[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0129910B2 - - Google Patents

Info

Publication number
JPH0129910B2
JPH0129910B2 JP26063786A JP26063786A JPH0129910B2 JP H0129910 B2 JPH0129910 B2 JP H0129910B2 JP 26063786 A JP26063786 A JP 26063786A JP 26063786 A JP26063786 A JP 26063786A JP H0129910 B2 JPH0129910 B2 JP H0129910B2
Authority
JP
Japan
Prior art keywords
group
fibers
treating
halogenated
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26063786A
Other languages
Japanese (ja)
Other versions
JPS63120174A (en
Inventor
Sadamitsu Murayama
Tadahiko Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61260637A priority Critical patent/JPS63120174A/en
Publication of JPS63120174A publication Critical patent/JPS63120174A/en
Publication of JPH0129910B2 publication Critical patent/JPH0129910B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は繊維製品の耐摩耗性及び難燃性を向上
せしめる処理方法に関する。繊維製品は、ロー
プ、コード、織編物等の繊維構造物である。 <従来技術> 従来、繊維の耐摩耗性向上手段としては、各種
処理剤による繊維表面被覆や含浸加工が多く用い
られており、かかる処理剤としては、ポリウレタ
ン系、フツ素系、シリコン系等の樹脂が広く用い
られている。 ポリウレタン系樹脂を耐摩耗性向上剤として用
いた最近の技術としては、例えば「ポリウレタ
ン、酸化ポリエチレンおよびエチレン尿素化合物
を主成分とする混合物で繊維を含浸する方法」
(特願昭58−16206号)あるいは「ウレタンポリマ
ーブロツク化物を主成分とする樹脂を繊維ベルト
類に付与し、加熱処理することにより耐摩耗性を
改善する方法」(特開昭60−173174号公報)、さら
に、シラン系カツプリング剤を主成分とする第1
処理剤で処理したのち、ポリウレタン、酸化ポリ
エチレン、およびエチレン尿素化合物を主成分と
する第2処理剤で処理する方法」(特願昭61−
122256号)などがあげられる。 しかしながら最近の市場の於ける用途関連技術
の高度化に伴い、製品に対する要求性能はますま
す拡大する傾向にある。例えば上述の技術で、耐
摩耗性に関し、用途によつては充分対応できる分
野もあるが、最近では、耐摩耗性と共に高度の難
燃性も要求されることが多く、特に電気材料関連
分野に於いてその傾向が顕著である。即ち、アラ
ミド繊維は20〜22グラム/デニール以上の高強度
を有するために最近この繊維を使用した種々のロ
ープ類、コード類が開発されているが、アラミド
繊維は摩耗によりフイブリル化し易くこれが主因
となつて強力劣化を生じ繊維が本来有するすぐれ
た高強度を充分に発現できないという欠点を有し
ている。又は、該繊維は従来の有機系繊維に比べ
て比較的高い難燃性を有しているけれども特定用
途によつてはまだまだ不充分である。特に耐摩耗
性を向上させるための処理剤に用いられる通常の
ポリウレタン、酸化ポリエチレンを含む混合物被
膜は燃焼し易く、従つて該剤を含む混合物で処理
理された繊維構造物の耐摩耗性は向上するが難燃
性はかえつて無処理のものに比較して劣るという
矛盾を生じ繊維が本来有するすぐれた難燃性を充
分に発揮できないという問題を有している。 この問題点を改善するために前述の従来技術に
示されている処理剤を主体にしてその配合剤中に
難燃剤を混合しこの混合剤により処理してアラミ
ド繊維の耐摩耗性、曲げ疲労性を向上せしめると
ともに処理された繊維の難燃性を高めることを
種々検討してきた。たとえば難燃性能を高める剤
として無機系ではオルソ燐酸、硼酸等の無機酸及
び燐酸アンモン、臭化アンモン等のアンモニウム
塩及びアルカリ金属塩などがあり、又、有機系で
はハロゲン化シクロアルカン化合物及び下記一般
式で示されるハロゲン化芳香族化合物 (X、X′は−R、−OR、−OH及び
<Industrial Application Field> The present invention relates to a treatment method for improving the abrasion resistance and flame retardance of textile products. Textile products are fiber structures such as ropes, cords, and woven or knitted fabrics. <Prior art> Conventionally, fiber surface coating or impregnation processing with various treatment agents has been widely used as a means of improving the abrasion resistance of fibers. Such treatment agents include polyurethane-based, fluorine-based, silicone-based, etc. Resins are widely used. Recent technologies using polyurethane resins as wear resistance improvers include, for example, ``a method of impregnating fibers with a mixture whose main components are polyurethane, polyethylene oxide, and ethylene urea compounds.''
(Japanese Patent Application No. 16206/1982) or "Method of Improving Abrasion Resistance by Applying Resin Containing Urethane Polymer Blocks to Fiber Belts and Heat Treating" (Japanese Patent Application No. 173174/1982) Publication), and furthermore, a first method containing a silane coupling agent as a main component.
A method of treating with a treatment agent and then treating with a second treatment agent whose main components are polyurethane, polyethylene oxide, and ethylene urea compounds.''
122256). However, with the recent advancement of application-related technology in the market, the performance requirements for products tend to expand more and more. For example, with regard to wear resistance, the above-mentioned technology may be sufficient for some applications, but recently, a high degree of flame retardancy is often required in addition to wear resistance, especially in fields related to electrical materials. This tendency is remarkable. In other words, aramid fibers have a high strength of 20 to 22 g/denier or more, and various ropes and cords using this fiber have recently been developed, but aramid fibers tend to fibrillate due to abrasion, which is the main reason for This has the disadvantage that the strength deteriorates and the excellent high strength inherent in the fibers cannot be fully expressed. Alternatively, although the fiber has relatively high flame retardancy compared to conventional organic fibers, it is still insufficient for certain uses. In particular, mixture coatings containing ordinary polyurethane and polyethylene oxide used as treatment agents to improve abrasion resistance are easily combustible, and therefore the abrasion resistance of fiber structures treated with mixtures containing these agents is improved. However, the flame retardancy is actually inferior to that of untreated fibers, which is a contradiction in terms, and there is a problem in that the excellent flame retardancy inherent in the fibers cannot be fully demonstrated. In order to improve this problem, a flame retardant is mixed into the treatment agent shown in the above-mentioned prior art, and the aramid fiber is treated with this mixture to improve its wear resistance and bending fatigue properties. Various efforts have been made to improve the flame retardancy of treated fibers. For example, inorganic agents that improve flame retardancy include inorganic acids such as orthophosphoric acid and boric acid, and ammonium salts and alkali metal salts such as ammonium phosphate and ammonium bromide; organic agents include halogenated cycloalkane compounds and the following: Halogenated aromatic compound represented by the general formula (X, X' are -R, -OR, -OH and

