JPH0129761B2 - - Google Patents
Info
- Publication number
- JPH0129761B2 JPH0129761B2 JP21768686A JP21768686A JPH0129761B2 JP H0129761 B2 JPH0129761 B2 JP H0129761B2 JP 21768686 A JP21768686 A JP 21768686A JP 21768686 A JP21768686 A JP 21768686A JP H0129761 B2 JPH0129761 B2 JP H0129761B2
- Authority
- JP
- Japan
- Prior art keywords
- sample holder
- cells
- frozen
- tube
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007710 freezing Methods 0.000 claims description 18
- 230000008014 freezing Effects 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 18
- 239000001307 helium Substances 0.000 claims description 12
- 229910052734 helium Inorganic materials 0.000 claims description 12
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 7
- 238000011084 recovery Methods 0.000 claims description 7
- 239000001963 growth medium Substances 0.000 claims description 4
- 239000005871 repellent Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 230000001954 sterilising effect Effects 0.000 claims description 2
- 238000004659 sterilization and disinfection Methods 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims 1
- 239000004810 polytetrafluoroethylene Substances 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 62
- 238000001816 cooling Methods 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 230000004083 survival effect Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 238000010583 slow cooling Methods 0.000 description 4
- 239000002577 cryoprotective agent Substances 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000007798 antifreeze agent Substances 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/28—Quick cooling
Landscapes
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Description
【発明の詳細な説明】
≪産業上の利用分野≫
本発明は例えば、リンパ球、骨随細胞、更には
精子、受精卵等の生体細胞を凍結するための装置
に関する。DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application Field>> The present invention relates to an apparatus for freezing living cells such as lymphocytes, osteopathic cells, sperm, and fertilized eggs.
≪従来の技術≫
生体細胞を長期保存の目的のために凍結するに
あたつて、その生存率を高くすることは最も重要
な事柄ポイントであり、その凍結細胞の生存率
は、細胞の冷却速度に大きく影響されるものであ
り、その関係は第4図に示す通りである。<<Conventional technology>> When freezing living cells for the purpose of long-term preservation, the most important point is to increase their survival rate, and the survival rate of frozen cells depends on the cooling rate of the cells. The relationship is shown in Figure 4.
図示の如く、生存率の向上に際し、有利な冷却
速度には2領域あつて、その1つは1℃〜数℃/
毎分の緩速冷却域Aであり、他の1つは極めて急
速な10000℃/毎分以上といつた、超急速冷却域
Bである。 As shown in the figure, there are two regions of advantageous cooling rates for improving survival rate, one of which is 1°C to several degrees Celsius/
One is a slow cooling region A, which is a cooling rate of 10,000° C./minute, and the other is an ultra-rapid cooling region B, which is a very rapid cooling of 10,000° C./minute or more.
又、細胞液の塩濃縮、脱水、細胞内氷晶形成等
が、どの程度行なわれるかによつて適性冷却速
度、非適正冷却速度が定まるのであるが、特に毎
分10000℃以上の超急速冷却域Bにおいては、細
胞内水分が非晶質(所謂ガラスの様な状態)とし
て凍結するか、あるいは、氷晶ができても極めて
微細であるので、細胞が凍害を受けないとされて
いる。 In addition, the appropriate cooling rate and inappropriate cooling rate are determined depending on the degree of salt concentration, dehydration, intracellular ice crystal formation, etc. of the cell fluid, and especially ultra-rapid cooling of 10,000 degrees Celsius or more per minute. In region B, intracellular water is frozen in an amorphous state (so-called glass-like state), or even if ice crystals form, they are extremely fine, so that cells are not subject to freezing damage.
ところが従来、生体細胞の凍結方法としては、
ストロー管等のチユーブ状収納管に細胞を凍害防
止剤を含む緩衝液と共に収納し、これを液化窒素
等の低温液化ガス、あるいは冷凍機を用いて冷却
し、凍結を行うことが実施されており、従つてそ
の冷却域は、前記緩速冷却域Aである。 However, conventional methods for freezing living cells include
Cells are stored in a tube-like storage tube such as a straw tube along with a buffer solution containing a cryoprotectant, and this is cooled using a low-temperature liquefied gas such as liquefied nitrogen or a refrigerator to freeze the cells. , therefore, the cooling area is the slow cooling area A.
