[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01307617A - Method and device for installing cross section measuring instrument and method for detecting its installed position - Google Patents

Method and device for installing cross section measuring instrument and method for detecting its installed position

Info

Publication number
JPH01307617A
JPH01307617A JP13846388A JP13846388A JPH01307617A JP H01307617 A JPH01307617 A JP H01307617A JP 13846388 A JP13846388 A JP 13846388A JP 13846388 A JP13846388 A JP 13846388A JP H01307617 A JPH01307617 A JP H01307617A
Authority
JP
Japan
Prior art keywords
cross
measuring device
laser beam
reference laser
section measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13846388A
Other languages
Japanese (ja)
Other versions
JP2635103B2 (en
Inventor
Takashi Okada
喬 岡田
Yutaka Tokorozawa
豊 所沢
Motoo Tsunoda
角田 素男
Masamitsu Ishiguchi
石口 真実
Tadanobu Kashiwa
忠信 柏
Kiyoshi Udagawa
宇田川 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Fuji Bussan KK
Original Assignee
Kumagai Gumi Co Ltd
Fuji Bussan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd, Fuji Bussan KK filed Critical Kumagai Gumi Co Ltd
Priority to JP63138463A priority Critical patent/JP2635103B2/en
Publication of JPH01307617A publication Critical patent/JPH01307617A/en
Application granted granted Critical
Publication of JP2635103B2 publication Critical patent/JP2635103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/06Tracing profiles of cavities, e.g. tunnels

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To correctly install a cross section measuring instrument from a reference laser beam, and also, to simply detect its position by reflecting the reference laser beam at a right angle against its optical axis, and determining the installed position of the cross section measuring instrument so that a prescribed part of the cross section measuring instrument is irradiated by its reflected light. CONSTITUTION:A reflecting device 10 which is provided with a mirror and reflects a reference laser beam l so that an angle of reflection goes to a right angle against its optical axis, and a cross section measuring instrument 1 provided with a measuring instrument body 2 which is installed in a prescribed position in a tunnel and executes a measurement and a measuring head 3 are used. The reflecting device 10 is provided so that its movement can be adjusted in the vertical direction and the horizontal direction by a supporting leg 12, and also, it can turn centering around the vertical axis and the horizontal axis, respectively. The measuring head 3 is rotatable against the measuring instrument body 2, the reference laser beam whose optical axis is reflected at a right angle by the reflecting device 10 is adjusted by using collimating plates 7, 8, and the installed position of the cross section measuring instrument 1 is determined. In such a way, a rotation axis of the measuring head 3 and the reference beam l, namely, a tunnel axis become parallel to each other.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定面に対して基準レーザー光線が既設さ
れている場所における、被測定面までの距離を測定して
断面形状を得る断面測定器の設置方法及び装置並びにそ
の設置位置を検出する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to cross-sectional measurement in which the distance to the surface to be measured is measured and the cross-sectional shape is obtained at a location where a reference laser beam is already installed for the surface to be measured. The present invention relates to a method for installing a device, a device, and a method for detecting its installation position.

〔従来技術〕[Prior art]

従来、トンネルを掘る等の工事において、切羽側ではト
ンネル掘削方向における断面形状の管理のだめの基準の
レーザー光線を投光している。このレーザー光線は、予
め測量で座標位置が検知されており、上記管理の一つと
して、この光から例えば何十■離れた所まで掘るという
基準の光線である。このため、基準のレーザー光線は比
較的トンネルの壁面に近傍した位置に投光されているこ
とが多い。
Conventionally, in construction work such as digging a tunnel, a laser beam is emitted on the face side as a reference for controlling the cross-sectional shape in the tunnel excavation direction. The coordinate position of this laser beam has been detected in advance through surveying, and as part of the above-mentioned management, it is a standard beam that is used to dig up to a distance of, for example, several dozen square meters from this laser beam. For this reason, the reference laser beam is often projected at a position relatively close to the tunnel wall.

また、トンネルの断面や法面の断面等を測定する断面測
定器として、上記した形式の断面測定器がよく用いられ
ている。この種の断面測定器の1つとして、不可視光線
の波に載ったレーザーパルスを被測定物に向って発射し
、そして被測定物に当って反射した速度の平均値を算出
し、被測定物までの距離を検出するものが既に知られて
いる。
Further, the above-mentioned type of cross-section measuring device is often used as a cross-section measuring device for measuring the cross-section of a tunnel, the cross-section of a slope, etc. As one of this type of cross-section measuring instrument, a laser pulse carried by waves of invisible light is emitted toward the object to be measured, and the average value of the velocity of the reflected beams hitting the object is calculated. There are already known methods for detecting distances.

この場合、測定器はレーザーパルスを発射して受光する
測定ヘッドが測定器本体の軸に装着され。
In this case, the measuring device has a measuring head that emits and receives laser pulses attached to the shaft of the measuring device.

この軸の回りを所定角度毎に最大360度回転して測定
することができる。即ち、測定ヘッドが所定角度毎に測
定し、それを1回転するまで行うことができる。それに
よって、トンネルの断面形状等を測定することができる
ものである。従って、上記断面測定器を用いしば、所定
位置の断面形状が短時間で測定でき、極めて有利である
Measurements can be made by rotating the device around this axis by up to 360 degrees at predetermined angles. That is, the measuring head can measure every predetermined angle and can perform this measurement until it makes one rotation. Thereby, the cross-sectional shape of the tunnel, etc. can be measured. Therefore, the use of the cross-section measuring device described above is extremely advantageous because the cross-sectional shape at a predetermined position can be measured in a short time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、この断面測定器を適宜位置に設置してトンネ
ルの断面形状が検出できても、トンネル軸に対し、測定
方向が垂直になるように置かれていなければ、正確な測
定ができない。
However, even if the cross-sectional shape of the tunnel can be detected by installing this cross-sectional measuring device in an appropriate position, accurate measurements cannot be made unless the measuring device is placed so that the measuring direction is perpendicular to the tunnel axis.

