JPH01281308A - Pulse variable combustion method and pulse variable combustion device - Google Patents
Pulse variable combustion method and pulse variable combustion deviceInfo
- Publication number
- JPH01281308A JPH01281308A JP10975388A JP10975388A JPH01281308A JP H01281308 A JPH01281308 A JP H01281308A JP 10975388 A JP10975388 A JP 10975388A JP 10975388 A JP10975388 A JP 10975388A JP H01281308 A JPH01281308 A JP H01281308A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- fuel
- load
- combustion chamber
- intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 156
- 238000009841 combustion method Methods 0.000 title claims description 12
- 239000000446 fuel Substances 0.000 claims abstract description 99
- 238000000034 method Methods 0.000 claims abstract description 4
- 238000005192 partition Methods 0.000 claims description 27
- 230000007246 mechanism Effects 0.000 claims description 17
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 108010063955 thrombin receptor peptide (42-47) Proteins 0.000 abstract description 14
- 238000009423 ventilation Methods 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 8
- 239000012528 membrane Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000002360 explosive Substances 0.000 description 4
- 230000002265 prevention Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
Description
本発明は、パルス燃焼におけるIt丁変燃焼方法及びそ
の装置に関するものである。
特に、出力変化を可能として航空機、船舶、エアーカー
や雪上車等のエンジンの他、工業用の熱源として、或い
は業務用や家庭用に利用されるパルス燃焼窓として広く
使用で3るものである。The present invention relates to an It-variant combustion method in pulse combustion and an apparatus therefor. In particular, it is widely used as a pulse combustion window for use in engines of aircraft, ships, air cars, snowmobiles, etc. as well as industrial heat sources, as well as for business and home use, as it allows for variable output.
従来のパルス燃焼は、無弁式、有弁式ともに推力を脈動
的に発生させて使用する内燃機関であり、また自動的に
給排気できる燃焼器であった0例えば、第10図のよう
に、排気筒を連設した燃焼筒内に燃焼圧の逆流防止弁1
aを有する防炎トラップ1を固定配として燃焼室Aと吸
気室Bとを仕切り、吸気室側に燃料噴巾ノズル2を配置
したイi弁式の構成であった。その作動は、まず空気取
入口Baより送風機で空気を圧入すると共(燃料噴出ノ
ズル2から燃料を噴出して逆流防止弁1aを通過さ上燃
焼室Aに燃料混合ガスを供給する。この混合ガスは点火
プラグ3により爆発燃焼し、P#ガスは排気筒Cから排
出される。この排気で燃焼室AKQ圧が生じるため次の
サイクルからは送風機で空気を圧入することを要せず、
空気が燃料と共に自己吸引され燃焼を繰り返すことは周
知である。
また無弁式のパルス燃焼装置としては、本発明溝が以前
に開発取得した構成、特許第417439号、同432
735号等が公知である。Conventional pulse combustion is an internal combustion engine that uses both valveless and valved types to generate thrust in a pulsating manner, and a combustor that can automatically supply and exhaust air.For example, as shown in Figure 10, , Combustion pressure backflow prevention valve 1 in the combustion cylinder connected to the exhaust pipe
The combustion chamber A and the intake chamber B were separated from each other by a fixed flameproof trap 1 having a flame retardant trap 1, and the fuel jet width nozzle 2 was disposed on the intake chamber side. Its operation is as follows: First, air is injected by a blower through the air intake port Ba (fuel is injected from the fuel injection nozzle 2, passes through the check valve 1a, and a fuel mixture gas is supplied to the upper combustion chamber A. This mixture gas is explosively combusted by the spark plug 3, and P# gas is discharged from the exhaust pipe C. This exhaust gas generates the AKQ pressure in the combustion chamber, so it is not necessary to pressurize air with a blower from the next cycle.
It is well known that air is self-inhaled together with fuel to cause repeated combustion. In addition, as a valveless type pulse combustion device, the configuration previously developed and acquired by the present invention, Patent No. 417439, Patent No. 432
No. 735 and the like are publicly known.
【発明が解決しようとする課題]
しかしながら、いずれもその設計に当たって燃料の種類
により空燃比が設定され、これによって燃焼室の容積と
希望サイクルによる排気管の長さが決定されていた。し
たがってパルス燃焼装置は燃焼室の容積が一定な定容燃
焼方式であり、夕一ボジェ、トやレシプロエンジンのよ
うな定圧燃焼方式ではないことからアクセルによるアイ
ドリングや出力変化ができないという最大の欠点があっ
た0発明者の貰験によると従来のパルス燃焼器ではわず
か1〜2%の燃焼負荷可変率であり燃焼器の制御が困難
であった。tIJち、従来のパルス燃焼器は高負荷燃焼
を作動するかiFめるかの選択しかなかったのである。
゛ そこで本発明は、燃焼制御を広範囲に容易に継続可
変でさて各分野における使用を可詣にできるパルス燃焼
方法及びその装置を提供することを目的としいてる。
【課題を解決するための手段】
(a)このため、燃焼方法発明では、燃焼筒内における
吸気側に燃焼圧の逆流を防IFする防炎トラップを配置
して排気筒との間で燃焼室を形成したパルスであって、
該トラップを槽動させ、或いは燃焼Y内に挿入配置され
往つ排気筒と連通ずる可動仕切体を摺動させることによ
り燃焼室の容積を可変させると共に、該燃焼室の可変容
積に応じた空燃比の燃料及び空気を可変供給させて燃焼
させる方法としている。
(b)またパルス可変燃焼装置の一つは、燃焼筒内にお
ける吸気側に燃焼圧の逆流を防止する防炎トラップを配
tして排気筒との間で燃焼室を形成したパルス燃焼装置
において、該トラップを摺動ロfイ先に配置し、高負々
から低Q荷ま〒の所定負荷に応じた燃料を燃焼筒内の吸
気側に供給できる燃料供給装置と、高負荷から低負荷ま
での所定負荷に応じて空気酸をg4整し燃焼筒内の吸気
室に供給できる吸気調整機構とを備え、前記トラップと
燃料供給装置と吸気:A整機構とを連繋させて該トラ7
プの可動変位による燃焼室の可変容積に応じた空燃比と
なる燃料及び空気とを可変供給できる制御り段を備えた
4R成としている。
(c)さらに、他のパルス可変燃焼装置は、燃焼筒内に
おける吸気側に燃焼圧の逆流を防止する防炎トラップを
固定配置して燃焼室を仕切り形成したパルス燃焼装置に
おいて、燃焼室内に排気筒と燃焼室とを連通ずる可動仕
切体を摺動可能に収容し、高負荷から低負荷までの所定
負荷に応じた燃料を燃焼筒内の吸気室に供給できる燃料
供給装置と、高負荷から低負荷までの所定負荷に応じて
