[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01292883A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH01292883A
JPH01292883A JP12420888A JP12420888A JPH01292883A JP H01292883 A JPH01292883 A JP H01292883A JP 12420888 A JP12420888 A JP 12420888A JP 12420888 A JP12420888 A JP 12420888A JP H01292883 A JPH01292883 A JP H01292883A
Authority
JP
Japan
Prior art keywords
layer
etching
light
etched
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12420888A
Other languages
Japanese (ja)
Inventor
Hitoshi Kagawa
仁志 香川
Tetsuya Yagi
哲哉 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12420888A priority Critical patent/JPH01292883A/en
Publication of JPH01292883A publication Critical patent/JPH01292883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the characteristics of each semiconductor laser from being deviated by radiating light from the upper part of an etching liquid toward a layer to be etched and by controlling the thickness of film of the layer to be etched while observing light which is reflected on the reflection surface below the layer to be etched and returns onto the etching liquid. CONSTITUTION:Light equivalent to white light is irradiated from the upper part of an etching liquid 8 toward an active layer 3. When a film thickness d of a clad layer 4 is fully thin for the liquid thickness of the etching liquid 8, the irradiated light passes through the etching liquid 8 and the clad layer 4 and then most of it is reflected by the interface with the active layer 3, thus returning to an area above the etching liquid 8 again. Thus, the color changes continuously as etching advances and change in color is constantly monitored by using an image pickup tube, a solid image pickup element etc., and etching is stopped when a specified color corresponding to a desired film thickness d is reached to allow the film thickness d to be controlled easily. It allows a semiconductor laser without any deviation of characteristics to be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばコンパクトディスク、レーザビーム
プリンタ、光デイスクメモリ等に用いられる半導体レー
ザの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor laser used for, for example, compact discs, laser beam printers, optical disc memories, and the like.

〔従来の技術〕[Conventional technology]

第2図は半導体レーザの一例を示す斜視図である。この
図において、1はn型の基板、2は前記基板1上にエピ
タキシャル成長されたn型のクラッド層、3は活性層、
4はp型のクラッド層、4aはエツチングにより形成さ
れたストライブ状のりッジ部、5は前記クラッド層4上
に2回目のエピタキシャル成長で形成されたn型の電流
ブロック層、6はp型のコンタクト層、7は上部電極、
dはクラッド層4のリッジ部4a以外の領域の膜厚を示
す。
FIG. 2 is a perspective view showing an example of a semiconductor laser. In this figure, 1 is an n-type substrate, 2 is an n-type cladding layer epitaxially grown on the substrate 1, 3 is an active layer,
4 is a p-type cladding layer, 4a is a striped ridge portion formed by etching, 5 is an n-type current blocking layer formed by second epitaxial growth on the cladding layer 4, and 6 is a p-type cladding layer. 7 is a contact layer, 7 is an upper electrode,
d indicates the thickness of the cladding layer 4 in a region other than the ridge portion 4a.

このようにリッジ部4aを備えた半導体レーザの多くの
特性、例えば一定出力値を得るための動作電流値やビー
ムの放射角度等を左右するパラメータの一つとして、ク
ラッド層4の膜厚dがある。従来、このクラッド層4の
膜厚dの制御は、あらかじめ目的とする膜厚よりも十分
に厚くクラッド層を形成しておき、ストライブ状のりッ
ジ部4aを形成する際の化学エツチングの時間を制御す
ることにより咎っていた。
As described above, the film thickness d of the cladding layer 4 is one of the parameters that influences many of the characteristics of the semiconductor laser including the ridge portion 4a, such as the operating current value for obtaining a constant output value and the radiation angle of the beam. be. Conventionally, the thickness d of the cladding layer 4 has been controlled by forming the cladding layer sufficiently thicker than the desired thickness in advance, and then changing the chemical etching time when forming the striped ridge portions 4a. He was blaming himself by controlling him.

