作も簡単にできる。Furthermore, each piezoelectric element 22,23 has a stiffness of 1
Since the support body 21 is supported in a constant state as long as the applied voltage from the abuse device 25 is maintained constant, the set lead angle of the friction roller 24 can be maintained accurately, and the lead angle can be adjusted separately. There is no need to provide a mechanism for fixing the support body 21 after adjustment, and the structure can be simplified and the operation when adjusting the angle can be simplified.
第3図および第4図には本発明の他の実施例が示されて
いる。なお、本実施例の基本的な部分は前記第1図の実
施例と略同様であり、共通の部分については同じ符号を
附し、簡略化のため説明を省略する。Another embodiment of the invention is shown in FIGS. 3 and 4. Note that the basic parts of this embodiment are substantially the same as those of the embodiment shown in FIG.
ここで、テーブル20の側面内側には板状の支持体31
が回動軸32を介して回動自在に軸支されている。この
支持体31には摩擦ローラ24が回転自在に支持され、
駆動軸11の周面に圧接されている。なお、支持体31
の回動輪線は、駆動軸11の回転軸線および摩擦ローラ
24の回転軸線のいずれにも交叉するように配置されて
いる。一方、支持体31は上方に延長され、その端部に
は角柱状の圧電素子33の先端が回動連結されている。Here, a plate-shaped support 31 is provided inside the side surface of the table 20.
is rotatably supported via a rotation shaft 32. A friction roller 24 is rotatably supported on this support body 31.
It is pressed against the circumferential surface of the drive shaft 11. Note that the support body 31
The rotating wheel line is arranged to intersect both the rotational axis of the drive shaft 11 and the rotational axis of the friction roller 24. On the other hand, the support body 31 extends upward, and the tip of a prismatic piezoelectric element 33 is rotatably connected to the end thereof.
この圧電素子33の基端はテーブル20の上面内側に回
動連結されており、操作装置25からの印加電圧に応じ
て支持体31を回動させ、摩擦ローラ24のリード角を
調整可能であり、これにより角度調整手段30が構成さ
れている。The base end of this piezoelectric element 33 is rotatably connected to the inside of the upper surface of the table 20, and the lead angle of the friction roller 24 can be adjusted by rotating the support body 31 in accordance with the applied voltage from the operating device 25. , This constitutes the angle adjustment means 30.
このように構成された本実施例によっても摩擦ローラ2
4のリード角を図中AI、 A2. A3等のように変
化させることができ、前記第1図の実施例と略同様な効
果を得ることができる。According to this embodiment configured in this way, the friction roller 2
4 lead angles are AI, A2. A3, etc. can be changed, and substantially the same effect as the embodiment shown in FIG. 1 can be obtained.
また、摩擦ローラ24のリード角の変化は、−本の圧電
素子33の伸縮により行うことができ、冴作装置25か
ら印加する電圧のバランス調整等を省略して角度調整を
より簡単に行うことができる。Further, the lead angle of the friction roller 24 can be changed by expanding and contracting the negative piezoelectric elements 33, and the angle can be adjusted more easily by omitting the balance adjustment of the voltage applied from the servo device 25. I can do it.
さらに、支持体31を回動軸32により回動させるため
、摩擦ローラ24の位置を規制して正確かつ確実に駆動
軸11と圧接させることができ、摩擦ローラ24に与え
られたリード角に基づいてより正確な送り動作が可能で
ある。Furthermore, since the support body 31 is rotated by the rotation shaft 32, the position of the friction roller 24 can be regulated and pressed against the drive shaft 11 accurately and reliably, and based on the lead angle given to the friction roller 24. This enables more accurate feeding operation.
なお、本発明は前記実施例に限定されるものではなく、
次に示すような変形をも含むものである。Note that the present invention is not limited to the above embodiments,
It also includes the following modifications.
すなわち、摩擦送り機構1に設ける摩擦ローラの数は1
個に限らず、駆動軸11を挟んで両側に一対の摩擦ロー
ラ24を対向配置して同時に圧接させてもよ(、あるい
は3個以上の摩擦ローラ24を駆動軸11の周囲に配置
してもよい。That is, the number of friction rollers provided in the friction feed mechanism 1 is 1.
The number of friction rollers 24 is not limited to one, but a pair of friction rollers 24 may be arranged opposite to each other on both sides of the drive shaft 11 and pressed together at the same time (or three or more friction rollers 24 may be arranged around the drive shaft 11). good.
このような場合、摩擦ローラ24の圧接による駆動軸1
1の撓み等を互いに相殺させることができ、高荷重下で
の送り動作等、摩擦ローラ24の駆動軸11に対する圧
接力が要求される場合に有効である。In such a case, the drive shaft 1 due to pressure contact of the friction roller 24
1 can cancel each other out, which is effective when a pressing force of the friction roller 24 against the drive shaft 11 is required, such as in a feeding operation under a high load.