【式】Rは炭素数1〜6のアルキ ル基またはハロゲン化アルキル基、R′及びR″は
水素またはメチル基、lは1−6の整数 Aは存在しないか、または−O−、−CH2−、−
NH−、
[Formula] R is an alkyl group having 1 to 6 carbon atoms or a halogenated alkyl group, R' and R'' are hydrogen or methyl groups, l is an integer of 1 to 6, A is absent, or -O-, -CH 2 −, −
NH−,

【式】−SO2−から選ばれる基。 m、m′は0または1〜4の整数 n、n′は1−5の整数 及び下記一般式 (Z1、Z2、及びZ3は脂肪族基、芳香族基、ハロゲ
ン化脂肪族基及びハロゲン化芳香族基から選ばれ
る基、Z1、Z2、Z3の少くとも1種はハロゲン含有
基。) で示される燐を含む有機ハロゲン化合物などがあ
り、これらの難燃性組成物と前述の耐摩耗性向上
処理剤との組み合わせを種々検討し、両者の特性
を充分に発現出来得る混合処理剤を開発し本発明
に至つたものである。 <発明の目的> 本発明は前述の如く繊維構造物の耐摩耗性と難
燃性を共に向上せしめるための処理技術を作るべ
く鋭意研究の結果案出されたものである。 <発明の構成> すなわち本発明は (1) 繊維をシラン系カツプリング剤を主成分とす
る第1処理剤で処理した後、ポリウレタン(A)酸
化ポリエチレン(B)、エチレン尿素化合物(C)、下
記の難燃性化合物(D1〜3)のいずれか1種、
又は2種以上を混合した第2処理剤(D)で処理す
ることを特徴とする繊維の処理方法 (a) ハロゲン化シクロアルカン化合物(D1) (b) 下記一般式で示されるハロゲン化芳香族化
合物(D2(X、X′は−R、−OR、−OH及び
[Formula] A group selected from −SO 2 −. m, m' are 0 or integers from 1 to 4, n, n' are integers from 1 to 5, and the following general formula (Z 1 , Z 2 , and Z 3 are groups selected from aliphatic groups, aromatic groups, halogenated aliphatic groups, and halogenated aromatic groups, and at least one of Z 1 , Z 2 , and Z 3 is a halogen There are phosphorus-containing organic halogen compounds shown in The present invention was achieved by developing a mixed treatment agent. <Object of the Invention> As mentioned above, the present invention was devised as a result of intensive research to create a treatment technique for improving both the abrasion resistance and flame retardance of fibrous structures. <Structure of the Invention> That is, the present invention provides (1) After treating fibers with a first treatment agent containing a silane coupling agent as a main component, polyurethane (A), polyethylene oxide (B), ethylene urea compound (C), and the following Any one of the flame retardant compounds (D 1 to 3 ),
Or a method for treating fibers, characterized by treating with a second treatment agent (D) in which two or more of them are mixed (a) a halogenated cycloalkane compound (D 1 ) (b) a halogenated aroma represented by the following general formula Group compounds (D 2 ) (X, X' are -R, -OR, -OH and

【式】Rは炭素数1〜6のア ルキル基またはハロゲン化アルキル基、
R′及びR″は水素またはメチル基、lは1−
6の整数 Aは存在しないか、または−O−、−CH2
−、−NH−、
[Formula] R is an alkyl group having 1 to 6 carbon atoms or a halogenated alkyl group,
R' and R'' are hydrogen or methyl groups, l is 1-
Integer of 6 A is absent or -O-, -CH 2
−, −NH−,