上述従来方法においては、凍結の直接の対象で
ある細胞が、これに比較して極めて大量の緩衝液
の中に浮遊した状態で存在するために、収納管の
周囲環境をいかに急速凍結の条件下においてやつ
ても、細胞を取り囲む緩衝液が細胞の冷却に対し
ては極めて大きな抵抗となるので、細胞の冷却速
度を前記超急速冷却域Bまで上げることはでき
ず、結局前記緩速冷却域Aに依存するしかなかつ
た。 In the conventional method described above, the cells that are directly targeted for freezing exist in a suspended state in an extremely large amount of buffer compared to this method, so the surrounding environment of the storage tube must be carefully adjusted under conditions for rapid freezing. Even in this case, the buffer solution surrounding the cells provides an extremely large resistance to the cooling of the cells, so it is not possible to increase the cooling rate of the cells to the ultra-rapid cooling area B, and in the end, the cooling rate of the cells cannot be increased to the ultra-rapid cooling area A. I had no choice but to depend on it.
その結果、上述従来方法では次のような諸問題
が指摘される。 As a result, the following problems are pointed out in the conventional method described above.
(イ) 緩速冷却域Aにおいて、高い生存率とするこ
とができるが、これはあくまでも凍害防止剤を
添加した条件下での成績であるから、従来方法
によるときは、凍害防止剤の添加が不可欠とな
つてくるだけでなく、又上記条件下でも緩速冷
却域Aにおいては、細胞の種類により、20%程
度の非実用的な低い生存率しか得られない。(b) A high survival rate can be achieved in the slow cooling region A, but this is only under the conditions where a frost damage inhibitor is added, so when using the conventional method, the addition of a frost damage inhibitor is not possible. Not only is this essential, but even under the above conditions, in the slow cooling region A, depending on the type of cell, only an impractically low survival rate of about 20% can be obtained.
(ロ) 上記凍害防止剤を添加する際、急激に所定の
濃度にすると、細胞への悪影響が非常に大きく
なるため、4〜5回に分けて段階的に濃度を上
げていかねばならず、この作業は甚だ面倒で時
間がかかり、それでもこのような労力をかけて
も、多少の悪影響から、のがれることはできな
い。(b) When adding the above-mentioned cryoprotectant, if the concentration is suddenly increased to a certain level, the negative effect on the cells will be very large, so the concentration must be increased step by step over 4 to 5 times. This work is extremely tedious and time-consuming, and even with such effort, one cannot escape from some negative effects.
(ハ) さらに、生体細胞への悪影響を防ぐため、細
胞の解凍時には、凍害防止剤を洗浄、除去する
作業が必要となり、更に、細胞の流失によるロ
スが生じる。(c) Furthermore, in order to prevent adverse effects on living cells, it is necessary to wash and remove the antifreeze agent when thawing the cells, and furthermore, there is a loss due to washing away of the cells.
(ニ) 毎分1℃から数℃という比較的狭い領域で冷
却しなければならないため、冷却速度の制御は
厳格に行う必要があり、プログラムコントロー
ラー等、高度な制御装置を必要とする上、凍結
時間が2〜3時間と長くなる。(d) Since cooling must be performed in a relatively narrow area of 1°C to several degrees per minute, the cooling rate must be strictly controlled, requiring advanced control equipment such as a program controller, and freezing It will take 2 to 3 hours.
(ホ) 凍害防止剤の添加等の前処理に時間を要する
上、凍結時間も長く、細胞の凍結までの時間が
総体的に長くかかるため、細胞の活性が低下し
易い。(e) Pretreatment such as addition of a cryoprotectant takes time, and the freezing time is also long, so it takes a long time overall to freeze the cells, so the activity of the cells tends to decrease.
≪発明が解決しようとする問題点≫
そこで本発明は、上記の諸問題点を解消するた
めに、生体細胞を毎分10000℃以上の超急速冷却
によつて凍結を実現する新規な凍結装置を得たも
ので、構成が簡潔で、かつ操作が極めて容易であ
り、しかも、凍結細胞の生存率が高く、活性レベ
ルも高く維持でき、更に凍結細胞の回収率を殆ど
100%近くまで向上できるようにしようとするの
が、その目的である。<Problems to be Solved by the Invention> In order to solve the above-mentioned problems, the present invention provides a novel freezing device that freezes living cells by ultra-rapid cooling of 10,000°C or more per minute. The obtained product has a simple structure, is extremely easy to operate, has a high survival rate of frozen cells, maintains a high activity level, and has a very low recovery rate of frozen cells.