(発明が解決しようとする課題〕 上記のような従来の半導体レーザの製造方法では、クラ
ッド層4の膜厚dを化学エツチングの時間により制御し
ていたが、例えばエツチング液として、H2SO4: 
H2O2: H20=1 : 10:10等を用いた場
合、第3図のグラフから分かるように、エツチング時間
の経過に伴ってエツチング速度が変化するため、クラッ
ド層4の膜厚dを安定に制御することが困難であり、半
導体レーザの特性に大きなばらつきを生じるという問題
点があった。
(Problems to be Solved by the Invention) In the conventional semiconductor laser manufacturing method as described above, the film thickness d of the cladding layer 4 is controlled by the chemical etching time.
When using H2O2:H20=1:10:10, etc., as can be seen from the graph in FIG. 3, the etching rate changes as the etching time elapses, making it possible to stably control the film thickness d of the cladding layer 4. There was a problem in that it was difficult to do so, and large variations occurred in the characteristics of the semiconductor laser.

この発明は、かかる課題を解決するためになされたもの
で、クラッド層の膜厚を安定に制御でき、各半導体レー
ザの特性にばらつきを生じることのない半導体レーザの
製造方法を得ることを目的とする。
The present invention was made to solve this problem, and its purpose is to provide a method for manufacturing semiconductor lasers that can stably control the thickness of the cladding layer and that does not cause variations in the characteristics of each semiconductor laser. do.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係半導体レーザの製造方法は、化学エツチン
グの実行時に、エツチング液の上方から被エツチング層
方向に光を照射し、被エツチング層下の反射面で反射さ
れて再度エツチング液上に戻る光を観察しながら被エツ
チング層の膜厚を制御する工程を備えたものである。
In the method for manufacturing a semiconductor laser according to the present invention, when performing chemical etching, light is irradiated from above the etching solution toward the layer to be etched, and the light is reflected by a reflective surface below the layer to be etched and returns onto the etching solution again. This method includes a step of controlling the thickness of the layer to be etched while observing the etching process.

〔作用〕 この発明においては、被エツチング層によって吸収され
る波長成分以外の光のみがエツチング液上に戻るが、吸
収される波長成分はエツチングの進行に伴う膜厚の変化
により逐次変るため、エツチング液上に戻る光の色調ま
たは強度から被エツチング層の膜厚を知ることができる
[Operation] In this invention, only the light other than the wavelength components absorbed by the layer to be etched returns to the etching solution, but the wavelength components absorbed gradually change due to changes in film thickness as etching progresses. The thickness of the layer to be etched can be determined from the color tone or intensity of the light that returns to the surface of the liquid.

〔実施例〕〔Example〕

第1図はこの発明の半導体レーザの製造方法を説明する
ための図であり、ここでは第2図に示した構造の半導体
レーザのエツチング工程を示している。この図において
、第2図と同一符号は同一のものを示し、8はエツチン
グ液、9は反射光を示す。
FIG. 1 is a diagram for explaining the method of manufacturing a semiconductor laser according to the present invention, and here shows the etching process of the semiconductor laser having the structure shown in FIG. In this figure, the same reference numerals as in FIG. 2 indicate the same parts, 8 indicates an etching solution, and 9 indicates reflected light.

次に具体的な工程について説明する。Next, specific steps will be explained.

まず、基板1上にクラッド層2.活性層3.クラッド層
4を順次成長させたのち、化学エツチング(ここではウ
ェットエツチング)を行って、被エツチング層としての
クラッド層4にストライブ状にリッジ部4aを形成する
が、この発明では、このエツチングの際にエツチング液
8の上方から活性層3方向に、例えば多くの波長成分を
含む、白色光に相当する光を照射する。第1図に示した
ように、エツチング液8の液厚に対してクラッド層4の
膜厚dが十分薄い場合、照射された光はエツチング液8
.クラッド層4を透過した後、活性層3との界面でその
大部分が反射されて再度エツチング液8上に戻ってくる
が、膜厚d=λ(2N+1)/4n  (N=0.1,
2.−−−−−−−−−)の条件を満たす波長成分はク
ラッド層4に吸収されるため、外部にはその波長成分以
外の光が戻ることになる。すなわち、エツチングの進行
に伴って色調は逐次変化することになり、エツチングを
行いながら撮像管、固体撮像素子等を用いて、色調の変
化を常時モニタし、所望の膜厚dに対応する所定の色調
になった時にエツチングを停止させれば、容易に膜厚d
の制御を行うことができる。
First, a cladding layer 2. Active layer 3. After sequentially growing the cladding layer 4, chemical etching (here, wet etching) is performed to form a striped ridge portion 4a on the cladding layer 4 as a layer to be etched. At this time, for example, light corresponding to white light containing many wavelength components is irradiated from above the etching liquid 8 toward the active layer 3 . As shown in FIG. 1, if the thickness d of the cladding layer 4 is sufficiently thinner than the thickness of the etching solution 8, the irradiated light will
.. After passing through the cladding layer 4, most of it is reflected at the interface with the active layer 3 and returns to the etching solution 8 again, with a film thickness d=λ(2N+1)/4n (N=0.1,
2. Since the wavelength components satisfying the condition (---------) are absorbed by the cladding layer 4, light other than the wavelength components returns to the outside. In other words, the color tone changes successively as the etching progresses, and while etching is performed, the change in color tone is constantly monitored using an image pickup tube, solid-state image sensor, etc., and a predetermined value corresponding to the desired film thickness d is determined. If you stop etching when the color tone is reached, you can easily reduce the film thickness d.
can be controlled.