【式】−SO2−から選ばれ る基。 m、m′は0または1〜4の整数 n、n′は1−5の整数 (c) 下記一般式で示される燐を含む有機ハロゲ
ン化合物(D3(Z1、Z2、及びZ3は脂肪族基、芳香族基、ハ
ロゲン化脂肪族基及びハロゲン化芳香族基か
ら選ばれる基、Z1、Z2、Z3の少くとも1つの
基は、ハロゲン含有基) (2) シラン系カツプリング剤がメルカプト基、グ
リシジル基、エポキシ基からなる群から選ばれ
た1以上の基を有することを特徴とする特許請
求の範囲第1項に記載の繊維の処理方法。 (3) ポリウレタン(A)がポリエステルポリオールと
脂肪族ポリイソシアネートとからなり、酸化ポ
リエチレン(B)の分子量が1000〜7000であり、エ
チレン尿素化合物(C)が下記一般式を満足する特
許請求の範囲第1項または第2項に記載の繊維
の処理方法。 [式中Rは芳香族又は脂肪族の炭化水素残基、
nは0、1又は2である。n=0のとき末端は
水素基である。] (4) A、B、C、Dの重量比がA/(A+B)は
0.4〜0.9、C/(A+B+C)は0.08〜0.7であ
る特許請求の範囲第1〜3項のいずれかに記載
の繊維の処理方法。 ここにシラン系カツプリング剤とは、例えば、
ビニルトリクロルシラン、ビニルトリエトキシシ
ラン、ビニルトリス(βメトキシエトキシ)シラ
ン、ビニルトリメトキシシラン、γ−メタクリロ
キシプロピルトリメトキシシラン、β−(3,4
−エポキシシクロヘキシル)エチルトリメトキシ
シラン、γ−グリシドキシプロピルトリメトキシ
シラン、γ−グリシドキシプロピルメチルジエト
キシシラン、N−β(アミノエチル)γ−アミノ
プロピルトリメトキシシラン、N−γ(アミノエ
チル)γ−アミノプロピルメチルジメトキシシラ
ン、γ−アミノプロピルトリエトキシシラン、N
−フエニル−γ−アミノプロピルトリメトキシシ
ラン、γ−メルカプトプロピルトリメトキシシラ
ン、γ−クロロプロピルトリメトキシシランなど
である。好ましくはメルカプト基、グリシジル基
あるいはエポキシ基を含むものである。 またポリウレタンとはポリエステルポリオール
とポリイソシアネートとの反応により得られる高
分子重合体であり、ポリエステルポリオールとは
エチレングリコール、ジエチレングリコール、1
−4ブタンジオール、プロピレングリコール、ブ
チレングリコール、グリセリン等の多価アルコー
ルとセバシン酸、アジピン酸、シユウ酸、コハク
酸、フタル酸等の多価脂肪族もしくは芳香族カル
ボン酸との縮合反応で得られるポリエステルポリ
オールなどをあげることができる。ポリイソシア
ネートとしては、ヘキサメチレンジイソシアネー
ト、キシリレンジイソシアネート、イソホロンジ
イソシアネート、トリレンジイソシアネート、ジ
フエニルメタンジイソシアネート、トリフエニル
メタントリイソシアネート、ナフチレンジイソシ
アネート等の脂肪族又は芳香族のポリイソシアネ
ートなどをあげることが出来るが、耐光性の点か
ら脂肪族ポリイソシアネートが好ましい。酸化ポ
リエチレンはポリエチレンを酸化して低分子量比
したものであり、水酸基および/又はカルボキシ
ル末端基を有するものが好ましく、更に好ましく
は高密度ポリエチレン酸化物であつて分子量が
1000〜7000のものである。 エチレン尿素化合物は次に示す一般式で表わさ
れる。 [式中Rは芳香族又は脂肪族の炭化水素残基、n
は0、1又は2である。n=0のとき末端は水素
基である。] 代表的化合物としてはオクタデシルイソシアネ
ート、ヘキサメチレンジイソシアネート、キシリ
レンジイソシアネート、イソホロンジイソシアネ
ート、トリレンジイソシアネート、ジフエニルメ
タンジイソシアネート、ナフチレンジイソシアネ
ヘト、トリフエニルメタントリイソシアネート等
の芳香族又は脂肪族のイソシアネートとエチレン
イミンとの反応生成物があげられる。 さらに難燃性化合物として (a) ハロゲン化シクロアルカン化合物(D1)、即
ち環状飽和炭化水素あるいは少なくとも1個の
環状飽和炭化水素を有する飽和炭化水素化合物
の水素原子の少なくとも1部分がハロゲンによ
り置換された化合物であり、例えば1,2,
3,4,5,6−ヘキサブロモシクロヘキサ
ン、1,2,3,4、または、1,2,4,6
−テトラブロモシクロオクタン、まは1,2,
5,6,9,10−ヘキサブロモシクロドデカン
または1,2−ビス(3,4−ジブロモシクロ
ヘキシル)−1,2−ジブロモエタンやこれら
の臭素を塩素で置き換えたものなどがある。こ
れらの化合物の中でも特にハロゲン原子が臭素
であるものが難燃性能高く、とりわけ、1,
2,5,6,9,10−ヘキサブロモシクロドデ
カンが良好である。 (b) 前記一般式で示されるハロゲン化芳香族化合
物(D2)としてはテトラブロモビスフエノー
ルA等の臭素化ビスフエノールA、2,2ビス
[3,5ジブロモ−4(2−ヒドロキシエトキ
シ)フエニル]プロパン等のブロモ化ビスフエ
ノールAのエチレンオキサイド付加物、又はプ
ロピレンオキサイド付加物、ブロモ化ジフエニ
ル、ブロモ化ジフエニルエーテル、プロモ化ヒ
ドロキシジフエニルスルホン、ブロモ化ジフエ
ニルアミン、ブロモ化ジフエニルメタン等また
はこれらの化合物の芳香環に置換基を有する化
合物等があげられ、とりわけブロモ化ジフエニ
ル、ブロモ化ジフエニルエーテルが良好であ
る。 (c) 前記一般式で示される燐を含む有機ハロゲン
化合物(D3)としてはトリス(クロロエチル)
ホスフエート、トリス(ジクロロロプロピル)
ホスフエート、トリス(2,3−ジブロムプロ
ピル)ホスフエートなどがあげられる。 また、本発明に於ける処理法としてはスプレー
法、コーテイング法、浸漬法など従来公知のいか
なる方法を用いてもよいが、第1処理剤、第2処
理剤のいずれかの処理剤も比較的低粘度の液状物
であるから繊維構造物を処理剤中に浸漬し、必要
に応じてニツプロール等で絞り処理剤のピツクア
ツプ量を調整した後、乾燥、硬化させるのが最も
簡単である。 また第1処理剤は溶液濃度0.2〜0.7重量%程
度、好ましくは0.5〜3.0%の範囲で使用する。溶
液濃度0.2重量%未満では処理剤付着量(固型分)
が不充分のため充分にその効果を発現できない。
又7.0重量%を越えると第2処理剤の付着性を低
める。 第1処理剤で処理したのち約100〜170℃程度の
温度範囲で0.5〜30分間程度熱処理して乾燥させ
る。 繊維に対する第1処理剤の付着量は、固型分で
0.2〜2.0重量%程度とするのが望ましい。 第1処理剤で処理したのち続いて第2処理剤で
繊維を処理する。 第2処理剤を構成するポリウレタン(A)、酸化ポ
リウレタン(B)およびエチレン尿素化合物(C)の重量
比はA/(A+B)は0.4〜0.9、C/(A+B)
は0.04〜0.3であるこが好ましい。A/(A+B)
が0.4未満では、処理剤被膜の表面摩擦抵抗の低
下が充分でなく、かつ被膜と繊維製品との界面接
着性も不充分となる。A/(A+B)が0.9を越
えると被膜の平滑性が不充分となる。又C/(A
+B)が0.04未満では被膜強度が不充分となり
C/(A+B)が0.3を越えると被膜の可撓性が
不足し処理後の繊維製品の曲げ特性が低下する。 さらに、上記剤と難燃剤(D)との重量比はD/
(A+B+C)は0.08〜0.7であることが好ましく
D/(A+B+C)が0.08未満では使用する難燃
剤種にもよるが期待する難燃性を付与することが
一般に困難であり、又、0.7を越えると難燃性は
充分に付与できるが、難燃剤による耐摩耗性の低
下率が大となり、初期の目的である耐摩耗性を充
分に発揮できなくなる。従つて難燃性と耐摩耗性
との両特性を期待どおり付与するには、上記範囲
D/(A+B+C)を0.2〜0.5の範囲とすること
が望ましい。 処理剤の固型分濃度としては3〜28重量%が適
当であり、好ましくは10〜20重量%である。乾燥
温度は100〜240℃、乾燥時間は1〜30分間が好ま
しい。乾燥温度が100℃未満では処理剤の被膜強
度が充分でなく、240℃を超えると被膜の劣化を
生じて初期の目的を達成できない。また望ましく
は第2処理剤で処理したのち100〜180℃程度で約
1〜20分間乾燥し、さらに160〜240℃程度で約
0.5〜10分間硬化熱処理する。 なお処理後の繊維への処理剤付着量は固型分で
1.1〜11重量%が好ましい。1.1重量%未満では繊
維の耐摩耗性、及び難燃性が不充分であり実用的
効果が発現せず、また11重量%を越えると処理後
の繊維は著しく粗硬となり曲げ疲労特性が低下し
繊維本来の有する特性を充分に生かせなくなる。 本発明による処理方法が優れた耐摩耗性、難燃
性を発現する理由は、第1処理剤が非常に低粘度
かつ反応性に富むため繊維または繊維製品の中ま
で短時間でよく浸透し個々の単繊維表面において
均一に接触反応するばかりでなく第2処理剤の架
橋剤としても反応するため結果的に単繊維と第2
処理剤との結合力を高めて第2処理剤の効果を向
上せしめるためと考えられる。加えて第2処理剤
としては耐候性も兼備したポリウレタンに酸化ポ
リエチレンを併用することで柔軟で平滑性を有す
る被膜を形成させ同時にこれらの剤による難燃性
低下を難燃性で防止、かつ向上させるとともに更
にエチレン尿素化合物の併用により架橋反応を生
じさせ被膜の凝集力を向上させて本来、被膜形成
性を低下させ易い難燃剤による悪影響を防止して
いることによる。従つてこの処理剤により繊維に
形成される被膜は摩耗係数が小さくかつ難燃性良
好で繊維との親和性にもすぐれている。さらに本
発明処理剤は冗述の如く摩擦係数を低下させる効
果があるため繊維に付与することにより繊維を構
成している単繊維間の相互摩擦を減少させる効果
も有するので繊維の曲げ疲労性を向上させる効果
も兼備している。 <実施例> 以下実施例により本発明を具体的に示す。なお
耐摩耗性、燃燃性の評価は下記方法に従つて行な
つた。 (1) 耐摩耗性評価方法 評価装置を第1図に示す。第1図において1
は0.6mmφの緊張したピアノ線、2は荷重、3
はコードの形態のサンプルである。 第1図の装置においてコード3の一端4に
0.2g/deの荷重を取り付けたのちコードを往
復運動させコード3がピアノ線1との摩擦によ
り切断するまでの往復回数を記録する。 (2) 難燃性評価方法 JIS、K7201−72酸素指数法に準じて実施し
た。但し試験片は処理剤間による有意差を明確
にするために比較的密度の粗な丸編地を試作し
て評価を行なつた。 編地は丸編5G(針5本/インチ)で編成し
た。 実施例 1〜2 繊維として、1500デニール250フイラメントの
ポリエチレンテレフタレート繊維および1500デニ
ール1000フイラメントのアラミド繊維(テクノー
ラ帝人(株)製)を用いた。 第1処理剤のシラン系カツプリング剤として
は、γ−グリシドキシプロピルトリメトキシシラ
ンを用いこの水溶液(固型分濃度3重量%)に前
記繊維を浸漬して含浸処理したのち120℃で2分
間熱風で処理した。繊維に対する固型分付着量は
それぞれ0.7及び0.9重量%であつた。続いてアジ
ピン酸と1−4ブタンジオールとからなるポリエ
ステルジオールとヘキサメチレンジイソシアネー
トとを反応させて得られたポリウレタン(A)の水分
散液(有効成分30重量%)と分子量4500の酸化ポ
リエチレン(B)の水分散液(有効成分25重量%)と
ジフエニルメタンジエチレン尿素(C)の水分散液
(有効成分25重量%)および1,2,5,6,9,
10−ブロモシクロドデカンの水分散液(有効成分
45重量%)を第1表に示した固型分比(重量%)
配合した第2処理液に浸漬した後120℃で2分間
熱処理しさらに180℃で3分間の効果熱処理を施
した。繊維に対する固型分付着量はそれぞれ3.9
重量%、4.8重量%であつた。この処理後のポリ
エステル長繊維糸およびアラミド長繊維糸を用い
て編地を試作し前述の難燃性評価方法により難燃
性を評価した。次にこれら長繊維糸を夫々2本引
き揃え21回/10cmの撚糸でZ撚りに撚糸したのち
得られた撚糸を3本合せて21回/10cmの撚数でS
撚りに合撚し9000デニールの繊維コードを得た。
得られたコードについての耐摩耗性評価結果を第
1表に示した。 実施例 3 アラミド繊維(テクノーラ帝人(株)製)を使用
し第1処理剤としてγ−メルカプトピロピルトリ
メトキシシランの水分散液(固型分濃度2.5重量
%)を用いさらに第2処理剤中の難燃剤としてデ
カブロモジフエニルエーテルの水分散液(有効成
分62重量%)を用いた以外は実施例2と同様に実
施して編物およびコードを得た。得られた編物お