The goal is to improve your performance to near 100%.
≪問題点を解決するための手段≫
即ち本発明は、断熱したチヤンバーには底部に
凍結細胞回収用のメツシユによる回収容器を連結
したチユーブ状のサンプルホルダーが着脱自在に
内装され、当該サンプルホルダー内の上部に、外
部から気密に貫設した液体ヘリウム蒸気供給用の
トランスフアーチユーブと、生体細胞を可及的な
最小単位で培養液に包まれた状態にて供与する微
細管とを夫々開口配置して構成し、上記問題点を
解決したものである。<<Means for Solving the Problems>> That is, the present invention has a tube-shaped sample holder that is removably attached to the bottom of an insulated chamber and connected to a mesh recovery container for recovering frozen cells. A transfer tube for supplying liquid helium vapor, which is airtightly penetrated from the outside, and a microtube for supplying biological cells in the smallest possible unit, wrapped in culture medium, are arranged in the upper part of the tube, respectively. This configuration solves the above problems.
≪実施例≫
以下本発明の実施例を図面に基づいて、詳述す
れば、第1図に示したようにチヤンバー1は、相
似形としたとき有底状の内筒1aおよび外筒1b
を適当な間隔だけ離間して組み合せ、これによ
り、当該両筒1a,1b間に真空断熱層2を形成
したもので、該チヤンバー1の上端開口部3か
ら、ポリ四弗化エチレン(ダウケミカル社の商品
名:テフロン)あるいはポリイミド等の撥水性材
料で筒形状に形成したサンプルホルダー4を挿入
し、その上端部外周に設けられたホルダーフラン
ジ5を、上記チヤンバー1の開口部3の周辺に固
設したフランジ6と、該フランジ6上に重積状態
でボルト7………にて固定される押え部材8とに
挟着固定して、該サンプルホルダー4をチヤンバ
ー1内の略中央部に脱着自在に吊持させてある。<<Example>> Hereinafter, an example of the present invention will be described in detail based on the drawings. As shown in FIG.
A vacuum insulation layer 2 is formed between the two cylinders 1a and 1b by combining the chambers 1a and 1b at an appropriate interval. A cylindrical sample holder 4 made of a water-repellent material such as Teflon (trade name: Teflon) or polyimide is inserted, and the holder flange 5 provided on the outer periphery of the upper end is fixed around the opening 3 of the chamber 1. The sample holder 4 is clamped and fixed between the provided flange 6 and a holding member 8 which is fixed on the flange 6 in an overlapping state with bolts 7, and the sample holder 4 is removed and attached to the approximate center of the chamber 1. It can be hung freely.
上記サンプルホルダー4の底部には、少なくと
も生成する凍結微細粒よりも小さいメツシユ、望
ましくは滅菌フイルター級のメツシユ材よりなる
有底形状とした凍結細胞の回収容器9を接着、あ
るいは熱収縮チユーブの収縮手段を用いるなどし
て凍結させてある。 At the bottom of the sample holder 4, a frozen cell collection container 9 with a bottom made of a mesh smaller than the frozen fine particles to be generated, preferably a mesh material of sterile filter grade, is adhered, or a heat-shrinkable tube is shrunk. It has been frozen using other means.
又、上記サンプルホルダー4の上部には、該サ
ンプルホルダー4内部に液体ヘリウム蒸気を供給
する為のトランスフアーチユーブ10と、同じく
サンプルホルダー4内部に、生体細胞を培養液と
共に供給する為の微細管11が、上記押え部材8
を気密に貫通して、当該サンプルホルダー4内の
上部空間に開口している。 Further, on the upper part of the sample holder 4, there is a transfer tube 10 for supplying liquid helium vapor into the sample holder 4, and a microtube for supplying living cells together with a culture medium, also inside the sample holder 4. 11 is the pressing member 8
The sample holder 4 is opened to the upper space inside the sample holder 4 by passing through the sample holder 4 in an airtight manner.