空気呈を調整し燃焼筒内の吸気室に供給できる吸気調整
機構とを備え、前記可動仕切体と燃料供給装置と吸気I
R幣槻構とを連繋させて該可動仕切体の可動変位による
燃焼室の可変容積に応じた空燃比となる燃料及び空気と
を可変供給できる制御手段を備えた構成としている。
(d)なお、燃焼室を高負荷と低負荷の二段階可変容積
としたものでは、燃料供給装置の燃料噴出ノズルを高負
荷用と低負荷用とに別けて吸気流路に配置したaJJi
、としている。
(e)また、吸気流路に開閉ダンパを配こして吸気調整
機構とするものでは、その回転支点となる中央部に低負
荷吸気用のオリフィスを形成すると共に、Uオリフィス
孔に低負荷用の燃料噴出ノズルを開口配置した構成とし
ている。
(f)さらに、燃焼室内に挿入配置した可動仕切体を摺
動させものでは、可動仕切体の後部に燃焼室から突出す
る排気筒を連設した構成としている。[Problems to be Solved by the Invention] However, in all of these designs, the air-fuel ratio is set depending on the type of fuel, and this determines the volume of the combustion chamber and the length of the exhaust pipe depending on the desired cycle. Therefore, the pulse combustion device is a constant volume combustion method in which the volume of the combustion chamber is constant, and is not a constant pressure combustion method like the Yuichi Boget, Toto, and reciprocating engines, so its biggest drawback is that it cannot be idling or change the output by accelerating. According to the inventor's experience, conventional pulse combustors have a combustion load variable rate of only 1 to 2%, making it difficult to control the combustor. With conventional pulse combustors, the only choice was to operate high-load combustion or reduce iF. Therefore, an object of the present invention is to provide a pulse combustion method and an apparatus thereof that can easily and continuously vary combustion control over a wide range and can be used in various fields. [Means for Solving the Problems] (a) For this reason, in the combustion method invention, a flameproof trap is arranged on the intake side of the combustion tube to prevent backflow of combustion pressure, and the flame trap is placed between the combustion chamber and the exhaust tube. A pulse formed by
By moving the trap or sliding a movable partition inserted into the combustion Y and communicating with the exhaust pipe, the volume of the combustion chamber can be varied, and the air can be adjusted according to the variable volume of the combustion chamber. This method is used to combust by supplying fuel and air at variable fuel ratios. (b) One of the variable pulse combustion devices is a pulse combustion device in which a flameproof trap is placed on the intake side of the combustion cylinder to prevent backflow of combustion pressure, and a combustion chamber is formed between it and the exhaust stack. , a fuel supply device in which the trap is arranged at the end of the sliding rod and can supply fuel to the intake side of the combustion cylinder according to a predetermined load from high load to low Q load; The trap, the fuel supply device, and the intake:A adjustment mechanism are connected to each other, and the trap, the fuel supply device, and the intake air adjustment mechanism are connected to each other.
The 4R configuration is equipped with a control stage that can variably supply fuel and air with an air-fuel ratio that corresponds to the variable volume of the combustion chamber by the movable displacement of the combustion chamber. (c) Furthermore, another variable pulse combustion device is a pulse combustion device in which the combustion chamber is partitioned by fixedly disposing a flameproof trap on the intake side of the combustion cylinder to prevent backflow of combustion pressure. A fuel supply device that slidably accommodates a movable partition that communicates between the cylinder and the combustion chamber, and can supply fuel to the intake chamber in the combustion cylinder according to a predetermined load from high load to low load; The movable partition body, the fuel supply device, and the intake I
The structure is equipped with a control means that can variably supply fuel and air at an air-fuel ratio corresponding to the variable volume of the combustion chamber by moving the movable partition by moving the movable partition. (d) In addition, in the case where the combustion chamber has a two-stage variable volume for high load and low load, the fuel injection nozzle of the fuel supply device is arranged in the intake flow path separately for high load and low load.
. (e) In addition, in the case where an opening/closing damper is arranged in the intake flow path to form an intake adjustment mechanism, an orifice for low-load intake is formed in the central part that serves as the rotational fulcrum, and an orifice for low-load intake is formed in the U orifice hole. The fuel injection nozzle is arranged in an open configuration. (f) Furthermore, in the case where the movable partition inserted into the combustion chamber is slid, an exhaust pipe protruding from the combustion chamber is connected to the rear of the movable partition.