よびコードについて実施例1〜2と同様に評価し
た評価結果を第1表に示した。 実施例 4 アラミド繊維(ケブラーDu pont(株)製)を使
用し第2処理剤中の難燃剤としてトリス(2,3
−ジブロムプロピル)ホスフエートの乳化液(有
効成分45重量%)を用いた以外は実施例2と同様
に実施して編物およびコードを得た。得られた編
物およびコードの評価結果を第1表に示した。 比較例 1〜4 実施例1〜4で用いた第2処理剤中の難燃剤を
取り除き他の成分については第1表に示した固型
分比(重量%)に配合し直したもので浸漬、含浸
処理した以外は実施例1〜4と同様に行つた。得
られた編物、コードの評価結果を第1表に示し
た。 比較例 5、6 実施例3で用いたアラミド繊維(テクノーラ
帝人(株)製)と使用し比較例5は、実施例3の第1
処理剤のみで含浸処理し第2処理剤で処理しなか
つた場合であり比較例6は実施例3の第2処理剤
中の難燃剤を取り除き他の成分については第1表
に示した固型分比(重量%)に配合し中したもの
のみで含浸処理し第1処理剤を使用しなかつた場
合のものである。処理条件は実施例3に示したそ
れぞれの処理条件と同様に実施した。得られた比
較例5、6の編物、コードの評価結果を第1表に
示した。 比較例 7 アラミド繊維(テクノーラ帝人(株)製)を使用
し表面処理を実施せずに編物およびコードを特性
した場合の評価結果を第1表に参示した。 <発明の効果> 本発明の方法により処理した繊維構造物は優れ
た耐摩耗性を難燃性を有していた。
[Formula] A group selected from −SO 2 −. m and m' are 0 or integers of 1 to 4 n and n' are integers of 1 to 5 (c) Organic halogen compound containing phosphorus represented by the following general formula (D 3 ) (Z 1 , Z 2 , and Z 3 are groups selected from aliphatic groups, aromatic groups, halogenated aliphatic groups, and halogenated aromatic groups, and at least one group of Z 1 , Z 2 , and Z 3 is , halogen-containing group) (2) The fiber according to claim 1, wherein the silane coupling agent has one or more groups selected from the group consisting of a mercapto group, a glycidyl group, and an epoxy group. processing method. (3) A claim in which the polyurethane (A) is composed of a polyester polyol and an aliphatic polyisocyanate, the polyethylene oxide (B) has a molecular weight of 1000 to 7000, and the ethylene urea compound (C) satisfies the following general formula: The method for treating fibers according to item 1 or 2. [In the formula, R is an aromatic or aliphatic hydrocarbon residue,
n is 0, 1 or 2. When n=0, the terminal is a hydrogen group. ] (4) The weight ratio of A, B, C, and D is A/(A+B).
4. The method for treating fibers according to any one of claims 1 to 3, wherein C/(A+B+C) is 0.08 to 0.7. Here, the silane coupling agent is, for example,
Vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(βmethoxyethoxy)silane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, β-(3,4
-Epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β(aminoethyl)γ-aminopropyltrimethoxysilane, N-γ(amino ethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N
-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, and the like. Preferably, it contains a mercapto group, a glycidyl group, or an epoxy group. Polyurethane is a polymer obtained by the reaction of polyester polyol and polyisocyanate, and polyester polyol is ethylene glycol, diethylene glycol,
- Obtained through the condensation reaction of polyhydric alcohols such as 4-butanediol, propylene glycol, butylene glycol, and glycerin with polyhydric aliphatic or aromatic carboxylic acids such as sebacic acid, adipic acid, oxalic acid, succinic acid, and phthalic acid. Examples include polyester polyols. Examples of the polyisocyanate include aliphatic or aromatic polyisocyanates such as hexamethylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, and naphthylene diisocyanate. However, from the viewpoint of light resistance, aliphatic polyisocyanates are preferred. Oxidized polyethylene is polyethylene oxidized to have a low molecular weight, preferably having a hydroxyl group and/or carboxyl terminal group, and more preferably a high-density polyethylene oxide with a low molecular weight.
1000-7000. The ethylene urea compound is represented by the general formula shown below. [In the formula, R is an aromatic or aliphatic hydrocarbon residue, n
is 0, 1 or 2. When n=0, the terminal is a hydrogen group. ] Representative compounds include aromatic or aliphatic isocyanates such as octadecyl isocyanate, hexamethylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, naphthylene diisocyanate, and triphenylmethane triisocyanate. Examples include reaction products with ethyleneimine. Furthermore, as a flame retardant compound, (a) a halogenated cycloalkane compound (D 1 ), that is, a cyclic saturated hydrocarbon or a saturated hydrocarbon compound having at least one cyclic saturated hydrocarbon, in which at least a portion of the hydrogen atoms is replaced by a halogen; For example, 1, 2,
3,4,5,6-hexabromocyclohexane, 1,2,3,4, or 1,2,4,6
-tetrabromocyclooctane, 1,2,
Examples include 5,6,9,10-hexabromocyclododecane, 1,2-bis(3,4-dibromocyclohexyl)-1,2-dibromoethane, and those in which bromine is replaced with chlorine. Among these compounds, those in which the halogen atom is bromine have particularly high flame retardant properties.
2,5,6,9,10-hexabromocyclododecane is good. (b) Examples of the halogenated aromatic compound (D 2 ) represented by the above general formula include brominated bisphenol A such as tetrabromobisphenol A, 2,2bis[3,5dibromo-4(2-hydroxyethoxy)] ethylene oxide adduct of brominated bisphenol A such as [phenyl]propane, or propylene oxide adduct, brominated diphenyl, brominated diphenyl ether, brominated hydroxydiphenyl sulfone, brominated diphenylamine, brominated diphenylmethane, etc., or these. Examples include compounds having a substituent on the aromatic ring of the compound, and brominated diphenyl and brominated diphenyl ether are particularly preferred. (c) The phosphorus-containing organic halogen compound (D 3 ) represented by the above general formula is tris(chloroethyl).
Phosphate, tris(dichloropropyl)