上記トランスフアーチユーブ10の外端は、図
示しない液体ヘリウム蒸気発生容器に接続させて
あり、一方、上記微細管11の外端は、培養液1
2中に生体細胞13を分散した状態で収納してあ
る細胞容器14にポンプPを介して連結させてあ
るもので、この生体細胞を供給する為の微細管1
1の上記サンプルホルダー4内に開口した少なく
とも開口端部11aは、生体細胞が望ましくは1
個だけ通過し得る程度の微細な内径を有する例え
ばガラスキヤピラリーチユーブ等にて形成させて
ある。 The outer end of the transfer tube 10 is connected to a liquid helium vapor generating container (not shown), while the outer end of the microtube 11 is connected to a liquid helium vapor generating container (not shown).
It is connected via a pump P to a cell container 14 containing living cells 13 dispersed in the microtube 1 for supplying the living cells.
At least the open end 11a opened in the sample holder 4 of 1 is preferably filled with living cells.
It is made of, for example, a glass capillary tube having an inner diameter small enough to allow only a small number of particles to pass through.
尚、図において15はチヤンバー1の下部に設
けた排気管を示す。 In the figure, reference numeral 15 indicates an exhaust pipe provided at the bottom of the chamber 1.
以上が本発明装置の構成であるが、次にその作
用を説示する。 The configuration of the device of the present invention has been described above, and its operation will be explained next.
先づトランスフアーチユーブ10を介してサン
プルホルダー4の内部空間に液体ヘリウムを蒸気
又はミスト状態で供給し、望ましくは20〓(−
235℃)以下の極低温に予冷し、その温度域に保
持するように液体ヘリウムを供給しながら、微細
管11から培養液の微細液滴中に包まれた状態で
細胞を同サンプルホルダー4内に滴下する。 First, liquid helium is supplied in the form of vapor or mist to the internal space of the sample holder 4 through the transfer tube 10, preferably at a rate of 20〓(-
The cells are pre-cooled to an extremely low temperature below 235 degrees Celsius, and while supplying liquid helium to maintain the temperature within that temperature range, the cells are placed in the same sample holder 4 from the microtube 11 while being wrapped in microdroplets of culture medium. Drip into.
微細液滴には生体細胞が1個乃至数個等、可及
的に少ない数だけ含まれるようにするのが望まし
く、そのため微細管11に振動機によつて微小な
振動を与えると、滴下する液滴がより小さくな
り、1個のみの生体細胞を含む液滴を形成し易く
なる。 It is desirable that the fine droplets contain as few biological cells as possible, such as one to several, and therefore, when the fine tube 11 is subjected to minute vibrations with a vibrator, the droplets drop. The droplets become smaller, making it easier to form droplets containing only one biological cell.
このようにして、サンプルホルダー4の上部か
ら滴下される生体細胞は、20〓以下の極低温で、
しかも極めて熱容量の大きな液体ヘリウム蒸気の
雰囲気により、落下途中で毎分10000℃以上の超
急速で冷却、凍結され、凍結細胞としてサンプル
ホルダー4底部の回収容器9に堆積する。 In this way, the biological cells dropped from the top of the sample holder 4 are kept at an extremely low temperature of 20°C or less.
In addition, due to the atmosphere of liquid helium vapor having an extremely large heat capacity, the cells are cooled and frozen at an extremely rapid rate of 10,000° C./min or more during the fall, and are deposited in the collection container 9 at the bottom of the sample holder 4 as frozen cells.
一方、上記サンプルホルダー4内に供給された
液体ヘリウム蒸気は生体細胞と熱交換に多少昇温
し、回収容器9のメツシユを抜けてチヤンバー1
の排気管15から大気中に排気される。 On the other hand, the liquid helium vapor supplied into the sample holder 4 heats up somewhat due to heat exchange with the living cells, passes through the mesh of the collection container 9, and enters the chamber 1.
It is exhausted to the atmosphere from the exhaust pipe 15.