(イ)パルス可変燃焼方法発明では、防炎トラップを摺
動させ、或いは燃焼室内に挿入配置されflっ排気筒と
連通する可動仕切体を摺動させることによって燃焼室の
容積を可変させることができ、該燃焼室の可変容積に応
じた空燃比の燃料及び空気を可変供給させることにより
夫々に適した爆発燃焼となるのである。したがって当初
は高負荷大容量燃焼とし1次いで低負荷小容量燃焼に継
続変化させ、或いはその逆燃焼を繰り返し安定して連続
燃焼できるのである。
(0)また、パルス可変燃焼装はの一つは、トラップの
摺動により、他のパルス可変燃焼?c2!は可動仕切体
の摺動により、夫々燃焼室の容積を可変さセることがで
き、夫々トラップ或いは可動仕切体に連繋させた燃料供
給装置と吸気調整機構の制御手段によって該燃焼室の可
変容積に応じた空燃比の燃料及び空気が可変供給されて
可変容積に適した爆発燃焼となるのである。
(^)なお、燃焼室を高負荷と低負荷の二段階可変容積
と成し、燃料供給装置の燃料噴出ノズルを高負荷用と低
負荷用とに別けて吸気流路に配置したa成では、制御手
段によって燃料噴出ノズルが切り変えられる作用となり
、その作用が容易となるため確実迅速に高負々mと低負
荷用との変換かでさるのである。
(ニ)また、燃焼室を高負荷と低負荷の二段階可変容積
と成し、吸気流路に開閉ダンパを配M I、た吸気調整
機構とすると共に該開閉ダンパの回転支点となる中央部
に低負荷吸気用のオリフィスを形成すると共に2該オリ
フイス孔に低負術用の燃料噴出ノズルを開口配置した構
成では、ivJ御手段によって開閉ダンパが所定角度回
動変位して吸気皐を調節すると共に、燃料噴出ノズルが
切り変えられる作用となり、低負荷燃焼時に制御手段に
よって開閉ダンパが閉回動してオリフィスによる吸気に
調節されると共に、オリフィスから燃料が供給される作
用となるもので、吸気調整機構と低負荷用燃料噴出ノズ
ルとを一体に付帯できて構成が時車となるのである。(a) Pulse variable combustion method In the invention, the volume of the combustion chamber can be varied by sliding a flameproof trap or by sliding a movable partition inserted into the combustion chamber and communicating with the flue exhaust pipe. By variably supplying fuel and air at an air-fuel ratio corresponding to the variable volume of the combustion chamber, explosive combustion suitable for each can be achieved. Therefore, it is possible to perform stable continuous combustion by initially performing high-load, large-capacity combustion, and then continuously changing to low-load, small-capacity combustion, or by repeating the reverse combustion. (0) Also, one of the pulse variable combustion devices is the other by the sliding of the trap? c2! The volume of the combustion chamber can be varied by sliding the movable partition, and the volume of the combustion chamber can be varied by the control means of the fuel supply device and intake air adjustment mechanism connected to the trap or the movable partition. Fuel and air are variably supplied at an air-fuel ratio depending on the volume, resulting in explosive combustion suitable for the variable volume. (^) In addition, in the a configuration, the combustion chamber has a two-stage variable volume for high load and low load, and the fuel injection nozzle of the fuel supply device is placed in the intake flow path separately for high load and low load. The fuel injection nozzle is switched by the control means, and this operation is facilitated, so that it can be reliably and quickly changed between high-load and low-load applications. (D) In addition, the combustion chamber has a two-stage variable volume of high load and low load, and an intake air adjustment mechanism with an opening/closing damper arranged in the intake flow path, and a central portion serving as the rotational fulcrum of the opening/closing damper. In a configuration in which an orifice for low-load intake is formed in the second orifice hole and a fuel injection nozzle for low-negative operation is opened in the two orifice holes, the opening/closing damper is rotated by a predetermined angle by the ivJ control means to adjust the intake height. At the same time, the fuel injection nozzle is switched, and the opening/closing damper is rotated closed by the control means during low-load combustion to adjust the intake air through the orifice, and the fuel is supplied from the orifice. The adjustment mechanism and the low-load fuel injection nozzle can be integrated into one unit, making the configuration more convenient.
【第1実施例】
以下、未発明の燃焼方法を1.を発明の燃焼装置の図示
貰施例とともに説明する。
第1図に示すパルス可変燃焼′J、21Sは、従来の燃
焼室の2〜3倍の体積の燃焼筒4と排気筒5よを連設し
、透過率比5〜6の燃焼圧の逆流を防止する防炎トラッ
プ6を配tして排気筒5との間で燃焼室Kを形成してい
る。該トラップ6は移動ロッド6aに固着されて摺動可
能に配けされており、該ロッド6aの他端は燃焼tJ4
から突出してベルクランク7の長孔7aにビン結合しで
ある。燃焼筒4にはトラップ6を介した燃焼室にと反対
側に形成された吸気室Nに連通ずる通気筒8が連設して
あり、その連設部に通気筒8を閉塞できる開閉ダンパ9
が設置しである。該ダンパ9は中央に欠設開口させたオ
リフィス9Cを形成すると共に、その回転支点となる中
心の支持管9aの突出端にレバー10を連結してあり、
レバー10の回動につれ90度回勅できるように配とし
である。また、該ダンパ9の支持管9aには燃焼加圧タ
ンク又は燃焼圧送ポンプを備えた燃料供給装置1(図示
せず)からの低負荷用の供給管11が連通接続しである
。さらに支持管9aの中央部にはオリフィス孔9bが形
成され、供給管11からの燃料を導いている(第5図参
照)、なお、レバー10はベルクランクlOaの長孔部
でピン連結しである。
12は高負荷用の燃料供給管であって別の燃料供給袋!