このため、従来では断面測定器の測定方向がトンネル軸
に対して垂直になるように置かれたかを知る必要がある
が、それを調べるのは困難で手間のかかる作業となって
いた。
For this reason, in the past, it was necessary to know whether the measurement direction of the cross-section measuring instrument was placed perpendicular to the tunnel axis, but checking this was difficult and time-consuming work.

また、断面測定器の設置をトンネル軸に対し、測定方向
が垂直になるように置いてもその位置を検出できなけれ
ば、そのトンネルかの断面形状が正しいか否かは判別で
きない、このため、測定器の設置位置の座標を正確に知
る必要があるが、その設置位置の検出も困難で手間のか
かる作業となっていた。
Furthermore, even if the cross-section measuring device is installed so that the measurement direction is perpendicular to the tunnel axis, if its position cannot be detected, it cannot be determined whether the cross-sectional shape of the tunnel is correct or not. Although it is necessary to accurately know the coordinates of the installation location of the measuring device, detecting the installation location is also difficult and time-consuming work.

本発明はかかる問題を解決しようとするもので、上記し
た基準のレーザー光線から断面測定器を正しく設置し、
その設置位置を簡単に検出することのできる検出方法及
び装置を提供することを目的としている。
The present invention aims to solve this problem by correctly installing a section measuring device from the above-mentioned reference laser beam, and
It is an object of the present invention to provide a detection method and device that can easily detect the installation position.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の断面測定器の設置
方法においては、基準レーぜ一光線をその光軸に対して
反射角が直角になるように反射させ、その反射した基準
レーザー光線に対し、前記断面測定器の所定箇所が当る
ように断面測定器の設置位置を決めることである。
In order to achieve the above object, in the method for installing a cross-section measuring instrument of the present invention, a reference laser beam is reflected so that the reflection angle is perpendicular to its optical axis, and the reflected reference laser beam is , the installation position of the cross section measuring device is determined so that the cross section measuring device hits a predetermined location.

本発明の断面測定器の設置装置においては、ミラーを備
え基準レーザー光線をその光軸に対して反射角が直角に
なるように反射させる反射装置と、前記断面測定器の所
定位置に設けられ、反射した基準レーザー光線を照準す
るターゲットとを有することを特徴としている。
The cross section measuring device installation device of the present invention includes a reflecting device that includes a mirror and reflects the reference laser beam so that the reflection angle is perpendicular to its optical axis; It is characterized by having a target to which the reference laser beam is aimed.

また、断面測定器が、測定器本体と、該本体に回転可能
な測定ヘッドとを備え、該測定ヘッドに前記ターゲット
を取外し可能に取付けられていることを特徴としている
Further, the cross-sectional measuring instrument is characterized in that it includes a measuring instrument main body and a rotatable measuring head on the main body, and the target is removably attached to the measuring head.

更にまた1本発明の断面測定器の設置位置を検出する方
法においては基準レーザー光線をその光軸に対して反射
角が直角になるように反射させ。
Furthermore, in a method for detecting the installation position of a cross-sectional measuring device according to the present invention, a reference laser beam is reflected so that the reflection angle is perpendicular to its optical axis.

その反射した基準レーザー光線が断面測定器の所定箇所
が当るように断面測定器の設置位置を決め。
Determine the installation position of the cross-section measuring device so that the reflected reference laser beam hits a predetermined location on the cross-section measuring device.

その際基準レーザー光線の出射角と水平面とでなす角度
を検出し、更に断面測定器の所定点から基準レーザー光
線の反射点までの距離を計測し、該距離と上記角度とか
ら断面測定器の設置位置の座標を検出することを特徴と
している。
At that time, the angle formed by the emission angle of the reference laser beam and the horizontal plane is detected, and the distance from the predetermined point of the cross-section measuring device to the reflection point of the reference laser beam is measured, and the installation position of the cross-section measuring device is determined from the distance and the above angle. It is characterized by detecting the coordinates of.

更にまた、基準レーザー光線の出射角と水平面とでなす
角度及び前記断面測定器の所定点から基準レーザー光線
の反射点までの距離を、断面測定器を用いて計測するこ
とを特徴としている。
Furthermore, the present invention is characterized in that the angle formed by the emission angle of the reference laser beam and a horizontal plane and the distance from a predetermined point of the cross-section measuring device to a reflection point of the reference laser beam are measured using a cross-section measuring device.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面に従って説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において、符号1は断面測定器であり、この断面
測定器1は測定器本体2と図示していない支軸の回りを
回転可能に装着された測定ヘッド3とを有している。測
定ヘッド3には、不可視光線の波に多数のレーザーパル
スとして構成された測定波を載せて発射する発信部4と
、測定対象物に当って反射したレーザーパルスを受ける
受信部5と、上記発信部4が発射するレーザパルスと所
定間隔をもって平行な例えばレーザー光の可視光線を投
射する投射部6とを備えている。断面測定器1は、その
測定中に投射部6の可視光線を投射し、その測定位置を
目視によって確認できるようになっている。
In FIG. 1, reference numeral 1 denotes a cross-sectional measuring instrument, and the cross-sectional measuring instrument 1 has a measuring instrument main body 2 and a measuring head 3 rotatably mounted around a support shaft (not shown). The measurement head 3 includes a transmitter section 4 that emits a measurement wave composed of a large number of laser pulses on an invisible light wave, a receiver section 5 that receives the laser pulses reflected by the object to be measured, and a receiver section 5 that receives the laser pulses reflected by the object to be measured. The projection unit 6 includes a projection unit 6 that projects visible light, for example, a laser beam, parallel to the laser pulse emitted by the unit 4 at a predetermined interval. The cross-section measuring instrument 1 projects visible light from a projection section 6 during measurement, so that the measurement position can be visually confirmed.