以上の如くして、所定量の生体細胞を凍結し終
つたならば、液体ヘリウム蒸気と細胞の供給を停
止し、ボルト7及び押え部材8を外してサンプル
ホルダー4をチヤンバー1内から抜き出し、汚染
防止、異物混入防止の為に、別途用意した図示し
ないサンプルホルダー4用のキヤツプを同サンプ
ルホルダー4の上端開口部にねじ込み等の手段で
取り付けるか、あるいは、サンプルホルダー4の
上端開口部を溶封する等して密閉し、該サンプル
ホルダー4をそのまま液体窒素等の低温液化ガス
中に浸漬して保持する。 When a predetermined amount of living cells have been frozen as described above, the supply of liquid helium vapor and cells is stopped, the bolt 7 and the holding member 8 are removed, the sample holder 4 is taken out from the chamber 1, and the sample holder 4 is removed from the chamber 1 to avoid contamination. In order to prevent foreign matter from entering the sample holder, a separately prepared cap for the sample holder 4 (not shown) should be attached to the top opening of the sample holder 4 by means such as screwing, or the top opening of the sample holder 4 should be sealed by melt sealing. The sample holder 4 is then immersed and held in a low-temperature liquefied gas such as liquid nitrogen.
このように、回収容器9に凍結細胞を回収し
て、サンプルホルダー4ごと保持具として扱える
ようになるから、凍結細胞の回収の手間が省ける
上、凍結細胞を別の保存用容器に移し替える作業
も不要であり、更には、凍結細胞の回収ロスも無
くなり、凍結後に、外気に曝す時間を最少限にで
きるので、不用意に凍結細胞を解凍してしまうと
いつたことも生じ難い。 In this way, the frozen cells can be collected into the collection container 9 and the sample holder 4 can be used as a holder, which saves the trouble of collecting the frozen cells and also reduces the work of transferring the frozen cells to another storage container. Further, there is no need to recover frozen cells, and the time of exposure to the outside air after freezing can be minimized, so it is unlikely that the frozen cells will be thawed carelessly.
又、上記のメツシユによる回収容器9は、凍結
中にあつて、サンプルホルダー4から液体ヘリウ
ム蒸気の排気部となる上、液体窒素に浸漬し、又
は取り出す時に液体窒素の入口、あるいは抜け口
となつて好都合である。 In addition, the mesh recovery container 9 serves as an exhaust part for liquid helium vapor from the sample holder 4 during freezing, and also serves as an inlet or outlet for liquid nitrogen when immersed in or taken out of liquid nitrogen. It's convenient.
更に、回収容器9のメツシユを、滅菌フイルタ
ー級の微細なものとすれば、当該装置による工程
では、細胞の移し替え等の外気曝露の機会がない
ので生体細胞の再汚染を完全に防止することが可
能である。 Furthermore, if the mesh in the collection container 9 is made of a fine mesh similar to that of a sterilization filter, in the process using this device, there is no opportunity for exposure to the outside air during cell transfer, etc., so recontamination of living cells can be completely prevented. is possible.
又、サンプルホルダー4を撥水性材料で形成
し、又は同材料でコーテイングすると、凍結中に
生体細胞が、内壁面に付着することがなく、回収
率を高めることができる。 Furthermore, if the sample holder 4 is made of a water-repellent material or coated with the same material, biological cells will not adhere to the inner wall surface during freezing, and the recovery rate can be increased.
第2図、第3図は、サンプルホルダー4をチヤ
ンバー1内の略中央部に配置するための他実施例
を示している。 FIGS. 2 and 3 show other embodiments in which the sample holder 4 is placed approximately in the center of the chamber 1. FIG.
同図に示す如く、チヤンバー1の底部1cを別
体とし、フランジ16,17と、図示しないボル
ト等の手段で当該底部1cを脱着可能に形成し、
その底部1cの内面中央部にピン18を立設して
おき、一方、上記サンプルホルダー4の底部に連
結した回収容器9の底面には、上記ピン18に適
合するブツシユ19を下向きに固説し、該ブツシ
ユ19とピン18相互を係嵌すると共に、上記チ
ヤンバー1の上端開口部3から短管20を垂設
し、該短管20をサンプルホルダー4の上端開口
部に嵌合するよう形成されている。 As shown in the figure, the bottom 1c of the chamber 1 is formed as a separate body, and the bottom 1c is removably formed using flanges 16, 17 and means such as bolts (not shown).