(図示せず)に接続され、その先端の噴射ノズル12a
を通気筒8内に配置している。
13は高負荷用と低負荷用とを一体に有する気体逆流防
止弁であって弁座14に遮断膜15,16を備えて成り
1通気筒8の拡張部に配置されている。該弁座14は第
2図及び第3図のように。
厚み2厘層〜lc厘位の押出し成形されたアルミ製。
耐熱プラスチック等で円形通過孔E、Fを蜂の巣状に透
設して成り、その中央に取付孔14aを透設すると共に
その軸心から短い径の取付リング14bを一体に成形し
ている。該リング14bの内周部の通過孔Eを低負荷用
の空気取入れ孔とすると共に、該リング14bの外周部
の通過孔Fを高負荷用の空気取入れ孔と成している。
そして、第4図にように該リング14bの内周部を被覆
する遮断W116が中央部の取付孔14aにボルト止め
してあり、該リング14bの外周部を被覆するリング状
の遮断膜15が該リング14bに止着環体17で取り付
けされている。これら遮断[115,16はリン青銅製
或いはナイロン製で厚み0.1〜065■である。なお
、18は通過孔を形成したバルブストッパであって、遮
断fi15.18の撓みを規制するストッパ作用をする
。
さらに、トラップ6と燃料供給装置と吸気調整機構とを
連繋させる制御手段は、スロットル(図示せず)の作動
で牽引されるワイヤーWによってベルクランク7を介し
トラ−、プロの位置が変化することによる燃焼室の可変
容積に応じた空燃比となる燃料と空気とを可変供給でき
る構成である。
本例では高負荷と低負荷の二段階変化のため、可変空燃
比に応じた燃料と吸気量とが予め計算できるのであり、
レバーlOの位置を近接スイッチ19a、19bが検知
し、それをコンピュータCPからステシビングモータM
に指令してベルクランクlOaを回動させ開閉バルブを
開閉作動させる乎繋機構と、燃料供給管11.12のニ
ードルバルブによる作動択一選択の連繋機構とを備える
ことでm虫に可変制御できるのである。
このように構成した本例の作用を本発明方法とあわせて
説明する。
第1図の状態は、トラップ6が排気筒5から最も尊れた
位21(第2図左端)に固定された高負荷用の燃焼を欣
し、ており、この状態において燃焼室にの容積が最大で
ある。そして、燃焼作用は従来と同様であり、最初は送
風機で空気を供給するが後は自己吸引して爆発燃焼する
のである。
この際、トラップ6のロッド6aと連繋した制御手段に
よって気体逆流防止弁13の弁座14における全域の通
過孔E、Fから遮断膜15 、16を可撓させて空気が
取り入れられると共に、開閉ダンパ9の全開状慝で高負
荷に適した空気が通過する。この空気流入によって高負
荷用の燃料供給管12の噴射ノズル12aから高負荷に
適した量の燃料が吸引されて最適の空燃比で吸気室Nに
流入するのである。したがって、大容積となっている燃
焼室にで高負荷の爆発燃焼が適正に行なわれるのである
。なおトラップ6の位置はロッド6aを固定することに
より簡単に不動状態とすることができる。
そして、低負荷燃焼の場合は、スロットルを作動してロ
ッド6aを介しトラップ6を排気筒5の方の所定位置に
移動させる(第1図板Mk&参照)、これを近接スイッ
チ19bが検知し、コンピュータCP、ステッピングモ
ータMを介してレバーlOが90度回動じ、開閉ダンパ
9が回動して通気筒8内を遮断すると共に、高負荷用の
燃料供給管12からの燃料供給が停止され、低負荷用の
燃料供給装置だけが!!続作動して供給管11から燃料
がダンパ9の支持管9aに供給されるのである、なお、
この際、遮断膜15.16を夫々ヤング率の異なる材質
で、或いは厚みを変えることでヤング率を異にして区別
したため、その弾性復元力で該リング14b外周部の高
負荷用通過孔Fからの空気の流入が阻止され、該リング
Z4b内周部の低負荷用の通過孔Eからのみ流入するの
である、したがって、トラップ6の移動により小容量と
なった燃焼室Kにおける燃焼に適した少ない空気が通過
孔Eを通過し、ダンパ9のオリフィス9Cで流量をrI
R幣されながら支持管9aに供給された燃料を吸引して
吸気室Nから燃焼室Kに流入して低負荷燃焼するのであ
る。
そして、再び高負荷燃焼する場合は、トラップ6を第1
図のように復位させればよく、これに連繋して開閉ダン
パ9が開くと共に高負荷用の燃料供給管12から燃料が
供給され、逆流防止弁13の全域の通過孔E、Fがら空
気が珈り入られて燃焼するのである。
なお、高負荷燃焼の際にも、低負荷用のオリフィス孔9
bからの燃料がa続して供給されるが、これを停止させ
てもよい。
また、実験によると、弁座14は最大60℃まで昇温し
ただけであり、耐久性の優れることが判明した。
このように本例によると、トラップ6の摺動変位によっ
て燃焼室Kを可変できると共にその燃焼室容量に応じた
空燃比の燃料及び空気が取り入れられるため高低両負荷
燃焼を任意11続して連続燃焼できるのである。
なお、昂望するサイクルは、ヘルムホルツ型の公式を利
用して設定している。
これは、燃焼室容積変化につれて吸気室の容積も当然に
変化するためであり、従来のシュミットは使用できない
ためである。このことは次の第2施例でも同様である。[First Example] Hereinafter, an uninvented combustion method will be described in 1. will be explained together with illustrated embodiments of the combustion apparatus of the invention. Pulse variable combustion 'J, 21S shown in FIG. A combustion chamber K is formed between the combustion chamber K and the exhaust pipe 5 by disposing a flameproof trap 6 to prevent the combustion. The trap 6 is fixed and slidably arranged on a moving rod 6a, and the other end of the rod 6a is connected to the combustion tJ4.
It protrudes from the bell crank 7 and is connected to the long hole 7a of the bell crank 7. The combustion cylinder 4 is connected with a ventilation cylinder 8 that communicates with the intake chamber N formed on the opposite side of the combustion chamber via the trap 6, and an opening/closing damper 9 that can close the ventilation cylinder 8 is provided at the connected part.
is installed. The damper 9 has an orifice 9C formed in the center thereof, and a lever 10 is connected to the protruding end of a central support tube 9a that serves as a rotational fulcrum.
It is arranged so that it can be rotated 90 degrees as the lever 10 rotates. Further, the support pipe 9a of the damper 9 is connected to a low-load supply pipe 11 from a fuel supply device 1 (not shown) equipped with a combustion pressure tank or a combustion pressure pump. Furthermore, an orifice hole 9b is formed in the center of the support tube 9a, and guides the fuel from the supply tube 11 (see Fig. 5).The lever 10 is connected with a pin at the long hole of the bell crank lOa. be. 12 is a fuel supply pipe for high loads and is a separate fuel supply bag!