なお、これら一対のFallローラ24は、互いのリー
ド角を一致させてそれぞれ正確な送り動作ができるよう
に設定しておく必要があり、その手段としては、各I1
g!擦ローラ24の支持体を機・載置にリンクさせたり
、あるいは各々の角度調整a構26に操作装置25から
同じ電圧値を印加するといった手段が採用できる。Note that the pair of fall rollers 24 must be set so that their respective lead angles match each other so that accurate feeding operation can be performed.
g! It is possible to adopt means such as linking the support of the rubbing roller 24 to the machine/mounting device, or applying the same voltage value to each angle adjustment mechanism 26 from the operating device 25.
また、支持体の構造は前記各実施例に限らず、実施にあ
たって適宜選択すればよいが、圧電素子の変位に応じて
円滑に動作でき、かつ座屈や不必要な変形が生じないよ
うに適当な強度を持たせることが好ましく、少なくとも
角度調整手段により与えられた摩擦ローラのリード角を
正確に維持できるように構成することが望ましい。Furthermore, the structure of the support body is not limited to the above embodiments, and may be selected as appropriate in practice, but it should be appropriately selected so that it can operate smoothly in accordance with the displacement of the piezoelectric element and does not cause buckling or unnecessary deformation. It is preferable that the friction roller has sufficient strength, and is desirably configured such that at least the lead angle of the friction roller given by the angle adjustment means can be accurately maintained.
さらに、摩擦送り機構1の駆動軸11は常時一定回転数
で回転されるものに限らず、回転数可変式のモータ15
により回転駆動されるものであってもよく、簡単な構造
のまま一層幅広い送り速度変化を得ることができる。Furthermore, the drive shaft 11 of the friction feed mechanism 1 is not limited to one that is always rotated at a constant rotation speed, but is also driven by a variable rotation speed motor 15.
It may also be rotationally driven by, and a wider range of feed rate changes can be obtained with a simple structure.
一例として、前記実施例において、モータ15に4相ハ
イブリツド型ステツプモークを用いた場合について説明
する。As an example, a case will be explained in which a four-phase hybrid step motor is used as the motor 15 in the above embodiment.
このモータ15は、定電流チョッパ駆動時には最高速度
20回転/秒程度の高速回転を行い、定電圧ミニステッ
プ駆動時には最小分解能10000パルス/回転程度の
精密回転を実現可能である。ここで、FJ iffロー
ラ24のリード角AI、 A2の設定を、駆動軸11の
一回転あたりの送りピッチP1が5mm、送りピッチP
2がIIとなるように設定すると、モータ15の高速回
転時にリード角を^1.^2に設定することにより最高
速度は100mm/sec、 20mm/secと変化
する。また、モータ15の精密回転時にリード角を八1
゜八2に設定することにより最小分解能は0.5μm/
パルス、0.1μm/パルスに変化する。このように、
モータ15自体の動作切換えに加えて摩擦ローラ24の
リード角調整を行うことにより、高速送りの速度調整や
精密送りの分解能の微調整が行え、状況に応した多様な
送り動作が可能となる。This motor 15 performs high-speed rotation at a maximum speed of about 20 revolutions/second when driven by a constant current chopper, and can realize precise rotation with a minimum resolution of about 10,000 pulses/rotation when driven by a constant voltage mini-step. Here, the lead angles AI and A2 of the FJ if roller 24 are set such that the feed pitch P1 per rotation of the drive shaft 11 is 5 mm, and the feed pitch P
2 becomes II, the lead angle becomes ^1. when the motor 15 rotates at high speed. By setting ^2, the maximum speed changes from 100mm/sec to 20mm/sec. Also, when the motor 15 is precisely rotated, the lead angle is set to 81.
By setting ゜82, the minimum resolution is 0.5μm/
Pulse, change to 0.1 μm/pulse. in this way,
By adjusting the lead angle of the friction roller 24 in addition to switching the operation of the motor 15 itself, it is possible to adjust the speed of high-speed feed and finely adjust the resolution of precision feed, making it possible to perform a variety of feed operations depending on the situation.
その他、摩擦送り機構1が適用される相対移動する二部
材はベツドlOおよびテーブル20に限らず、例えば工
作機械のコラムとへノド等であってもよく、本発明は多
様な送り動作部分に適用できるものである。In addition, the two members that move relative to each other to which the friction feed mechanism 1 is applied are not limited to the bed lO and the table 20, but may also be, for example, the column and hen of a machine tool, and the present invention is applicable to various feed operation parts. It is possible.