本発明は、先に説明した予め測量によって投光位置の座
標が確認されている基準のレーザー光線(以下、基準光
線Ωと称す。)から上記断面測定器1の設置位置を決め
、かつその位置を検出するものであり、本例では被測定
面をトンネルの内部断面の形状を測定する実施例に基づ
き説明する。
The present invention determines the installation position of the cross section measuring device 1 from a reference laser beam (hereinafter referred to as reference beam Ω) whose projection position coordinates have been confirmed by surveying in advance as described above, and also determines the position. In this example, the surface to be measured will be explained based on an example in which the shape of the internal cross section of a tunnel is measured.

第2図において、既設されている基準光M<Qは例えば
トンネル内右隅近くに投光され、その投光方向はトンネ
ル軸方向、即ちトンネルの掘る方向と同一方向に設定さ
れている1本発明は、この基準光線2を後に詳述する反
射装置10によって直角に反射させ、その反射光Q′を
断面測定器1の所定箇所に当てる。本例では、第1図及
び第3図に示すように断面測定器の測定ヘッド3に2枚
の平行に配置した照準板7,8を設け、この照準板7に
照準糸7a及び照準板8に印した照準線8aに当てる。
In Fig. 2, the existing reference light M<Q is projected near the right corner of the tunnel, for example, and the direction of the light is set in the direction of the tunnel axis, that is, in the same direction as the direction in which the tunnel is dug. In the invention, this reference light beam 2 is reflected at right angles by a reflection device 10, which will be described in detail later, and the reflected light Q' is applied to a predetermined location of the cross-section measuring instrument 1. In this example, as shown in FIGS. 1 and 3, two aiming plates 7 and 8 arranged in parallel are provided on the measuring head 3 of the cross-section measuring instrument, and the aiming plate 7 has an aiming thread 7a and an aiming plate 8. Hit the aiming line 8a marked in .

この場合、断面測定器1を後述するX−Y方向に平行移
動可能でかつ旋回可能な支持装置によって、断面測定器
1自体を移動し、上記照準板7,8に基準光線Qを照準
させる。なお、照準板7は切り欠いた部分に照準糸7a
が張設され、照準板7を通過した光が照準板8に当たる
ように構成されている。また、照準糸7a及び照準線8
aは受信部5の受信方向で、かつ測定ヘッド3の回転軸
と直交する平面内であり、その回転軸の中心から予め定
めた位置に印が付されている。
In this case, the cross-section measuring instrument 1 itself is moved by a supporting device that can move the cross-section measuring instrument 1 in parallel in the X-Y directions and can turn, which will be described later, to aim the reference beam Q at the aiming plates 7 and 8. Note that the aiming plate 7 has an aiming thread 7a in the notched part.
is stretched so that the light passing through the sighting plate 7 hits the sighting plate 8. In addition, the aiming thread 7a and the aiming line 8
a is in the receiving direction of the receiving section 5 and within a plane perpendicular to the rotational axis of the measuring head 3, and a mark is placed at a predetermined position from the center of the rotational axis.

上記した反射装置10は、第2図に示すように支持装置
11に支持されている0本例の場合、支持装置11は支
持脚12を有し、該支持脚12に垂直方向と水平方向に
移動調節可能で、かつ垂直軸と水平軸とを夫々中心とし
て別々に回動可能な調節袋!(図示せず)を介して反射
装置10が支持されている。
As shown in FIG. 2, the above-mentioned reflecting device 10 is supported by a support device 11. In this case, the support device 11 has a support leg 12, and the support device 11 has a support leg 12, and the support device 11 has support legs 12 that are attached to the support leg 12 in the vertical and horizontal directions. An adjustable bag that can be moved and rotated separately around the vertical and horizontal axes! The reflection device 10 is supported via a (not shown).

反射装置10は、第4図に示すように支持板13を備え
、支持板13は上記した調整装置に着脱可能に連結され
ている。支持板13には軸14を介してブラケット15
が矢印A方向に回動可能に装着されてる。この場合、軸
14は第4図において支持板13の右端近くな配置され
、支持板13の左端側には第1調整ネジ16とバネ17
とが設けられている。第1調整ネジ16は、第4図及び
第6図に示すように、支持板13を貫通し、その先端が
ブラケット15に当接されている。また、バネ17は第
1・調整ネジ16のブラケット15への当接を保持する
ようにブラケット15を軸14を中心として第4図にお
ける時計方向への回動作用を付勢している。
The reflecting device 10 includes a support plate 13, as shown in FIG. 4, and the support plate 13 is removably connected to the above-mentioned adjustment device. A bracket 15 is attached to the support plate 13 via a shaft 14.
is attached so that it can rotate in the direction of arrow A. In this case, the shaft 14 is arranged near the right end of the support plate 13 in FIG.
and is provided. As shown in FIGS. 4 and 6, the first adjustment screw 16 passes through the support plate 13, and its tip abuts against the bracket 15. Further, the spring 17 urges the bracket 15 to rotate clockwise in FIG. 4 about the shaft 14 so as to keep the first adjustment screw 16 in contact with the bracket 15.

ブラケット15には、照準筒18の両端が後述するよう
にブラケット15の腕部15a、15bに取付けられて
いる。この照準筒18は、第8図に明示するように1両
端部分が円筒状の円筒部18a、18bに、中間部分は
正四角形の角筒状の角筒部18cに形成されている。
Both ends of the aiming barrel 18 are attached to arm portions 15a and 15b of the bracket 15, as will be described later. As clearly shown in FIG. 8, this aiming barrel 18 has one end portion formed into cylindrical portions 18a and 18b, and an intermediate portion formed into a square tube portion 18c having a square tube shape.