(not shown), and the injection nozzle 12a at its tip
is arranged inside the ventilation cylinder 8. Reference numeral 13 denotes a gas check valve having both high load and low load valves, which has a valve seat 14 and barrier membranes 15 and 16, and is disposed in the expanded portion of the one-way cylinder 8. The valve seat 14 is as shown in FIGS. 2 and 3. Made of extruded aluminum with a thickness of 2 to 1 cm. It is made of heat-resistant plastic or the like with circular passage holes E and F formed in a honeycomb shape, and a mounting hole 14a is formed in the center thereof, and a mounting ring 14b having a short diameter is integrally molded from the axis thereof. The passage hole E on the inner circumference of the ring 14b is an air intake hole for low loads, and the passage hole F on the outer circumference of the ring 14b is an air intake hole for high loads. As shown in FIG. 4, a barrier W116 covering the inner circumference of the ring 14b is bolted to the mounting hole 14a in the center, and a ring-shaped barrier membrane 15 covering the outer circumference of the ring 14b is bolted to the mounting hole 14a in the center. A retaining ring body 17 is attached to the ring 14b. These shields [115, 16] are made of phosphor bronze or nylon and have a thickness of 0.1 to 065 mm. In addition, 18 is a valve stopper in which a passage hole is formed, and acts as a stopper to restrict the deflection of the shutoff fi 15.18. Further, the control means for linking the trap 6, the fuel supply device, and the intake air adjustment mechanism is such that the position of the trap 6 is changed via the bell crank 7 by a wire W pulled by the operation of a throttle (not shown). This configuration allows fuel and air to be variably supplied at an air-fuel ratio that corresponds to the variable volume of the combustion chamber. In this example, since there is a two-step change of high load and low load, the fuel and intake amount according to the variable air-fuel ratio can be calculated in advance.
Proximity switches 19a and 19b detect the position of lever IO, and the position is transmitted from computer CP to steering motor M.
It is equipped with a linking mechanism that rotates the bell crank lOa in response to a command to open and close the opening/closing valve, and a linking mechanism that selects the operation option using the needle valve of the fuel supply pipe 11 and 12, allowing variable control to be performed. It is. The operation of this example configured in this manner will be explained together with the method of the present invention. The state shown in Figure 1 is for high-load combustion where the trap 6 is fixed at the highest position 21 from the exhaust stack 5 (left end in Figure 2), and in this state, the volume of the combustion chamber is is the maximum. The combustion action is the same as in the conventional method; at first, air is supplied by a blower, but then the combustion occurs by self-suction, resulting in explosive combustion. At this time, the control means connected to the rod 6a of the trap 6 flexes the blocking membranes 15 and 16 from the passage holes E and F in the entire valve seat 14 of the gas check valve 13 to take in air, and the opening/closing damper Air suitable for high loads passes through the fully open position of 9. Due to this air inflow, an amount of fuel suitable for the high load is sucked from the injection nozzle 12a of the fuel supply pipe 12 for high loads and flows into the intake chamber N at an optimum air-fuel ratio. Therefore, high-load explosive combustion can be properly carried out in the large-volume combustion chamber. Note that the position of the trap 6 can be easily made immovable by fixing the rod 6a. In the case of low-load combustion, the throttle is actuated to move the trap 6 to a predetermined position toward the exhaust pipe 5 via the rod 6a (see plate Mk & in FIG. 1), and the proximity switch 19b detects this. The lever lO is rotated 90 degrees via the computer CP and the stepping motor M, and the opening/closing damper 9 is rotated to shut off the inside of the ventilation cylinder 8, and the fuel supply from the high-load fuel supply pipe 12 is stopped. Only fuel supply equipment for low loads! ! Fuel is supplied from the supply pipe 11 to the support pipe 9a of the damper 9 by continuous operation.
At this time, since the barrier membranes 15 and 16 were made of materials with different Young's modulus or by changing the thickness, the elastic restoring force of the barrier membranes 15 and 16 was used to separate the membranes from the high-load passage hole F on the outer periphery of the ring 14b. The air is prevented from flowing in, and the air flows in only from the low-load passage hole E in the inner circumference of the ring Z4b. Air passes through the passage hole E, and the flow rate is reduced to rI at the orifice 9C of the damper 9.
The fuel supplied to the support pipe 9a is sucked while being heated, flows from the intake chamber N into the combustion chamber K, and is combusted at a low load. Then, when performing high-load combustion again, set trap 6 to the first
It is only necessary to return to the position as shown in the figure, and in conjunction with this, the opening/closing damper 9 opens and fuel is supplied from the high-load fuel supply pipe 12, and air is removed from the passage holes E and F in the entire area of the check valve 13. It gets stuck in there and burns up. In addition, even during high load combustion, the orifice hole 9 for low load
Although fuel from b is continuously supplied, it may be stopped. Further, according to experiments, the temperature of the valve seat 14 was only increased to a maximum of 60° C., and it was found that the valve seat 14 had excellent durability. In this way, according to this example, the combustion chamber K can be varied by the sliding displacement of the trap 6, and fuel and air at an air-fuel ratio corresponding to the combustion chamber capacity can be taken in, so that high and low load combustion can be performed continuously for any 11 times. It can be burned. Note that the cycle of aspiration is set using the Helmholtz formula. This is because the volume of the intake chamber naturally changes as the volume of the combustion chamber changes, and the conventional Schmidt cannot be used. This also applies to the following second example.