〔発明の効果]
以上に説明したように、本発明の摩擦送り機構によれば
1、送りピンチを正確かつ簡単に変更でき、変更後の送
りピッチを正確に維持できるとともに、構造を簡略化で
きる。[Effects of the Invention] As explained above, according to the friction feed mechanism of the present invention, 1. The feed pinch can be changed accurately and easily, the feed pitch after the change can be accurately maintained, and the structure can be simplified. .
第1図は本発明の一実施例を示す側面図、第2図は前記
第1図の■−■線を示す断面図、第3図は本発明の他の
実施例を示す側面図、第4図は前記第3図のIV−IV
線を示す断面図である。
1・・・摩擦送り機構、2・・・案内機構、to、 2
0・・・(口封移動する二部材であるベツドおよびテー
ブル、11・・・駆動軸、21.31・・・支持体、2
2.23.33・・・圧電素子、24・・・摩擦ローラ
、25・・・操作装置、26.30・・・角度調整手段
。FIG. 1 is a side view showing one embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIG. 3 is a side view showing another embodiment of the present invention. Figure 4 shows IV-IV in Figure 3 above.
It is a sectional view showing a line. 1... Friction feed mechanism, 2... Guide mechanism, to, 2
0... (Bed and table which are two members that move the seal, 11... Drive shaft, 21. 31... Support body, 2
2.23.33... Piezoelectric element, 24... Friction roller, 25... Operating device, 26.30... Angle adjustment means.
Claims (1)
設け、他方の部材には各々前記駆動軸の周面に転動する
摩擦ローラを設け、この摩擦ローラを駆動軸に対するリ
ード角が変化する方向に回動可能な支持体に支持すると
ともに、この支持体には圧電素子の変位により当該支持
体を回動させる角度調整手段を設けたことを特徴とする
摩擦送り機構。(1) One of the two relatively movable members is provided with a rotating drive shaft, and the other member is provided with a friction roller that rolls on the circumferential surface of the drive shaft, and the friction roller is set at a lead angle with respect to the drive shaft. A friction feed mechanism, characterized in that it is supported on a support that is rotatable in changing directions, and that the support is provided with an angle adjustment means that rotates the support by displacement of a piezoelectric element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14664788A JPH01316146A (en) | 1988-06-13 | 1988-06-13 | Friction feed mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14664788A JPH01316146A (en) | 1988-06-13 | 1988-06-13 | Friction feed mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01316146A true JPH01316146A (en) | 1989-12-21 |
Family
ID=15412462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14664788A Pending JPH01316146A (en) | 1988-06-13 | 1988-06-13 | Friction feed mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01316146A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020085515A1 (en) * | 2018-10-26 | 2020-04-30 | イースロジック株式会社 | Power transmission device and power transmission method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61209846A (en) * | 1985-03-11 | 1986-09-18 | Yotaro Hatamura | Fine positioning device |
-
1988
- 1988-06-13 JP JP14664788A patent/JPH01316146A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61209846A (en) * | 1985-03-11 | 1986-09-18 | Yotaro Hatamura | Fine positioning device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020085515A1 (en) * | 2018-10-26 | 2020-04-30 | イースロジック株式会社 | Power transmission device and power transmission method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5643957B2 (en) | Piezoelectric actuator mechanism | |
US20040065130A1 (en) | Spring manufacturing appatarus and driving force transmitting component mounted on the apparatus | |
JPH02262876A (en) | Piezoelectric rotery device | |
JPH01316146A (en) | Friction feed mechanism | |
JPH10277985A (en) | Positioning device | |
JPH01316145A (en) | Friction feed mechanism | |
JPH01274943A (en) | Driving device for movable table | |
JPH05138484A (en) | Precision positioning fine moving feed device and system | |
JPS5919616A (en) | Variable tool-diameter type spindle apparatus | |
JP2777687B2 (en) | Pre-processing method and pre-processing device for wire rod | |
JP4585339B2 (en) | Roll forming device | |
JPS62120974A (en) | Table feed device | |
JPH02225854A (en) | Static-pressure fluid bearing | |
JP2551886B2 (en) | Electrode thread cutting machine | |
JP3074580B2 (en) | Deburring grinding device | |
US3411491A (en) | Machining apparatus for dressing devices | |
JP2595381B2 (en) | Table positioning device | |
JP2001162467A (en) | Machine tool | |
JP2000015449A (en) | Welding torch having variable rotational radius | |
JPH067864Y2 (en) | 4-axis control wire cut electric discharge machine | |
JPH0360929A (en) | Electric discharging machine | |
JPH068059A (en) | Electric discharge machine | |
JPS61155901A (en) | Probe type measuring machine | |
JP4367697B2 (en) | Cam type tailstock | |
JP2001328029A (en) | Sending mechanism of wire electrode in wire electric discharge machine |