他方、ブラケット15の腕部15a、15bは、矩形の
枠体に形成され(第6図及び第7図参照)、腕部15a
内には支持片19がピン20を介して回動可能に装着さ
れている。また、腕部15b内には支持片21がスライ
ド可能に装着され、そのスライド方向は照準筒18がピ
ン20を中心としての回動を許容する方向になっている
。各支持片19.21には、円形の孔が形成され、この
孔に照準筒18の円筒部18a、18bが回転可能に嵌
合されている。
On the other hand, the arm portions 15a and 15b of the bracket 15 are formed into rectangular frames (see FIGS. 6 and 7), and the arm portions 15a and 15b are
A support piece 19 is rotatably mounted inside via a pin 20. Further, a support piece 21 is slidably mounted within the arm portion 15b, and its sliding direction is a direction that allows the aiming tube 18 to rotate about the pin 20. A circular hole is formed in each support piece 19.21, into which the cylindrical portions 18a, 18b of the sight tube 18 are rotatably fitted.

上記の如く、照準筒18は一端側が支持片19を介して
ピン20を中心な回動可能となり、他端側はスライド可
能できるが、このスライドを調整する2本の第2調整ネ
ジ22がブラケット15の腕15bに設けられている(
第7図参照)。この第2の調整ネジ22はスライド方向
の前後に夫々設けられていて、腕15bを貫通し、先端
を夫々支持片21に突き当てている。なお、符号23は
止めリングであり、照準筒18が支持片21から抜ける
ことを防止する用をなしている。
As mentioned above, one end of the aiming barrel 18 can be rotated around the pin 20 via the support piece 19, and the other end can be slid, but the two second adjustment screws 22 for adjusting this sliding are attached to the bracket. 15 arm 15b (
(See Figure 7). The second adjustment screws 22 are provided at the front and rear in the sliding direction, pass through the arm 15b, and have their tips abutted against the support pieces 21, respectively. Incidentally, reference numeral 23 is a retaining ring, which serves to prevent the aiming barrel 18 from coming off from the support piece 21.

照準筒18には、その内部の前後端に規準糸14が十字
状に張設され、その交点が規準点となって円筒部18a
、18bの中心に位置される。また、角筒部18cには
第4図に示すようにその長手方向に対し、45°に傾斜
して形成されたスリット25が形成され、そのスリット
25に第8図に示すようにミラー26が着脱可能に挿看
される。
A reference thread 14 is stretched in a cross shape at the front and rear ends of the aiming cylinder 18, and the intersection thereof serves as a reference point, and the cylindrical portion 18a
, 18b. Further, as shown in FIG. 4, a slit 25 is formed in the rectangular tube portion 18c at an angle of 45 degrees with respect to its longitudinal direction, and a mirror 26 is formed in the slit 25 as shown in FIG. It is inserted in a removable manner.

また、角筒部18cの基準光線Qの反射光Q′が投射側
には確認板27が固着され、その角筒部18c及び確認
板27の所定位置には光が通過する通孔28が穿孔され
ている。この確認板27には断面測定器1の可視光線を
当て、反射光Q′が正しく断面測定器lの照準板7,8
に照準されたかを確認するための印27aが付されてい
る。
Further, a confirmation plate 27 is fixed to the side from which the reflected light Q' of the reference beam Q of the square tube part 18c is projected, and a through hole 28 through which the light passes is bored at a predetermined position of the square tube part 18c and the confirmation plate 27. has been done. This confirmation plate 27 is irradiated with visible light from the cross-section measuring device 1, and the reflected light Q' is correctly detected by the aiming plates 7 and 8 of the cross-section measuring device L.
A mark 27a is attached to confirm that the target is aimed at.

上記ブラケット15には、照準筒18を回転するための
第3調整ネジ29が設けられ、第3調整ネジ29は第4
図及び第6図に明示するようにジヨイント30.31を
介して夫々連結片、32.33を介してブラケット15
と照準筒18連結されている。このジヨイント30.3
1は、第3調整ネジ29を操作し、照準筒18が回転さ
れて第3調整ネジ29と連結片32.33との角度が変
化してもその連結を保持する用をなしている。
The bracket 15 is provided with a third adjustment screw 29 for rotating the aiming barrel 18, and the third adjustment screw 29 is provided with a fourth adjustment screw 29.
As clearly shown in the figures and FIG.
and the sighting tube 18 are connected. This joint 30.3
1 serves to maintain the connection even if the third adjustment screw 29 is operated and the aiming tube 18 is rotated and the angle between the third adjustment screw 29 and the connection pieces 32, 33 changes.

次に、断面測定器1の支持装置について説明する。Next, a support device for the cross-sectional measuring instrument 1 will be explained.

本実施例における支持装置は第9図に示すように夫々長
さ調整可能な調整部34aを有する3本の脚34が取付
けられた第1の支台35と、該第1の支台35上に調整
ボルト36を介して設けられた第2の支台37と、該第
2の支台37に取付けられたX−Yテーブル38として
の支持テーブルとから構成されている。この場合、上記
第1の支台35及び第2の支台37にはその支持面が水
平であることを検知する水準器(図示せず)が付設され
ている。また、X−Yテーブル38上には上記した断面
測定器1が高精度の平行度を保ち回転可能にして載置さ
れている。
As shown in FIG. 9, the support device in this embodiment includes a first support 35 on which three legs 34 each having an adjustable length 34a are attached, and a top of the first support 35. It is comprised of a second support 37 provided through adjustment bolts 36, and a support table as an X-Y table 38 attached to the second support 37. In this case, a level (not shown) is attached to the first support 35 and the second support 37 to detect whether the support surfaces thereof are horizontal. Further, on the X-Y table 38, the above-mentioned cross-section measuring device 1 is placed so as to be rotatable while maintaining highly accurate parallelism.

上記断面測定器1及び反射装置10は、上記の如く構成
され、次にその装置に用いてトンネル内の断面を測定す
る際の設置方法について説明する。
The cross section measuring device 1 and the reflection device 10 are constructed as described above, and the installation method for measuring a cross section inside a tunnel using the device will be described next.

先に説明したようにトンネルを掘る場合、切羽側では測
量で予め位置が認識できる基準光線Qがトンネル側面の
近傍に対し1反射装置10を次の如くして設置する。
When digging a tunnel as described above, on the face side, a reference light beam Q whose position can be recognized in advance by surveying is installed near the side of the tunnel as follows.