【第2′J!施例ゴ
次に第6図に示す実施例を説明する。
前例と相違する構成は、燃焼t!1t20を真直にして
防炎トラップ21を固着すると共に、燃焼筒に排気筒を
連設することなく、燃焼筒20内に排気筒22at一連
設した可動仕切体22を摺動可能に挿入配置したことに
ある。
可動仕切体22は、後方に向うにつれ狭くなった円錐台
形の貫通部22bが先端面から透設されて排気筒22a
に連通している。その他のオリフィス9b+tき開閉ダ
ンパ9や逆流防止弁13等は前例と同一な構成である。
第2実施例によると、可動仕切体22に備えたし八−2
3の作動で可動仕切体22を摺動させることにより燃焼
室にの容量が変化するもので、この変化に連繋して、前
例と同一作用で燃焼室容量に応じた空燃比の燃料及び空
気が取り入れられるため任意負荷燃焼を継続して連続燃
焼できるのである。なお、第6図の状態は低負荷燃焼時
における可動仕切体22の位置状態であり、高負荷燃焼
峙には可動仕切体22が燃焼筒20の後端まで摺動する
のである。
本例は前記のように構成したが本発明においてはこれに
限定されない。
例えば、可変燃焼方法においては、高負荷と低Q荷の二
段階切り変えに限定されず、多段階或いは連続変化させ
る燃焼形式でもよい、これらは該燃焼室の可変容積に応
じて予め計算される空燃比となる優の燃料及び空気を可
変供給させることばより適宜に成し得るのである。この
場合、燃料は液体の他、ガスでもよい、いずれの場合も
燃料論語に逆止弁を備えた噴出ノズルを用いればよい。
また、燃焼ガスの逆比弁を有しない無弁式のパルス燃焼
装置の場合でも、第7図及び第8図のよラに燃焼室容量
を可変燃焼できるのである。
他方、可変燃焼装置においては、燃焼圧の逆流を防止す
る防炎トラップ或いは可動仕切体の構成を問わず2その
摺動可能とする配置状態も適宜である。
また、高負々から低負荷までの所定負荷に応じた燃料を
燃焼筒内の吸気側に供給できる燃料供給装置と、高負荷
から低負荷までの所定負荷に応じて空気量を調整し燃焼
筒内の吸気室に供給できる吸気調整機構の構成も任意で
ある9本例のように燃料供給装置の供給管及び噴射ノズ
ルを複数とすることなく、これを一つとしてそこに加え
る圧力変化を利用して供給量を規制する構成でもよい。
吸気調!!!機構も、第9図のようにコーン状とした可
動体25を仕切孔部で進退させて孔面積を変化させる橋
mWとしてもよい。
さらに、前記トラップ或いは可動仕切体と、燃料供給装
置と213!気調整機構とを連繋させて該トラップ或い
は可動仕切体の摺動変位による燃焼室の可変容積に応じ
た空燃比となる燃料及び空気とを可変供給できる制御手
段の構成も問わない0例えば、該トラップ或いは可動仕
切体をサーボモータで可動させ、燃料供給装置と吸気調
整機構とを比例制御できるようI!!繋させる構成でも
よく、種々の構成が採用できるのである。
【発明の効果】
請求項第1項の可変燃焼方法によると、高負荷乃至低負
荷までの負荷を複数段階或いは連続的な燃焼室容量の変
化として可変燃焼できることから高負荷乃至低負荷間の
適宜な継続可変燃焼ができる効果が大きく、パルス燃焼
器の汎用性が実現できる画期的な発明である。
また、請求項第2項の可変燃焼装置によると。
高負荷乃至低負荷間の適宜な継続可変燃焼が随単で、燃
料の変更にも対処できる効果がある。
さらに請求項第3項の可変燃焼装置によると。
燃焼筒の形状や吸気室の構成が簡略にできる効果がある
。
なお、請求項第4項のものでは二段階の可変燃焼のため
構成が簡単となり、請求項第5項のものでは燃料供給装
置の構成が−Rf’l1mになるのであり、請求項第6
項のものでは排気筒の構成が簡略にでき、夫々コスト安
となるのである。[2nd J! EXAMPLE Next, the example shown in FIG. 6 will be described. The configuration different from the previous example is the combustion t! 1t20 is made straight and the flameproof trap 21 is fixed, and a movable partition 22 having an exhaust pipe 22at connected thereto is slidably inserted into the combustion pipe 20 without connecting an exhaust pipe to the combustion pipe. It is in. The movable partition 22 has a truncated cone-shaped penetrating portion 22b that becomes narrower toward the rear and is transparent from the distal end surface of the exhaust pipe 22a.
is connected to. Other opening/closing damper 9 with orifice 9b+t, backflow prevention valve 13, etc. have the same configuration as the previous example. According to the second embodiment, the movable partition body 22 is provided with 8-2.
The capacity of the combustion chamber changes by sliding the movable partition body 22 in the operation of step 3, and in conjunction with this change, the air-fuel ratio of fuel and air according to the combustion chamber capacity is adjusted in the same manner as in the previous example. This allows for continuous combustion with arbitrary load combustion. The state shown in FIG. 6 is the position of the movable partition 22 during low-load combustion, and the movable partition 22 slides to the rear end of the combustion tube 20 during high-load combustion. Although this example is configured as described above, the present invention is not limited thereto. For example, the variable combustion method is not limited to two-stage switching of high load and low Q load, but may also be a multi-stage or continuous combustion type, which is calculated in advance according to the variable volume of the combustion chamber. This can be achieved by variably supplying fuel and air to achieve an air-fuel ratio. In this case, the fuel may be gas as well as liquid, and in either case, a jet nozzle equipped with a check valve may be used in the fuel analects. Further, even in the case of a valveless type pulse combustion apparatus that does not have a combustion gas inverse ratio valve, combustion can be performed with variable combustion chamber capacity as shown in FIGS. 7 and 8. On the other hand, in a variable combustion device, irrespective of the structure of the flameproof trap or movable partition for preventing backflow of combustion pressure, it is also appropriate to arrange it so that it can slide. In addition, a fuel supply device that can supply fuel to the intake side of the combustion cylinder according to a predetermined load from high load to low load, and a fuel supply device that can supply fuel to the intake side of the combustion cylinder according to a predetermined load from high load to low load. The configuration of the intake air adjustment mechanism that can supply air to the intake chamber within the fuel tank is also arbitrary. 9 Instead of having multiple supply pipes and injection nozzles of the fuel supply device as in this example, this is used as one and the pressure change applied there is utilized. A configuration may also be used in which the supply amount is regulated. Intake condition! ! ! The mechanism may also be a bridge mW that changes the hole area by moving a cone-shaped movable body 25 back and forth in the partition hole portion as shown in FIG. Furthermore, the trap or movable partition, the fuel supply device, and 213! The configuration of the control means that can variably supply fuel and air at an air-fuel ratio according to the variable volume of the combustion chamber by sliding displacement of the trap or movable partition by linking with the air adjustment mechanism does not matter. The trap or movable partition is moved by a servo motor, and the fuel supply system and intake air adjustment mechanism can be controlled proportionally. ! A configuration in which they are connected may be used, and various configurations can be adopted. Effects of the Invention According to the variable combustion method of claim 1, since variable combustion can be performed by changing the combustion chamber capacity in multiple stages or continuously from high load to low load, it is possible to change the combustion chamber capacity appropriately between high load and low load. This is a ground-breaking invention that has the great effect of enabling continuously variable combustion and realizes the versatility of a pulse combustor. Further, according to the variable combustion device according to claim 2. Appropriate continuous variable combustion between high load and low load is easy, and it has the effect of being able to cope with changes in fuel. Furthermore, according to the variable combustion device of claim 3. This has the effect of simplifying the shape of the combustion tube and the configuration of the intake chamber. In addition, in the fourth aspect, the configuration is simplified due to the two-stage variable combustion, and in the fifth aspect, the configuration of the fuel supply device is -Rf'l1m.