そして、この後第2図に示したように、電流ブロック層
5.コンタクト層6を順次成長させ、さらに画電極を形
成すれば素子が完成する。
Then, as shown in FIG. 2, the current blocking layer 5. The device is completed by sequentially growing the contact layer 6 and further forming the picture electrode.

なお、上記実施例では多色光を照射した場合の反射光の
色調の変化により、膜厚dを検知する方法について説明
したが、波長選択フィルタ等を用いて特定の波長成分の
強度変化を検出することによって膜厚dを決定すること
が可能であるほか、初めから単色光を照射して反射光9
の強度の変化から膜厚dを決定することも可能である。
In addition, in the above embodiment, a method was described in which the film thickness d is detected by a change in the color tone of reflected light when polychromatic light is irradiated, but it is also possible to detect a change in the intensity of a specific wavelength component using a wavelength selection filter or the like. In addition to determining the film thickness d by irradiating monochromatic light from the beginning, it is possible to
It is also possible to determine the film thickness d from the change in intensity of .

また、反射光の色調の変化のモニタタリングには特に機
器を用いる必要はなく、直接肉眼により色調の変化を検
出しても、膜厚dの検知が十分可能であることはいうま
でもない。
Furthermore, it is not necessary to use any special equipment to monitor changes in the color tone of the reflected light, and it goes without saying that the film thickness d can be sufficiently detected by directly detecting changes in color tone with the naked eye.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、化学エツチングの実行
時に、エツチング液の上方から被エツチング層方向に光
を照射し、被エツチング層下の反射面で反射されて再度
エツチング液上に戻る光を観察しながら被エツチング層
の膜厚を制御する工程を備えたので、被エツチング層に
よって吸収されずにエツチング液上に戻ってくる光の色
調または強度から被エツチング層の膜厚を知ることがで
き、被エツチング層を所望の膜厚に容易に制御できるこ
とから、特性にばらつきのない半導体レーザを実現でき
るという効果がある。
As explained above, when performing chemical etching, this invention irradiates light from above the etching solution toward the layer to be etched, and observes the light that is reflected from the reflective surface below the layer to be etched and returns to the etching solution. However, since the process of controlling the thickness of the layer to be etched is included, the thickness of the layer to be etched can be determined from the color tone or intensity of the light that is not absorbed by the layer to be etched and returns onto the etching solution. Since the etching layer can be easily controlled to a desired thickness, it is possible to realize a semiconductor laser with uniform characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体レーザの製造方法の一実施例
を説明するための図、第2図は半導体レーザの一例を示
す斜視図、第3図はエツチング液の特性変化を示すグラ
フである。 図において、1は基板、2.4はクラッド層、3は活性
層、4aはストライブ状のリッジ部、5電流ブロック層
、6はコンタクト層、7は上部電極、8はエツチング液
、9は反射光、dは膜厚である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄    (外2名)第1図 6a厚 第2図 第3図 時間T− 手続補正書(自発) =1□5イ28 ・事件の表示   特願昭63−124208号・発明
の名称  半導体レーザの製造方法、補正をする者 事件との関係 特許出願人 代表者志岐守哉 4、代理人 5、?lfl正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書第3頁14行の[この発明に係半導体レーザ]を
、「この発明に係る半導体レーザ」と補正する。 以  上
FIG. 1 is a diagram for explaining an embodiment of the semiconductor laser manufacturing method of the present invention, FIG. 2 is a perspective view showing an example of the semiconductor laser, and FIG. 3 is a graph showing changes in the characteristics of the etching solution. . In the figure, 1 is a substrate, 2.4 is a cladding layer, 3 is an active layer, 4a is a striped ridge portion, 5 is a current blocking layer, 6 is a contact layer, 7 is an upper electrode, 8 is an etching solution, and 9 is an etching liquid. The reflected light and d are the film thickness. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 6a Thickness Figure 2 Figure 3 Time T- Procedural amendment (voluntary) = 1□5i28 ・Indication of case Patent application No. 124208/1988/Invention Name of Semiconductor Laser Manufacturing Method, Relationship with the Amendment Person Case Patent Applicant Representative Moriya Shiki 4, Attorney 5, ? lfl In column 6 of the detailed description of the invention in the correct subject specification, [semiconductor laser according to this invention] in line 14 on page 3 of the description of amendment is amended to read "semiconductor laser according to this invention."that's all