最初に支持装置11を操作して反射装置10の照準筒1
8内に基準光線Qを通過するように大まかせにセットす
る。そして、支持脚12と反射装置10の間に設けた調
整装置により、照準筒18の円筒部18a側の規準糸2
4の規準点に基準光線Ωが当るように調整する。この調
整により、照準筒18の円筒部18a側の位置が確定す
る。しかし、円筒部18b側は基準光線Qが円筒部18
内を通る程度にセットされているので円筒部18a側の
規準糸24の規準点からずれている場合が多い。
First, operate the support device 11 to locate the aiming barrel 1 of the reflector 10.
Roughly set the reference beam Q so that it passes within 8. Then, the adjustment device provided between the support leg 12 and the reflection device 10 adjusts the reference thread 2 on the cylindrical portion 18a side of the aiming tube 18.
Adjust so that the reference beam Ω hits the reference point 4. Through this adjustment, the position of the aiming tube 18 on the cylindrical portion 18a side is determined. However, on the cylindrical portion 18b side, the reference beam Q is
Since it is set to such an extent that it passes through the inside, it is often deviated from the reference point of the reference thread 24 on the cylindrical portion 18a side.

そこで、まず、第1調整ネジ16により、第6図の左右
方向の調整を行う、このとき、軸14を介してブラケッ
ト15の腕15b側がその左右方向へ移動し、規準糸2
4の縦糸に基準光線Qが当るように調節する。そして、
その調節後、第2調整ネジ22.23を操作して照準筒
18の円筒部18b側をブラケット15に対し、第6図
の上下方向へ調節移動する。このとき、照準筒18の円
筒部18b側はピン20を介して上下動される。
Therefore, first, the first adjustment screw 16 is used to adjust the horizontal direction in FIG.
Adjust so that the reference light beam Q hits the warp thread 4. and,
After the adjustment, the second adjusting screws 22 and 23 are operated to adjust and move the cylindrical portion 18b side of the aiming barrel 18 in the vertical direction in FIG. 6 with respect to the bracket 15. At this time, the cylindrical portion 18b side of the aiming tube 18 is moved up and down via the pin 20.

このように、反射装置10は照準筒18の円筒部18a
における規準糸24の規準点に基準光線Qを当てれば、
その反対側である円筒部18b側を調整する際に、その
調整移動の中心が円筒部18a側にあるため、規準が極
めて簡単に行い得る。
In this way, the reflector 10 has the cylindrical portion 18a of the aiming barrel 18.
If the reference light beam Q is applied to the reference point of the reference thread 24 in ,
When adjusting the opposite side, that is, the cylindrical part 18b, the center of the adjustment movement is on the cylindrical part 18a, so the standard can be very easily adjusted.

即ち、照準筒18の両端を同時に基準光線Qに規準させ
る方式であると、一方が規準しても他方がずれ易く、規
準させるまでに多くの時間を費すが本実施例ではこのよ
うな問題を生ずることがない。
In other words, if both ends of the aiming barrel 18 are simultaneously aligned with the reference beam Q, even if one side is aligned, the other is likely to shift, and it takes a lot of time to align them, but this embodiment solves this problem. will not occur.

かくして、照準筒18が基準光線Qに照準されると、ミ
ラー26をスリット25に挿着する。このとき、ミラー
26は基準光線Qの光軸に対し45″の角度に設定され
ているため、基準光線Qは90″反射されて通孔28を
介してトンネルの中央側へ投射される。
Thus, when the aiming tube 18 is aimed at the reference beam Q, the mirror 26 is inserted into the slit 25. At this time, since the mirror 26 is set at an angle of 45'' with respect to the optical axis of the reference beam Q, the reference beam Q is reflected by 90'' and is projected toward the center of the tunnel through the through hole 28.

次に、反射装置10の第3調整ネジ29を操作すると、
照準筒18が支持片19.21に対して回転する。この
とき、照準−筒18の中心に基準光線Qが規準されてい
るので、照準筒18は基準光線Ωを中心として回転する
こととなる。従って、照準筒18を回転しても基準光線
Qの規準を損うことなく1反射光Q′を上下へ向けられ
る。しかも、基準光線Qとミラー26の角度も変化しな
いため、基準光線Qと反射光Q′との直角度は保たれる
Next, when the third adjustment screw 29 of the reflection device 10 is operated,
The aiming barrel 18 rotates relative to the support piece 19.21. At this time, since the reference beam Q is set at the center of the aiming tube 18, the aiming tube 18 rotates around the reference beam Ω. Therefore, even if the aiming barrel 18 is rotated, one reflected light beam Q' can be directed upward or downward without compromising the standard of the reference light beam Q. Furthermore, since the angle between the reference ray Q and the mirror 26 does not change, the perpendicularity between the reference ray Q and the reflected light Q' is maintained.

そこで、第3調整ネジ29を操作し反射光Q′の向きを
下方へ向けて地面に当て5反射光α′で断面測定器1の
設置場所を大まかに教える。そして、その教えられた場
所に反射光Ω′を上に向けたとき、光がほぼ照準板7,
8に当たるような位置に断面測定器1を設置すればよい
Then, by operating the third adjustment screw 29, the direction of the reflected light Q' is directed downward, and the reflected light Q' is applied to the ground to roughly indicate the installation location of the section measuring instrument 1 using the reflected light α'. Then, when the reflected light Ω' is directed upward at the indicated location, the light is almost at the sight plate 7,
The cross section measuring device 1 may be installed at a position corresponding to 8.

かくして、断面測定器1の設置場所が大まかに決ると1
次に断面測定器1の支持する第1の支台35と第2の支
台36とを順次水平になるように水準器により調整する
In this way, when the installation location of the cross section measuring device 1 is roughly determined, 1
Next, the first pedestal 35 and the second pedestal 36 supported by the cross-section measuring device 1 are sequentially adjusted using a level so that they are horizontal.