Examples include phosphate, tris(2,3-dibromopropyl) phosphate, and the like. Further, as a treatment method in the present invention, any conventionally known method such as a spray method, a coating method, or a dipping method may be used, but either the first treatment agent or the second treatment agent may be used. Since it is a low-viscosity liquid, the simplest method is to immerse the fiber structure in the treatment agent, adjust the amount of pick-up of the treatment agent with a nip roll as necessary, and then dry and harden it. The first treatment agent is used at a solution concentration of about 0.2 to 0.7% by weight, preferably 0.5 to 3.0%. When the solution concentration is less than 0.2% by weight, the amount of treatment agent attached (solid content)
is insufficient, so the effect cannot be fully expressed.
Moreover, if it exceeds 7.0% by weight, the adhesion of the second treatment agent will be reduced. After being treated with the first treatment agent, it is heat treated at a temperature range of about 100 to 170°C for about 0.5 to 30 minutes and dried. The amount of the first treatment agent attached to the fiber is determined by the solid content.
It is desirable to set it to about 0.2 to 2.0% by weight. After being treated with the first treatment agent, the fibers are subsequently treated with a second treatment agent. The weight ratio of polyurethane (A), oxidized polyurethane (B) and ethylene urea compound (C) constituting the second treatment agent is A/(A+B) of 0.4 to 0.9, and C/(A+B).
is preferably 0.04 to 0.3. A/(A+B)
If it is less than 0.4, the surface frictional resistance of the treatment agent coating will not be sufficiently reduced, and the interfacial adhesion between the coating and the textile product will also be insufficient. If A/(A+B) exceeds 0.9, the smoothness of the coating will be insufficient. Also C/(A
If +B) is less than 0.04, the coating strength will be insufficient, and if C/(A+B) exceeds 0.3, the coating will lack flexibility and the flexural properties of the treated fiber product will deteriorate. Furthermore, the weight ratio of the above agent and flame retardant (D) is D/
(A+B+C) is preferably 0.08 to 0.7. If D/(A+B+C) is less than 0.08, it is generally difficult to provide the desired flame retardancy, depending on the type of flame retardant used, and if D/(A+B+C) exceeds 0.7. Although sufficient flame retardancy can be imparted, the rate of decrease in abrasion resistance due to the flame retardant becomes large, making it impossible to fully exhibit the abrasion resistance that was the initial objective. Therefore, in order to provide both flame retardancy and abrasion resistance as expected, it is desirable that the above range D/(A+B+C) be in the range of 0.2 to 0.5. The solid concentration of the processing agent is suitably 3 to 28% by weight, preferably 10 to 20% by weight. The drying temperature is preferably 100 to 240°C and the drying time is preferably 1 to 30 minutes. If the drying temperature is less than 100°C, the film strength of the treatment agent will not be sufficient, and if it exceeds 240°C, the film will deteriorate and the initial purpose cannot be achieved. Preferably, after being treated with the second treatment agent, it is dried at about 100 to 180℃ for about 1 to 20 minutes, and then dried at about 160 to 240℃ for about 1 to 20 minutes.
Heat cure for 0.5-10 minutes. The amount of treatment agent attached to the fibers after treatment is based on the solid content.
1.1-11% by weight is preferred. If it is less than 1.1% by weight, the abrasion resistance and flame retardance of the fibers will be insufficient and no practical effect will be achieved, and if it exceeds 11% by weight, the fibers after treatment will become extremely coarse and hard and the bending fatigue properties will deteriorate. The inherent characteristics of the fibers cannot be fully utilized. The reason why the treatment method according to the present invention exhibits excellent abrasion resistance and flame retardancy is that the first treatment agent has a very low viscosity and high reactivity, so it can penetrate well into fibers or textile products in a short period of time. Not only does the contact reaction occur uniformly on the surface of the single fiber, but it also reacts as a crosslinking agent for the second treatment agent, resulting in a bond between the single fiber and the second treatment agent.
This is thought to be because it increases the binding force with the processing agent and improves the effect of the second processing agent. In addition, as a second treatment agent, we use polyurethane, which also has weather resistance, in combination with polyethylene oxide to form a flexible and smooth film, and at the same time prevent and improve flame retardancy from deterioration caused by these agents. In addition to this, the combined use of an ethylene urea compound causes a cross-linking reaction to improve the cohesive force of the film, thereby preventing the adverse effects of flame retardants, which originally tend to reduce film-forming properties. Therefore, the coating formed on fibers by this treatment agent has a small abrasion coefficient, good flame retardancy, and excellent affinity with fibers. Furthermore, as mentioned above, the treatment agent of the present invention has the effect of lowering the coefficient of friction, so when applied to fibers, it also has the effect of reducing the mutual friction between the single fibers that make up the fibers, thereby reducing the bending fatigue properties of the fibers. It also has the effect of improving. <Examples> The present invention will be specifically illustrated by examples below. The wear resistance and flammability were evaluated according to the following methods. (1) Abrasion resistance evaluation method The evaluation device is shown in Figure 1. In Figure 1, 1