A pin 18 is erected at the center of the inner surface of the bottom 1c, and a bush 19 that fits the pin 18 is fixed downward on the bottom of the collection container 9 connected to the bottom of the sample holder 4. , the bush 19 and the pin 18 are engaged with each other, a short tube 20 is suspended from the upper end opening 3 of the chamber 1, and the short tube 20 is formed to fit into the upper end opening of the sample holder 4. ing.
このような構成によつても、サンプルホルダー
4をチヤンバー1内の略中央部に固定可能であつ
て、かつサンプルホルダー4の脱着も容易にする
ことができる。 With such a configuration, the sample holder 4 can also be fixed to a substantially central portion within the chamber 1, and the sample holder 4 can also be easily attached and detached.
≪発明の効果≫
以上説明したように本発明に係る、生体細胞の
凍結装置は構成されたものであるから、冷却、凍
結する単位が、殆ど生体細胞1個ないし、これに
近い僅かな単位であつて、しかも極低温で熱容量
の大きな液体ヘリウム蒸気の雰囲気で冷却できる
ので、毎分10000℃以上の超高速で生体細胞を冷
却できる為、凍害防止剤を要することなく、従来
例に比較して相対的に高い生存率で生体細胞を凍
結でき、又チヤンバー1内にサンプルホルダー4
が二重管を形成するように配置されるので、特に
サンプルホルダー4内が低温を得易い上、冷媒を
効率良く使用できると共に、サンプルホルダー4
の底部にメツシユによる細胞回収容器9を有し、
チヤンバー1に脱着自在として当該サンプルホル
ダー4を保存用ホルダーに兼用できるので、凍結
細胞回収の手間が不要な上、回収率が高く、かつ
保存容器等への移し替えが不要であり、しかも凍
結細胞が外気温に曝露される機会を最少限にで
き、又、保存用液体窒素に出し入れする際、メツ
シユが液体窒素の出入口となつて好都合であり、
更に又、構成も簡潔である為、操作が極めて容易
であり、かつ安価に製作できる。<<Effects of the Invention>> As explained above, since the living cell freezing apparatus according to the present invention is configured, the unit to be cooled and frozen is almost one living cell or a small number of units close to this. Moreover, since it can be cooled in an atmosphere of liquid helium vapor that has a large heat capacity at an extremely low temperature, biological cells can be cooled at an ultra-high speed of over 10,000 degrees Celsius per minute, so there is no need for antifreeze agents and compared to conventional methods. Living cells can be frozen with a relatively high survival rate, and there is also a sample holder 4 in the chamber 1.
Since the sample holder 4 is arranged to form a double tube, it is easy to obtain a low temperature especially inside the sample holder 4, and the refrigerant can be used efficiently.
It has a cell collection container 9 with a mesh at the bottom of the cell,
Since the sample holder 4 can be detachably attached to the chamber 1 and can also be used as a storage holder, there is no need for the trouble of recovering frozen cells, the recovery rate is high, and there is no need to transfer the frozen cells to a storage container, etc. It is possible to minimize the opportunity for the liquid nitrogen to be exposed to outside temperature, and the mesh serves as a convenient entrance and exit for the liquid nitrogen when putting it in and out of the liquid nitrogen for storage.
Furthermore, since the structure is simple, it is extremely easy to operate and can be manufactured at low cost.
第1図は本発明に係る生体細胞の凍結装置を示
す一実施例の使用状態縦断正面図第2図、第3図
は同凍結装置の他の実施例を一部拡大して各々示
した各縦断正面図、第4図は凍結細胞の生存率と
冷却速度の関係を示すグラフである。
1……チヤンバー、4……サンプルホルダー、
9……凍結細胞の回収容器、10……トランスフ
アーチユーブ、11……微細管。
FIG. 1 is a longitudinal sectional front view of one embodiment of the living cell freezing device according to the present invention in use. FIGS. 2 and 3 are partially enlarged views of other embodiments of the same freezing device. The longitudinal front view and FIG. 4 are graphs showing the relationship between the survival rate of frozen cells and the cooling rate. 1...Chamber, 4...Sample holder,
9... Frozen cell collection container, 10... Transfer tube, 11... Microtube.