次に、第3調整ネジ29により反射光Q′の向きを上方
へ向ける。そして、反射光Q′が照準板7の照準糸7a
及び照準板8の照準線8aに反射光a′が当たるように
、断面測定器1を回転して方向を、X−Yテーブル38
を操作して位置を調節して断面測定器1の設置位置を決
める。このとき、断面測定器1の可視光線りが認確板2
7の印27aに当たれば、上記平行が得られることを確
認できる。
Next, the direction of the reflected light Q' is directed upward using the third adjustment screw 29. Then, the reflected light Q' is reflected by the aiming thread 7a of the aiming plate 7.
Then, rotate the cross-section measuring device 1 and change the direction so that the reflected light a' hits the sight line 8a of the sight plate 8.
The installation position of the cross-sectional measuring device 1 is determined by adjusting the position by operating the . At this time, the visible light beam of the cross-section measuring device 1 is
If it hits mark 27a of 7, it can be confirmed that the above-mentioned parallelism is obtained.

かくして、反射光Q′により設置位置を決めた断面測定
器1は測定ヘッド3の回転軸と基準光線Qが平行、即ち
回転軸がトンネル軸と平行となり、トンネルの正しい断
面を測定できる。即ち、断面測定器1が正しい位置に設
置されたことになる6次に、かく正確に設置した断面測
定器1の設置位置を検出する方法について説明する。
In this way, the cross section measuring instrument 1 whose installation position is determined by the reflected light Q' has the rotation axis of the measurement head 3 parallel to the reference beam Q, that is, the rotation axis is parallel to the tunnel axis, and can measure the correct cross section of the tunnel. In other words, the cross section measuring device 1 has been installed at the correct position.Next, a method for detecting the installation position of the cross section measuring device 1 thus accurately installed will be explained.

第2図において、トンネルの軸方向から見て。In Figure 2, viewed from the axial direction of the tunnel.

基準光線Qの座標を(X、o、Yo)、断面測定器1の
座標を(x、y)とすると、基準光線Qの座標(Xo、
Yo)は測量によって判明しているそこで、断面、測定
器1の座標(x、y)は反射光Q′の水平面から出射角
までの角度θと、断面測定器1から基準光線Qまでの長
さDが判明すれば、X=Xo−712cosO Y=Yo+Qcosθ の式により算出できる。
If the coordinates of the reference ray Q are (X, o, Yo) and the coordinates of the cross-section measuring device 1 are (x, y), then the coordinates of the reference ray Q are (Xo,
Yo) is known by surveying. Therefore, the coordinates (x, y) of the cross section and measuring device 1 are the angle θ from the horizontal plane of the reflected light Q' to the emission angle, and the length from the cross section measuring device 1 to the reference ray Q. Once D is known, it can be calculated using the formula: X=Xo-712cosO Y=Yo+Qcosθ.

なお、ここで言う出射角とは反射光線を照準板7の所定
位置に当てた際の傾きである。上記角度θの計測は、そ
の測定ヘッド3の測定方向を水平位置にした後、測定方
向が反射光Q′と平行になる位置まで回転させる。即ち
、断面測定器1の可視光線りを水平から認確板27の印
27aに当たる位置で測定ヘッド3の回転を停止し、そ
の間の角度θを断面を検出する。この測定ヘッド3の回
転角度は断面測定器自身により、容易に判明する。
Note that the output angle referred to here is the inclination when the reflected light beam hits a predetermined position on the sight plate 7. To measure the angle θ, the measurement direction of the measurement head 3 is set to a horizontal position, and then the measurement head 3 is rotated to a position where the measurement direction becomes parallel to the reflected light Q'. That is, the rotation of the measurement head 3 is stopped at a position where the visible light beam of the cross-section measuring device 1 hits the mark 27a on the confirmation plate 27 from the horizontal direction, and the cross-section is detected by the angle θ between them. The rotation angle of the measuring head 3 can be easily determined by the cross-section measuring instrument itself.

また、断面測定器1の所定位置、即ち、測定ヘッド3o
の回転軸心から基準光線aまでの長さDは断面測定器1
自身によ確認板27まで距離を測定し、この距離に確認
板27から基準光線Qまでの長さを加えることにより算
出できる。なお、確認板27から基準光線Qの長さは照
準筒18の半径及び確認板27の厚みであって定数であ
る。
Also, the predetermined position of the cross section measuring device 1, that is, the measuring head 3o
The length D from the rotation axis to the reference ray a is the cross-section measuring device 1
It can be calculated by measuring the distance to the confirmation plate 27 by yourself and adding the length from the confirmation plate 27 to the reference beam Q to this distance. Note that the length of the reference beam Q from the confirmation plate 27 is the radius of the aiming barrel 18 and the thickness of the confirmation plate 27, and is a constant.

かくして、水平から出射角までの角度θと長さDが断面
測定器1自身を用いて簡単に算出でき、その数値を上記
した式に算入することににより、断面測定器1の座標(
x、y)が判明する。
In this way, the angle θ from the horizontal to the exit angle and the length D can be easily calculated using the cross-section measuring device 1 itself, and by incorporating these values into the above formula, the coordinates of the cross-section measuring device 1 (
x, y) are found.

かくして、正確に設置した断面測定器1の設置位置を、
断面測定器1自身を用いて簡単に検出できる。
In this way, the installation position of the accurately installed cross-section measuring device 1 can be determined by
It can be easily detected using the cross section measuring device 1 itself.

ところで、反射光Q′を照射板7,8に照準させる際、
できるだけ測定ヘッド3に近い位置に照準することが精
度上有利である。これを第10図を用いて説明すると、
基準光線Qの反射光Q′と測定波Sとは平行でなく角度
αだけずれ、このずれは反射光Q′を照射板7,8に照
準させる位置が測定ヘッド3に遠い程大さい。しかし、
実際のトンネル断面形状測定の場合、基準光線Ωから測
定器1までの距離が数メートルと長いので、角度αずれ
は許容できる誤差内である。
By the way, when aiming the reflected light Q' at the irradiation plates 7 and 8,
It is advantageous in terms of accuracy to aim as close to the measuring head 3 as possible. To explain this using Figure 10,
The reflected light Q' of the reference beam Q and the measurement wave S are not parallel but deviate by an angle α, and this deviation becomes larger as the position where the reflected light Q' is aimed at the irradiation plates 7 and 8 is farther from the measurement head 3. but,
In the case of actual tunnel cross-sectional shape measurement, the distance from the reference beam Ω to the measuring device 1 is as long as several meters, so the angle α deviation is within an allowable error.