is 0.6mmφ tensioned piano wire, 2 is load, 3 is
is a sample of the code format. In the device shown in Figure 1, one end of the cord 3 is connected to 4.
After applying a load of 0.2 g/de, the cord is moved back and forth and the number of reciprocations until the cord 3 breaks due to friction with the piano wire 1 is recorded. (2) Flame retardancy evaluation method: Conducted according to JIS, K7201-72 oxygen index method. However, in order to clarify the significant difference between the treatment agents, a circular knitted fabric with a relatively coarse density was prepared as a test piece and evaluated. The knitted fabric was circular knitted with 5G (5 needles/inch). Examples 1-2 As the fibers, 1500 denier 250 filament polyethylene terephthalate fiber and 1500 denier 1000 filament aramid fiber (manufactured by Technora Teijin Ltd.) were used. As the first treatment agent, silane-based coupling agent, γ-glycidoxypropyltrimethoxysilane was used, and the fiber was impregnated by immersing it in this aqueous solution (solid content concentration: 3% by weight), and then heated at 120°C for 2 minutes. Treated with hot air. The amount of solid content deposited on the fibers was 0.7 and 0.9% by weight, respectively. Next, an aqueous dispersion of polyurethane (A) (active ingredient 30% by weight) obtained by reacting a polyester diol consisting of adipic acid and 1-4 butanediol with hexamethylene diisocyanate and polyethylene oxide (B) having a molecular weight of 4500 were added. ) (25% by weight of active ingredient), an aqueous dispersion of diphenylmethanediethyleneurea (C) (25% by weight of active ingredient) and 1,2,5,6,9,
Aqueous dispersion of 10-bromocyclododecane (active ingredient
45% by weight) as shown in Table 1 (weight%)
After being immersed in the blended second treatment solution, it was heat treated at 120°C for 2 minutes, and then further subjected to effective heat treatment at 180°C for 3 minutes. The amount of solid content attached to the fiber is 3.9 respectively.
It was 4.8% by weight. A knitted fabric was experimentally produced using the polyester long fiber yarn and the aramid long fiber yarn after this treatment, and its flame retardance was evaluated using the above-mentioned flame retardancy evaluation method. Next, two of these long fiber yarns were pulled together and twisted into a Z-twist with a twist count of 21 times/10cm, and the resulting three twisted yarns were combined into a S-twist with a twist count of 21 times/10cm.
A fiber cord of 9000 denier was obtained by twisting and twisting.
Table 1 shows the abrasion resistance evaluation results for the obtained cords. Example 3 Aramid fibers (manufactured by Technora Teijin Co., Ltd.) were used, an aqueous dispersion of γ-mercaptopyropyltrimethoxysilane (solid content concentration 2.5% by weight) was used as the first treatment agent, and the second treatment agent was A knitted fabric and a cord were obtained in the same manner as in Example 2, except that an aqueous dispersion of decabromodiphenyl ether (62% by weight of active ingredient) was used as the flame retardant. The obtained knitted fabrics and cords were evaluated in the same manner as in Examples 1 and 2, and the evaluation results are shown in Table 1. Example 4 Tris (2,3
A knitted fabric and a cord were obtained in the same manner as in Example 2, except that an emulsion of -dibromopropyl) phosphate (45% by weight of active ingredient) was used. The evaluation results of the obtained knitted fabrics and cords are shown in Table 1. Comparative Examples 1 to 4 The flame retardant in the second treatment agent used in Examples 1 to 4 was removed and the other components were reformulated to the solid content ratio (wt%) shown in Table 1. The same procedure as in Examples 1 to 4 was carried out except that the impregnation treatment was carried out. The evaluation results of the obtained knitted fabrics and cords are shown in Table 1. Comparative Examples 5 and 6 Comparative Example 5 was used with the aramid fiber (manufactured by Technora Teijin Co., Ltd.) used in Example 3.
In Comparative Example 6, the flame retardant in the second treatment agent of Example 3 was removed, and the other components were as shown in Table 1. This is the case where the first treatment agent was not used and the impregnation treatment was carried out only with the ingredients mixed in the proportions (weight %). The processing conditions were the same as those shown in Example 3. The evaluation results of the knitted fabrics and cords of Comparative Examples 5 and 6 are shown in Table 1. Comparative Example 7 Table 1 shows the evaluation results when knitted fabrics and cords were characterized using aramid fibers (manufactured by Technora Teijin Co., Ltd.) without surface treatment. <Effects of the Invention> The fibrous structure treated by the method of the invention had excellent abrasion resistance and flame retardancy.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐摩耗性評価装置の側面図である。
1:ピアノ線、2:荷重、3:サンプル。
FIG. 1 is a side view of the wear resistance evaluation device.
1: piano wire, 2: load, 3: sample.