The configuration of the exhaust pipe can be simplified and the cost can be reduced.
第1図Iよ本発明装との第1実施例を示す横断平面図、
第2図はその逆流防止弁の弁座り拡大側面図、第3図は
その逆流防止弁の横断平面図、第4図はその逆流防止弁
の裏側からの側面図。
第5図は開閉ダンパの閉状態における側面図、第6図は
本発明装置の第2実施例の横断平面図第7図及び第8図
は夫々さらに別置の燃焼ガスの逆流防止弁を有しない無
弁式エンジンにおける横断平面図、
第9図は吸気g4整機構の別置の要部断面図。
第10図は従来のパルスジェットエンジンの横断平面図
である。
9:開閉ダンパ、9a:支持管。
9bニオリフイス孔、10,23ニレバー、ll:低負
荷用燃料供給管。
12:高負荷用燃料供給管、
12a:噴射ノズル、13:気体逆流防止弁。
14:弁座、15,16:遮断膜、
22:可動仕切体、22b:jt通部。
昭和63年 5月 10日
28発明の名称
パルス可変燃焼方法及びパルス可変燃焼装置3、補正を
する者
5件との関係 特註出願人
氏名 緒 川 尚 孝
4、代理人 〒453電、¥、1i052(452)5
2256、補正により増加する請求項の数 O(補正
の内容)
1、明細書第8頁第8行目の「させもの」を「させるも
の」に補正する。
2、同第11頁第9行目の「燃焼加圧」を「燃料加圧」
に補正する。
3、同第11頁第10行目の「燃焼圧送」を「燃料圧送
」に補正する。
4、同第12頁第11行目の「第4図にように」を「第
4図のように」に補正する。
5、同第15頁第12行目、同第16頁第12行目、同
第18頁第1行目、同第2行目、同第19頁第1行目及
び同第20頁第9行目の夫々「容量」を夫々「容積」に
補正する。
以 上FIG. 1 is a cross-sectional plan view showing the first embodiment of the device of the present invention; FIG. 2 is an enlarged side view of the valve seat of the check valve; FIG. 3 is a cross-sectional plan view of the check valve; The figure is a side view from the back side of the check valve. FIG. 5 is a side view of the opening/closing damper in the closed state, and FIG. 6 is a cross-sectional plan view of the second embodiment of the device of the present invention. FIGS. Figure 9 is a cross-sectional view of a separate main part of the intake G4 adjustment mechanism. FIG. 10 is a cross-sectional plan view of a conventional pulse jet engine. 9: Opening/closing damper, 9a: Support pipe. 9b Niorifice hole, 10, 23 Nilever, ll: Low load fuel supply pipe. 12: High load fuel supply pipe, 12a: Injection nozzle, 13: Gas backflow prevention valve. 14: valve seat, 15, 16: blocking membrane, 22: movable partition, 22b: jt passage part. May 10, 1988 28 Name of the invention Pulse variable combustion method and pulse variable combustion device 3 Relationship with the 5 amendments Special notes Applicant name Hisataka Ogawa 4, Agent Address: 453 Den, ¥, 1i052(452)5
2256. Number of claims increased by amendment O (Contents of amendment) 1. Amend "samemono" on page 8, line 8 of the specification to "suemono". 2. Change “combustion pressurization” on page 11, line 9 of the same page to “fuel pressurization”
Correct to. 3. Correct "combustion pumping" on the 10th line of page 11 to "fuel pumping". 4. Correct "As shown in Figure 4" on the 11th line of page 12 to "As shown in Figure 4." 5, page 15, line 12, page 16, line 12, page 18, line 1, line 2, page 19, line 1, and page 20, line 9 Correct each "capacity" in the row to "volume". that's all
Claims (6)
る防炎トラップを配置して排気筒との間で形成される燃
焼室で燃焼させる方法であって、該トラップを摺動させ
、或いは燃焼室内に挿入配置され且つ排気筒と連通する
可動仕切体を摺動させることにより燃焼室の容積を可変
させると共に、該燃焼室の可変容積に応じて燃料及び空
気を可変供給させて燃焼させることを特徴とするパルス
可変燃焼方法。(1) A method of arranging a flameproof trap to prevent backflow of combustion pressure on the intake side of the combustion tube and causing combustion in a combustion chamber formed between the exhaust tube and the combustion chamber, in which the trap is slid; Alternatively, the volume of the combustion chamber is varied by sliding a movable partition that is inserted into the combustion chamber and communicates with the exhaust stack, and fuel and air are variably supplied in accordance with the variable volume of the combustion chamber for combustion. A pulse variable combustion method characterized by:
る防炎トラップを配置して排気筒との間で燃焼室を形成
したパルス燃焼において、該トラップを摺動可能に配置
し、高負荷から低負荷までの所定負荷に応じた燃料を燃
焼筒内の吸気側に供給できる燃料供給装置と、高負荷か
ら低負荷までの所定負荷に応じて空気量を調整し燃焼筒
内の吸気室に供給できる吸気調整機構とを備え、前記ト
ラップと燃料供給装置と吸気調整機構とを連繋させて該
トラップの可動変位による燃焼室の可変容積に応じた空
燃比となる燃料及び空気を可変供給できる制御手段を備
えたことを特徴とするパルス可変燃焼装置。(2) In pulse combustion in which a flameproof trap is placed on the intake side of the combustion tube to prevent backflow of combustion pressure and a combustion chamber is formed between it and the exhaust tube, the trap is slidably placed and A fuel supply device that can supply fuel to the intake side of the combustion cylinder according to a predetermined load from load to low load, and an intake chamber in the combustion cylinder that adjusts the amount of air according to a predetermined load from high load to low load. The trap, the fuel supply device, and the intake air adjustment mechanism are linked to each other, so that fuel and air can be variably supplied at an air-fuel ratio according to the variable volume of the combustion chamber by the movable displacement of the trap. A variable pulse combustion device characterized by comprising a control means.