第11図は、上記誤差をなくすことのできる実施例で示
すもので、本例では照準板7及び8が測定ヘッド3の側
方に取付けられている。この場合、照準板7には十字状
の照準糸7aが設けられ、また照準板8には十字状の照
準印(図示せず)に設けられている。この十字状の照準
糸7aと十字状の照準印との照準位置は、水平方向に′
おいて測定波Sの受信位置と同じ高さレベルに、また垂
直方向は測定波Sの受信位置から予め定めた長さに両者
が一致するように夫々設定されている。
FIG. 11 shows an embodiment in which the above-mentioned error can be eliminated. In this embodiment, the aiming plates 7 and 8 are attached to the sides of the measuring head 3. In this case, the aiming plate 7 is provided with a cross-shaped aiming thread 7a, and the aiming plate 8 is provided with a cross-shaped aiming mark (not shown). The aiming position of the cross-shaped aiming thread 7a and the cross-shaped aiming mark is ′′ in the horizontal direction.
The height level is set to be the same as the receiving position of the measuring wave S, and the vertical direction thereof is set to be the same as a predetermined length from the receiving position of the measuring wave S.

かく構成すると、水平方向において測定波Sの受信位置
と同じ高さレベルになり、測定波Sと反射光Ω′とのず
れなくなる。即ち、上記角度αが零になるので、より高
精度の測定が可能となる。
With this configuration, the height level is the same as the reception position of the measurement wave S in the horizontal direction, and there is no deviation between the measurement wave S and the reflected light Ω'. That is, since the angle α becomes zero, more accurate measurement becomes possible.

〔効 果〕〔effect〕

本発明は、請求項1及び2によれば基準レーザー光線に
基づき、断面測定器を正確な位置に設置でき、しかもそ
の設置操作が簡便で、誰でも短時間にて行い得る。
According to claims 1 and 2 of the present invention, the cross section measuring device can be installed at an accurate position based on the reference laser beam, and the installation operation is simple and can be performed by anyone in a short time.

また、請求項4によれば、設置した断面測定器の位置を
容易に検出でき、更に請求項5によればその検出を断面
測定器を用いて行い得る。
Further, according to claim 4, the position of the installed cross-section measuring device can be easily detected, and according to claim 5, the position can be detected using the cross-section measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、断面測定器の一例を示す斜視図、第2図は本
発明の詳細な説明する概略斜視図、第3図は第2図の一
部拡大した斜視図、第4図乃至第8図は反射装置の平面
図、正面図、右側面図。 右側面図及び分解斜視図、第9図は断面測定器の支持装
置の一例を示す正面図、第10図は測定波と反射光との
ずれを説明する説明図、第11図は本発明の別の実施例
を示す斜視図である。 1・・・断面測定器    3・・・測定ヘッド7.8
・・・照準板   10・・・反射装置26・・・ミラ
ー    2・・・基準光線2′・・・反射光 竺 ( 27、 〕ト
FIG. 1 is a perspective view showing an example of a cross-sectional measuring instrument, FIG. 2 is a schematic perspective view explaining the present invention in detail, FIG. 3 is a partially enlarged perspective view of FIG. 2, and FIGS. Figure 8 is a plan view, front view, and right side view of the reflection device. A right side view and an exploded perspective view, FIG. 9 is a front view showing an example of a support device for a cross-section measuring instrument, FIG. 10 is an explanatory diagram illustrating the deviation between a measurement wave and a reflected light, and FIG. 11 is an illustration of the present invention. FIG. 7 is a perspective view showing another embodiment. 1... Cross section measuring device 3... Measuring head 7.8
...Sighting plate 10...Reflector 26...Mirror 2...Reference beam 2'...Reflected light line (27,)

Claims (5)