Claims (1)

【特許請求の範囲】 1 繊維をシラン系カツプリング剤を主成分とす
る第1処理剤で処理した後、ポリウレタン(A)酸化
ポリエチレン(B)、エチレン尿素化合物(C)、下記の
難燃性化合物(D1〜3)のいずれか1種、又は2
種以上を混合した第2処理剤(D)で処理することを
特徴とする繊維の処理方法。 (a) ハロゲン化シクロアルカン化合物(D1) (b) 下記一般式で示されるハロゲン化芳香族化合
物(D2(X、X′は−R、−OR、−OH及び
【式】 Rは炭素数1〜6のアルキル基またはハロゲン
化アルキル基、R′及びR″は水素またはメチル
基、 lは1−6の整数 Aは存在しないか、または−O−、−CH2−、
−NH−、【式】−SO2−から選ばれる基。 m、m′は0または1〜4の整数 n、n′は1−5の整数 (c) 下記一般式で示される燐を含む有機ハロゲン
化合物(D3(Z1、Z2、及びZ3は脂肪族基、芳香族基、ハロ
ゲン化脂肪族基及びハロゲン化芳香族基から選
ばれる基、Z1、Z2、Z3の少くとも1つの基は、
ハロゲン含有基) 2 シラン系カツプリング剤がメルカプト基、グ
リシジル基、エポキシ基からなる群から選ばれた
1以上の基を有することを特徴とする特許請求の
範囲第1項に記載の繊維の処理方法。 3 ポリウレタン(A)がポリエステルポリオールと
脂肪族ポリイソシアネートとからなり、酸化ポリ
エチレン(B)の分子量が1000〜7000であり、エチレ
ン尿素化合物(C)が下記一般式を満足する特許請求
の範囲第1項または第2項に記載の繊維の処理方
法。 [式中Rは芳香族又は脂肪族の炭化水素残基、n
は0、1又は2である。n=0のとき末端は水素
基である。] 4 A、B、C、Dの重量比がA/(A+B)は
0.4〜0.9、C/(A+B+C)は0.08〜0.7である
特許請求の範囲第1〜3項のいずれかに記載の繊
維の処理方法。
[Claims] 1. After treating the fibers with a first treatment agent containing a silane coupling agent as the main component, polyurethane (A), polyethylene oxide (B), ethylene urea compound (C), and the following flame retardant compound are added. Any one of (D 1 to 3 ) or 2
A method for treating fibers, comprising treating with a second treatment agent (D) containing a mixture of at least two types of fibers. (a) Halogenated cycloalkane compound (D 1 ) (b) Halogenated aromatic compound represented by the following general formula (D 2 ) (X, X' are -R, -OR, -OH and [Formula] R is an alkyl group having 1 to 6 carbon atoms or a halogenated alkyl group, R' and R'' are hydrogen or a methyl group, l is 1-6 An integer of A is absent or -O-, -CH 2 -,
A group selected from -NH-, [Formula] -SO 2 -. m and m' are 0 or integers of 1 to 4 n and n' are integers of 1 to 5 (c) Organic halogen compound containing phosphorus represented by the following general formula (D 3 ) (Z 1 , Z 2 , and Z 3 are groups selected from aliphatic groups, aromatic groups, halogenated aliphatic groups, and halogenated aromatic groups, and at least one group of Z 1 , Z 2 , and Z 3 is ,
(halogen-containing group) 2. The method for treating fibers according to claim 1, wherein the silane coupling agent has one or more groups selected from the group consisting of a mercapto group, a glycidyl group, and an epoxy group. . 3. Claim 1, wherein the polyurethane (A) is composed of a polyester polyol and an aliphatic polyisocyanate, the polyethylene oxide (B) has a molecular weight of 1000 to 7000, and the ethylene urea compound (C) satisfies the following general formula: The method for treating fibers according to item 1 or 2. [In the formula, R is an aromatic or aliphatic hydrocarbon residue, n
is 0, 1 or 2. When n=0, the terminal is a hydrogen group. ] 4 The weight ratio of A, B, C, and D is A/(A+B).
4. The method for treating fibers according to any one of claims 1 to 3, wherein C/(A+B+C) is 0.08 to 0.7.
JP61260637A 1986-11-04 1986-11-04 Treatment of fiber Granted JPS63120174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260637A JPS63120174A (en) 1986-11-04 1986-11-04 Treatment of fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260637A JPS63120174A (en) 1986-11-04 1986-11-04 Treatment of fiber