Claims (1)
用のメツシユによる回収容器を連結したチユーブ
状のサンプルホルダーが着脱自在に内装され、当
該サンプルホルダー内の上部に、外部から気密に
貫設した液体ヘリウム蒸気供給用のトランスフア
ーチユーブと、生体細胞を可及的な最小単位で培
養液に包まれた状態にて供与する微細管とを夫々
開口配置してなることを特徴とする生体細胞の凍
結装置。 2 サンプルホルダーが、ポリ四弗化エチレン、
ポリイミド等の撥水性材料、もしくは同材料でコ
ーテイングしたもので形成されている特許請求の
範囲第1項記載の生体細胞の凍結装置。 3 凍結細胞の回収容器が、滅菌フイルターで形
成されている特許請求の範囲第1項記載の生体細
胞の凍結装置。[Claims] 1. A tube-shaped sample holder connected to the bottom of the insulated chamber with a mesh recovery container for frozen cell recovery is removably housed inside the chamber, and an airtight tube is attached to the top of the sample holder to ensure airtight access from the outside. A transfer tube for supplying liquid helium vapor and a microtube for supplying biological cells in the smallest possible unit in a state surrounded by a culture medium are each arranged with openings. Living cell freezing device. 2 The sample holder is made of polytetrafluoroethylene,
2. The biological cell freezing device according to claim 1, which is made of a water-repellent material such as polyimide or a material coated with the same material. 3. The biological cell freezing device according to claim 1, wherein the frozen cell collection container is formed of a sterilization filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21768686A JPS6372601A (en) | 1986-09-16 | 1986-09-16 | Freezing of living cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21768686A JPS6372601A (en) | 1986-09-16 | 1986-09-16 | Freezing of living cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6372601A JPS6372601A (en) | 1988-04-02 |
JPH0129761B2 true JPH0129761B2 (en) | 1989-06-14 |
Family
ID=16708129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21768686A Granted JPS6372601A (en) | 1986-09-16 | 1986-09-16 | Freezing of living cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6372601A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08304242A (en) * | 1995-05-15 | 1996-11-22 | Rigaku Corp | Sample cooling nozzle |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10237125A1 (en) * | 2002-08-13 | 2004-03-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Cryopreservation with a gaseous or vaporous cooling medium |
EP2224800B1 (en) * | 2007-11-20 | 2013-01-09 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Ultra-rapid freezing device and method |
US8168138B2 (en) * | 2010-12-22 | 2012-05-01 | Li Che | Cryogenic vial |
CN104986426B (en) * | 2015-06-10 | 2017-07-07 | 陈子江 | A kind of sample stored frozen pipe and stored frozen device |
-
1986
- 1986-09-16 JP JP21768686A patent/JPS6372601A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08304242A (en) * | 1995-05-15 | 1996-11-22 | Rigaku Corp | Sample cooling nozzle |
Also Published As
Publication number | Publication date |
---|---|
JPS6372601A (en) | 1988-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6381967B1 (en) | Cryogenic freezing of liquids | |
US5863715A (en) | Methods for bulk cryopreservation encapsulated islets | |
US8936905B2 (en) | Systems and methods for cryopreservation of cells | |
US8709797B2 (en) | Systems and methods for cryopreservation of cells | |
US20080176326A1 (en) | Delivery of high cell mass in a syringe and related methods of cryopreserving cells | |
US7939316B2 (en) | Systems and methods for cryopreservation of cells | |
EP1028623B1 (en) | Method for cryopreservation | |
WO2019218997A1 (en) | Method and device for filling dry dewar tank | |
JPH0129761B2 (en) | ||
JP2001514866A (en) | Cryoprotectant removal method and apparatus | |
US20080050717A1 (en) | Cryopreservation and recovery system for liquid substances | |
US5715686A (en) | Method for cryopreservation of biological samples | |
JPH0534953B2 (en) | ||
JPH0512691Y2 (en) | ||
CA2647664C (en) | Systems and methods for cryopreservation of cells | |
JPH0110602Y2 (en) | ||
JPH04282301A (en) | Rapid freeze drying of biological sample | |
Hartmann et al. | Calculation of temperature distribution during unidirectional freezing of binary aqueous solutions in a container immersed into liquid nitrogen | |
Englich et al. | Cryomicroscopic investigation of intracellular freezing and resulting injury of lymphocytes: Correlation with exosmosis as well as cooling and warming rates |