Claims (1)

【特許請求の範囲】[Claims] 化学エッチングの実行時に、エッチング液の上方から被
エッチング層方向に光を照射し、前記被エッチング層下
の反射面で反射されて再度前記エッチング液上に戻る光
を観察しながら前記被エッチング層の膜厚を制御する工
程を備えたことを特徴とする半導体レーザの製造方法。
When performing chemical etching, light is irradiated from above the etching solution toward the layer to be etched, and while observing the light that is reflected by the reflective surface below the layer to be etched and returns onto the etching solution, the layer to be etched is A method of manufacturing a semiconductor laser, comprising a step of controlling film thickness.
JP12420888A 1988-05-19 1988-05-19 Manufacture of semiconductor laser Pending JPH01292883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12420888A JPH01292883A (en) 1988-05-19 1988-05-19 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12420888A JPH01292883A (en) 1988-05-19 1988-05-19 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01292883A true JPH01292883A (en) 1989-11-27

Family

ID=14879668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12420888A Pending JPH01292883A (en) 1988-05-19 1988-05-19 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01292883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429792A (en) * 1993-04-13 1995-07-04 Hoeganaes Corporation Metal powder compositions containing binding agents for elevated temperature compaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429792A (en) * 1993-04-13 1995-07-04 Hoeganaes Corporation Metal powder compositions containing binding agents for elevated temperature compaction

Similar Documents

Publication Publication Date Title
JP2003139617A (en) System and method for measuring and controlling temperature of optical fiber tip in laser system
JP2000292129A (en) Method and device for measuring etching depth
JPH01292883A (en) Manufacture of semiconductor laser
JP2003065724A (en) Method for measuring thickness of film using ftir method, and method for manufacturing semiconductor wafer
JPS62283678A (en) Manufacture of semiconductor device
US6193900B1 (en) Method for sensing etch of distributed bragg reflector in real time
JPH02181458A (en) Manufacture of body section composed of semi-insulating material
US20020141463A1 (en) Optical feedback system
JP2674014B2 (en) Light receiving element, light receiving element for light intensity monitor, and light intensity monitor
JPS6366931A (en) Manufacture of semiconductor device
JP2002323303A (en) Diafragm thickness measurement method, its device, and manufacturing method for semiconductor device
JPH0436597B2 (en)
JPS62269036A (en) System for automatically measuring diffraction efficiency distribution of diffraction grating
JPH06331320A (en) Film thickness measuring device
JP2904751B2 (en) Equipment for measuring electrical characteristics of semiconductor wafers
JPH071780B2 (en) Method for evaluating transition region of epitaxial wafer
JPH09243822A (en) Apparatus for production of multiwavelength selective optical filter and multiwavelength selective optical filter
JPS63163138A (en) Inspection of diffraction grating
JPH04111370A (en) Output control apparatus for laser
JP2003262586A (en) Method for manufacturing surface plasmon resonance sensor
JP2004198160A (en) Data fetching apparatus for spectral measurement for measuring concentration of glucose in blood
JP2007522459A (en) Method for measuring clinical and / or chemical parameters in a medium and apparatus for carrying out the method
JP2689264B2 (en) Method and device for adjusting direction of laser light in diffraction grating fringe exposure apparatus
JPH01191006A (en) Depth measuring method
JPS63136625A (en) Manufacture of semiconductor element