Publications (2)

Publication Number Publication Date
JPS63120174A JPS63120174A (en) 1988-05-24
JPH0129910B2 true JPH0129910B2 (en) 1989-06-14

Family

ID=17350686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260637A Granted JPS63120174A (en) 1986-11-04 1986-11-04 Treatment of fiber

Country Status (1)

Country Link
JP (1) JPS63120174A (en)

Also Published As

Publication number Publication date
JPS63120174A (en) 1988-05-24

Similar Documents

Publication Publication Date Title
US20140350140A1 (en) Fiber for reinforcing rubber products
EP1996761A1 (en) Fabrics comprising ceramic particles and methods for making them
JPS6197148A (en) Flexible chemically treated fiber bundle, woven cloth, nonwoven cloth and coated cloth
JPS62110984A (en) Sizing agent of reinforcing fiber for composite material
JPH0129910B2 (en)
JPH0466948B2 (en)
JP2014163000A (en) Carbon fiber bundle and carbon-fiber-reinforced composite material using the same
US4536422A (en) Process to impart smooth-dry and flame retardant properties to cellulosic fabric
JPH0665787B2 (en) Carbon fiber strand sizing method
JPS6024226B2 (en) Processing method of polyester fiber material for rubber reinforcement
JP2541319B2 (en) Method for treating fiber material for rubber reinforcement
JP3098267B2 (en) Fiber treatment agent for composite materials
US4618512A (en) Process to impart smooth-dry and flame retardant properties to synthetic-cellulosic blended fabrics
JPH03249280A (en) Treating agent for improving abrasion resistance
JP2894799B2 (en) Glass fiber for rubber reinforcement
JPH01132883A (en) Treatment of polyester fiber material for reinforcing rubber
JP2001348783A (en) Carbon fiber bundle
JPH0444033B2 (en)
JPS60151380A (en) Durable water and oil repellent processing
JPS60110979A (en) Production of polyester fiber for reinforcing rubber
JPH0129909B2 (en)
CN115323776A (en) Hard rope and fabric thereof, elastic product and surface treatment agent
JPH0756113B2 (en) Method of treating polyester fiber material for rubber reinforcement
JPS59144681A (en) Anti-wear property enhancer
JP2020158903A (en) Carbon fiber cord for reinforcing polyurethane resin and manufacturing method thereof