る防炎トラップを固定配置して燃焼室を仕切り形成した
パルス燃焼装置において、燃焼室内に排気筒と燃焼室と
を連通する可動仕切体を摺動可能に収容し、高負荷から
低負荷までの所定負荷に応じた燃料を燃焼筒内の吸気室
に供給できる燃料供給装置と、高負荷から低負荷までの
所定負荷に応じて空気量を調整し燃焼筒内の吸気室に供
給できる吸気調整機構とを備え、前記可動仕切体と燃料
供給装置と吸気調整機構とを連繋させて該可動仕切体の
可動変位による燃焼室の可変容積に応じた空燃比となる
燃料及び空気を可変供給できる制御手段を備えたことを
特徴とするパルス可変燃焼装置。(3) In a pulse combustion device in which the combustion chamber is partitioned by fixedly disposing a flameproof trap on the intake side of the combustion cylinder to prevent backflow of combustion pressure, a movable partition inside the combustion chamber communicates the exhaust pipe and the combustion chamber. A fuel supply device that slidably houses the body and can supply fuel to the intake chamber in the combustion cylinder according to a predetermined load from high load to low load, and an air supply device that can supply fuel according to a predetermined load from high load to low load to the intake chamber. The movable partition body, the fuel supply device, and the intake air adjustment mechanism are linked to each other, so that the volume of the combustion chamber can be changed by the movable displacement of the movable partition body. What is claimed is: 1. A variable pulse combustion device comprising a control means capable of variably supplying fuel and air at an air-fuel ratio according to the air-fuel ratio.
、燃料供給装置の燃料噴出ノズルを高負荷用と低負荷用
とに別けて吸気流路に配置した請求項第2項又は第3項
記載のパルス可変燃焼装置。(4) Claim 2, wherein the combustion chamber has a two-stage variable volume for high load and low load, and the fuel injection nozzle of the fuel supply device is arranged in the intake flow path separately for high load and low load. Or the variable pulse combustion device according to item 3.
すると共に、該開閉ダンパの回転支点となる中央部に低
負荷吸気用のオリフィスを形成すると共に、該オリフィ
ス孔に低負荷用の燃料噴出ノズルを開口配置した請求項
第2項又は第3項又は第4項記載のパルス可変燃焼装置
。(5) The intake adjustment mechanism has an opening/closing damper disposed in the intake flow path, and an orifice for low-load intake is formed in the central part that serves as the rotational fulcrum of the opening/closing damper. 5. The variable pulse combustion device according to claim 2, wherein the ejection nozzle is arranged in an open manner.
と成した請求項第3項記載のパルス可変燃焼装置。(6) The variable pulse combustion device according to claim 3, wherein the variable pulse combustion device is constituted by a movable partition body having an exhaust pipe extending from the combustion chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10975388A JPH01281308A (en) | 1988-05-02 | 1988-05-02 | Pulse variable combustion method and pulse variable combustion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10975388A JPH01281308A (en) | 1988-05-02 | 1988-05-02 | Pulse variable combustion method and pulse variable combustion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01281308A true JPH01281308A (en) | 1989-11-13 |
JPH0586523B2 JPH0586523B2 (en) | 1993-12-13 |
Family
ID=14518378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10975388A Granted JPH01281308A (en) | 1988-05-02 | 1988-05-02 | Pulse variable combustion method and pulse variable combustion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01281308A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102221221B (en) * | 2011-03-29 | 2016-01-20 | 宝钢工业炉工程技术有限公司 | The industrial furnace gaseous-pressure hierarchical control method of pulse-combustion |
-
1988
- 1988-05-02 JP JP10975388A patent/JPH01281308A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0586523B2 (en) | 1993-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0681907B2 (en) | Various gas fuel combustion systems for gas turbine engines | |
JP2501079B2 (en) | Vaporizer with accelerator and idle circuit breaker | |
JPS63159651A (en) | Engine with secondary fuel delivery system | |
JP2002070651A (en) | Diaphragm type carburetor | |
JPS5815749A (en) | Carburetor for internal combustion engine, particularly, portable subminiature engine | |
US4476838A (en) | Exhaust gas suppressor | |
ITRM940666A1 (en) | EMISSION CONTROL SYSTEM FOR SMALL ENGINES | |
US6928996B2 (en) | Stratified scavenging mechanism of a two-stroke engine | |
JPH01281308A (en) | Pulse variable combustion method and pulse variable combustion device | |
JP4030939B2 (en) | Fuel delivery system and method | |
US4054621A (en) | Carburetor pneumatic fuel atomizer and throttle valve | |
JPH11294714A (en) | Method and device for pulse variable volume combustion | |
JP3782575B2 (en) | Method of adjusting flow rate of fuel gas in gas burner device and flow rate adjusting device of fuel gas used therefor | |
JP3880650B2 (en) | Carburetor for internal combustion engine of portable working device | |
ITRM950170A1 (en) | INTERNAL COMBUSTION ENGINE FUEL INJECTION SYSTEM. | |
JPH03504750A (en) | Fuel-injected two-stroke internal combustion engine with progressive throttle linkage for improved resolution of the throttle position sensor | |
JPH03172569A (en) | Fuel-air mixture-forming apparatus for internal-combustion engine | |
JP2000045875A (en) | Float-less type carburetor | |
JPH02157417A (en) | Flow-throttling device and | |
JP3894764B2 (en) | Engine after-run prevention device | |
JPH06299935A (en) | Injection fuel distribution ratio control device for porous fuel injection valve | |
JP2001336748A (en) | Fuel-staging burner and fuel-injection nozzle | |
TW558602B (en) | Low-speed fuel apparatus of carburetor | |
JPS60159505A (en) | Pulse combustion burner | |
JP2008163751A (en) | Engine |