【特許請求の範囲】[Claims] (1)被測定面に対して基準レーザー光線が既設されて
いる場所における、被測定面までの距離を測定して断面
形状を得る断面測定器の設置方法において、 前記基準レーザー光線をその光軸に対して 反射角が直角になるように反射させ、その反射した基準
レーザー光線に対し、前記断面測定器の所定箇所が当る
ように断面測定器の設置位置を決めることを特徴とする
前記設置方法。
(1) In a method for installing a cross-sectional measuring device that measures the distance to the surface to be measured and obtains the cross-sectional shape in a place where a reference laser beam is already installed for the surface to be measured, the reference laser beam is directed against its optical axis. The method of installation is characterized in that the cross section measuring device is positioned so that the reference laser beam is reflected at a right angle, and a predetermined location of the cross section measuring device hits the reflected reference laser beam.
(2)被測定面に対して基準レーザー光線が既設されて
いる場所における、被測定面までの距離を測定して断面
形状を得る断面測定器の設置装置において、 ミラーを備え基準レーザー光線をその光軸 に対して反射角が直角になるように反射させる反射装置
と、前記断面測定器の所定位置に設けられ、反射した基
準レーザー光線を照準するターゲットとを有することを
特徴とする設置装置。
(2) In an installation device for a cross-sectional measuring device that measures the distance to the surface to be measured and obtains the cross-sectional shape at a place where a reference laser beam is already installed for the surface to be measured, the device is equipped with a mirror and the reference laser beam is set on its optical axis. 1. An installation device comprising: a reflection device that reflects the beam so that the reflection angle is perpendicular to the cross section measuring device; and a target that is provided at a predetermined position of the cross section measuring device and aims at the reflected reference laser beam.
(3)前記断面測定器が、測定器本体と、該本体に回転
可能な測定ヘッドとを備え、該測定ヘッドに前記ターゲ
ットを取外し可能に取付けられていることを特徴とする
請求項2に記載の設置装置。
(3) The cross-sectional measuring device includes a measuring device main body and a rotatable measuring head on the main body, and the target is removably attached to the measuring head. installation equipment.
(4)被測定面に対して基準レーザー光線が既設されて
いる場所における、被測定面までの距離を測定して断面
形状を得る断面測定器の設置位置を検出する方法におい
て、 前記基準レーザー光線をその光軸に対して 反射角が直角になるように反射させ、その反射した基準
レーザー光線が断面測定器の所定箇所が当るように断面
測定器の設置位置を決め、その際基準レーザー光線の出
射角と水平面とでなす角度を検出し、更に断面測定器の
所定点から基準レーザー光線の反射点までの距離を計測
し、該距離と上記角度とから断面測定器の設置位置の座
標を検出することを特徴とする検出方法。
(4) In a method for detecting the installation position of a cross-sectional measuring device that measures the distance to the surface to be measured and obtains the cross-sectional shape in a place where a reference laser beam is already installed for the surface to be measured, The reflection angle is perpendicular to the optical axis, and the installation position of the cross-section measuring device is determined so that the reflected reference laser beam hits a predetermined location on the cross-section measuring device. , and further measures the distance from a predetermined point of the cross-section measuring device to the reflection point of the reference laser beam, and detecting the coordinates of the installation position of the cross-section measuring device from the distance and the angle. detection method.
(5)前記基準レーザー光線の出射角と水平面とでなす
角度及び前記断面測定器の所定点から基準レーザー光線
の反射点までの距離を、断面測定器を用いて計測するこ
とを特徴とする請求項4に記載の検出方法。
(5) The angle between the emission angle of the reference laser beam and a horizontal plane and the distance from a predetermined point of the cross-section measuring device to a reflection point of the reference laser beam are measured using a cross-section measuring device. Detection method described in.
JP63138463A 1988-06-07 1988-06-07 Method and apparatus for measuring a cross section Expired - Fee Related JP2635103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138463A JP2635103B2 (en) 1988-06-07 1988-06-07 Method and apparatus for measuring a cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138463A JP2635103B2 (en) 1988-06-07 1988-06-07 Method and apparatus for measuring a cross section

Publications (2)

Publication Number Publication Date
JPH01307617A true JPH01307617A (en) 1989-12-12
JP2635103B2 JP2635103B2 (en) 1997-07-30

Family

ID=15222618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138463A Expired - Fee Related JP2635103B2 (en) 1988-06-07 1988-06-07 Method and apparatus for measuring a cross section

Country Status (1)

Country Link
JP (1) JP2635103B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286912A (en) * 1991-03-15 1992-10-12 Okumura Corp Installing method for in-cavity measuring apparatus
JP2009079953A (en) * 2007-09-26 2009-04-16 Maeda Corp Method of measuring cross-sectional shape of space
CN103411592A (en) * 2013-08-28 2013-11-27 南京南化建设有限公司 Laser centering device and centering method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149912A (en) * 1984-01-17 1985-08-07 Kajima Corp Apparatus for measuring cross-sectional distance of tunnel
JPS61117396A (en) * 1984-11-10 1986-06-04 マツダ株式会社 Tunnel cross-section measuring machine for rock driller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149912A (en) * 1984-01-17 1985-08-07 Kajima Corp Apparatus for measuring cross-sectional distance of tunnel
JPS61117396A (en) * 1984-11-10 1986-06-04 マツダ株式会社 Tunnel cross-section measuring machine for rock driller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286912A (en) * 1991-03-15 1992-10-12 Okumura Corp Installing method for in-cavity measuring apparatus
JP2009079953A (en) * 2007-09-26 2009-04-16 Maeda Corp Method of measuring cross-sectional shape of space
CN103411592A (en) * 2013-08-28 2013-11-27 南京南化建设有限公司 Laser centering device and centering method thereof

Also Published As

Publication number Publication date
JP2635103B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US5848485A (en) System for determining the position of a tool mounted on pivotable arm using a light source and reflectors
US5852493A (en) Self-aligning laser transmitter having a dual slope grade mechanism
US5782003A (en) Device for projecting a flat beam of diverging laser rays
EP0829702B1 (en) Laser reference line setting system
US7987605B2 (en) Reflector target tripod for survey system with light emitter and pivoting bracket for enhanced ground marking accuracy
US11143505B2 (en) Surveying instrument
WO2019024731A1 (en) Angle and distance measuring method, trajectory diagram drawing method, and laser ranging system
CA1189316A (en) Laser measurement system, virtual detector probe and carriage yaw compensator
US6966387B2 (en) Universal optical adapter for a three dimensional earthgrading system
US6384902B1 (en) Surveying apparatus comprising a height measuring device
US3826576A (en) Laser measuring or monitoring system
CN111580127B (en) Mapping system with rotating mirror
JPH01307617A (en) Method and device for installing cross section measuring instrument and method for detecting its installed position
GB2314157A (en) Method and apparatus for measuring position and posture of tunnel excavator
JPH0843084A (en) Multifunctional measurement vehicle for tunnel
JPS63153420A (en) Method and device for detecting installing position of cross section measuring instrument
JPH04313013A (en) Plane type range finder/goniometer
JPH04198809A (en) Instrument for measuring height of machine
RU2792054C1 (en) Method for measurement of drive path of heading machine
JP4593223B2 (en) Coordinate measurement system
JP2578121B2 (en) Method and apparatus for detecting installation position of cross-section measuring instrument
CN114689012B (en) Vertical guiding system and guiding method for attitude measurement of vertical heading machine
JPH01214709A (en) Measuring apparatus for section
JPS60213811A (en) Automatic measuring apparatus of cross section of tunnel
EP4257923A1 (en) Surveying instrument

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees